Wyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych

Podobne dokumenty
Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Liczby kwantowe elektronu w atomie wodoru

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Wykład Budowa atomu 3

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.6 Atomy w zewnętrznym polu magnetycznym

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

ANALITYKA W KONTROLI JAKOŚCI

Stara i nowa teoria kwantowa

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Spis treści. Przedmowa redaktora do wydania czwartego 11

Atomy wieloelektronowe

Stany skupienia materii

II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

Fizyka 2. Janusz Andrzejewski

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

Atomowa budowa materii

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Fizyka atomowa r. akad. 2012/2013

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Spektroskopia magnetyczna

Atomy mają moment pędu

I. PROMIENIOWANIE CIEPLNE

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.

ZASADY ZALICZENIA PRZEDMIOTU MBS

Wstęp do Optyki i Fizyki Materii Skondensowanej

Zasady obsadzania poziomów

Model uogólniony jądra atomowego

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

Model wiązania kowalencyjnego cząsteczka H 2

Własności jąder w stanie podstawowym

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

Wstęp do Optyki i Fizyki Materii Skondensowanej

Spektroskopia molekularna. Spektroskopia w podczerwieni

Podstawy Fizyki Jądrowej

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład Budowa atomu 2

TEORIA PASMOWA CIAŁ STAŁYCH

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA ROTACYJNA

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

Wstęp do astrofizyki I

Przejścia optyczne w strukturach niskowymiarowych

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Elektronowa struktura atomu

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę.

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Własności magnetyczne materii

Własności magnetyczne materii

Atom wodoru i jony wodoropodobne

Podstawy chemii obliczeniowej

Wstęp do Optyki i Fizyki Materii Skondensowanej

Orbitale typu σ i typu π

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Układy wieloelektronowe

Wykład FIZYKA II. 5. Magnetyzm

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

24 Spin i efekty relatywistyczne

Przejścia promieniste

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

26 Okresowy układ pierwiastków

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn

Teoria kinetyczna gazów

Fizyka 3.3 WYKŁAD II

Oddziaływanie cząstek z materią

Atomy wieloelektronowe i cząsteczki

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

Spektroskopowe metody identyfikacji związków organicznych

Zaburzenia periodyczności sieci krystalicznej

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

MAGNETYCZNY REZONANS JĄDROWY - podstawy

Wartość n Symbol literowy K L M N O P

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Transkrypt:

Wyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych Opracował: Hubert Lange Aby przygotować się do ćwiczenia należy przeczytać i zrozumieć materiał w książce:. adlej, pektroskopia molekularna WNT, zawarty na stronach: 657 oraz 94 7. Celem ćwiczenia jest zapoznanie się z widmami elektronowymi dwuatomowych molekuł, w szczególności z ich strukturą rotacyjną oraz metodą wyznaczania temperatury gazu na podstawie rozkładu intensywności w strukturze rotacyjnej. Część teoretyczna. Opis stanów elektronowych molekuł dwuatomowych W molekułach dwuatomowych oś wiązania stanowi kierunek wyróżniony. Istnienie dwu centrów siłowych obniża symetrię pola elektrostatycznego ze sferycznej, charakterystycznej dla atomu, do osiowej. W rezultacie stany energetyczne, które w atomie są zdegenerowane (opisywane orbitalną liczbą kwantową L), ulegają rozszczepieniu, podobnie jak w atomach umieszczonych w silnym polu elektrostatycznym (zjawisko tarka). Natężenie pola elektrostatycznego na osi molekuły jest o wiele rzędów większe od pól realizowanych w laboratorium, stąd rozszczepienia te są na tyle duże, że przejścia pomiędzy poziomami rozszczepionymi leżą m.in. w obszarze widmowym UV i VI. Przejścia elektronowe w atomach pomiędzy poziomami rozszczepionymi w laboratoryjnych polach magnetycznych (zjawisko Zeemana) bądź elektrycznych (zjawisko tarka) związane są z absorpcją (emisją) fal elektromagnetycznych z zakresu częstotliwości radiowych. Klasyfikację termów elektronowych molekuł dwuatomowych dokonuje się analogicznie jak w przypadku atomów w oparciu o model wektorowy. Rozważmy na początku nieruchomą a więc nie rotującą i nie oscylującą cząsteczkę. Ruch orbitalny elektronów jest określony przez oddziaływania kulombowskie z jądrami i pozostałymi elektronami. iły te powodują uporządkowanie momentów pędu w taki sposób, że ich wektory dodają się do siebie tworząc wypadkowy moment pędu powłoki elektronowej L. Zgodnie modelem wektorowym wypadkowy orbitalny moment pędu L zmienia w sposób ciągły kierunek w przestrzeni wykonując ruch precesyjny wokół osi wiązania molekuły (podobnie jak ruch precesyjny momentu pędu wirującego bąka w polu grawitacyjnym). edynie rzut L na oś cząsteczki nie zmienia orientacji w przestrzeni, a więc jest tzw. stałą ruchu. kładową momentu orbitalnego wzdłuż osi oznaczamy symbolem. Zgodnie z kwantowaniem przestrzennym wartości rzutu L w jednostkach h/ mogą być równe: =,,,,...L. ens fizyczny tych liczb jest taki sam jak liczb magnetycznych m s opisujących rzut momentu orbitalnego elektronu w atomie na wyróżniony kierunek z. edyna różnica związana jest ze znakiem. Wartości są zawsze dodatnie ponieważ przy braku zewnętrznego pola magnetycznego energia precesji "lewej" jest równa energii precesji "prawej". W oparciu o liczbę kwantową wprowadza się oznaczenia stanów elektronowych molekuł dwuatomowych: ( = ), ( = ), ( = ), itd. Termy są termami prostymi. Pozostałe termy są dwukrotnie zdegenerowane.

Elektrony walencyjne oddziałują ze sobą siłami wymiennymi zależymi od ich spinów. Oddziaływanie to porządkuje spiny w ten sposób, że dodają się one wektorowo niezależnie od sposobu dodawania się orbitalnych momentów pędu. W stanach (podobnie jak w przypadku stanów atomowych ) wypadkowy spin ma określoną orientację w przestrzeni na spin nie działa wówczas pole magnetyczne. Ruch orbitalny elektronów wytwarza słabe pole magnetyczne. Pole to sprzęga moment spinowy i orbitalny w wypadkowy moment = L. ego rzut, oznaczany symbolem, a więc całkowity moment pędu elektronów, na oś molekuły jest sumą wektorów oraz. Można również powiedzieć, że niezerowe pole magnetyczne wzdłuż osi molekuły ( ) wywołuje precesję wypadkowego wektora spinowego wokół osi cząsteczki. ego rzut na oś wiązania oznaczamy symbolem (nie mylić z takim samym symbolem opisującym term = ). L = Rys.. Ilustracja składania wektorowego momentów pędu elektronów (orbitalnego i spinowego) w molekule dwuatomowej. Uwzględniając różne możliwości orientacji spinu względem osi cząsteczki wprowadza się następujące oznaczenie termów elektronowych:, gdzie górny indeks ze strony lewej symbolu to multipletowość termu elektronowego. Zapis oznacza więc, że liczba kwantowa = a wypadkowy spin =. Dolny prawy indeks opisuje całkowity elektronowy moment pędu, np. i różnią się wartościami = ( ), = i =. Termy rotacyjne W molekułach wzbudzonych rotacyjnie pojawiają się dwie siły bezwładnościowe, mianowicie siła odśrodkowa i siła Coriolisa, a także dodatkowo oddziaływanie magnetyczne. Całkowity moment pędu molekuły składa się wektorowo z momentu spinowego, orbitalnego oraz rotacyjnego, R. Całkowity moment jest oczywiście stałą ruchu. W zależności od siły oddziaływania pomiędzy poszczególnymi momentami pędów i R wykonują szybsze lub wolniejsze ruchy precesyjne wokół całkowitego momentu pędu. Istnieje kilka możliwości spośród których dwa skrajne przypadki, tzw. sprzężenia Hunda a i b, dotyczą większości stanów elektronowych. Przypadek sprzężenia a Hunda przężenie a Hunda zachodzi wówczas, gdy energia oddziaływania orbitalnego momentu pędu elektronów z osią molekuły jest duża w porównaniu z energią rotacyjną. Rzut orbitalnego momentu pędu na oś molekuły i rzut momentu spinowego są wówczas przybliżonymi stałymi ruchu. Wektory i L wykonują więc szybką i niezależną precesję wokół wektora ( jak na Rys. ). Ponieważ oddziaływanie wektora i wektora momentu rotacyjnego R jest słabe, wektory te wykonują niezależną rotację (nutację) wokół wypadkowego momentu pędu. R

Zgodnie z zasadami mechaniki kwantowej z dobrym przybliżeniem można napisać, że ( ) = R () i wyrażenie na term rotacyjny w ma wówczas następującą postać: F v() = B v [( ) ] Dv ( )... () B v i D v to stałe rotacyjne występujące w modelu rotatora niesztywnego. Energia termu rotacyjnego nie może być ujemna, więc liczba kwantowa przybiera wartości: = Ω Ω, Ω,... () Np. w przypadku stanu elektronowego wyróżniamy trzy układy termów rotacyjnych (Rys. ). = = = Rys. Układy poziomów rotacyjnych w stanie tworzących strukturę subtelną (spinową). Liniami przerywanymi zaznaczone są poziomy rotacyjne, których nie ma. Przypadek sprzężenia b Hunda Ten przypadek odnosi się przede wszystkim do molekuł będących w stanach, a także do lekkich molekuł z niezerowymi wartościami. W pierwszym przypadku elektrony nie wytwarzają pola magnetycznego w kierunku osi molekuły, w drugim przypadku pole jest bardzo słabe. Wektory i R nie są więc stałymi ruchu i wykonują precesję wokół wypadkowego wektora, który w trym przypadku oznacza się symbolem K. R Termy rotacyjne w ujęciu rotatora sztywnego wyraża następujący wzór: F (K) = B [K(K ) ] (4) v v Mamy więc pojedynczy układ termów rotacyjnych opisane symbolem K:

K =,,,... (5) ednakże w stanach silnie wzbudzonych rotacyjnie rotujące jądra wytwarzają dodatkowe pole magnetyczne w związku z czym pojawia się oddziaływanie pomiędzy wektorem K i. Dlatego wraz ze wzrostem rotacyjnej liczby kwantowej K poszczególne poziomy rozszczepiają się na podpoziomów tworzących strukturę spinową. Oznaczamy je symbolem. Termy rotacyjne w stanach elektronowych opisujemy wzorami: F v = Bv K(K ) K, = K F v = Bv K(K ) (K ), = K gdzie jest stałą sprzężenia między momentami K i. (6) Ilustracja termów rotacyjnych w dwóch stanach elektronowych oraz przejść tworzących strukturę rotacyjną przedstawiona jest na Rys.. K,,,, P P P o R R R Rys. Układ poziomów rotacyjnych w dwóch stanach elektronowych i przejścia tworzące strukturę rotacyjną widma elektronowego. Rozszczepienie spinowe poziomów rotacyjnych widoczne na Rys. jest mocno przesadzone. Nawet przy użyciu monochromatorów o dużej zdolności rozdzielczej struktura subtelna poziomów rotacyjnych w stanach elektronowych staje się obserwowalna dopiero przy bardzo dużych rotacyjnych liczbach kwantowych K. Rozważane pasmo elektronowe składa się z dwóch gałęzi P i R. Brak gałęzi Q w zaznaczonym miejscu przez o związany jest z parzystością poziomów rotacyjnych prawa strona Rys.. Parzystość zależy od parzystości iloczynu funkcji falowych elektronowych i rotacyjnych. eżeli funkcje

elektronowe zmieniają znak przy odbiciu w płaszczyźnie przechodzącej przez oś molekuły wówczas stan i parzystość poziomów rotacyjnych jest odwrotna niż na Rys.. Reguła wyboru prowadzi do reguł: a) = ± dla prostego rotatora (= ) oraz b) = ± lub dla bąka symetrycznego ( > ) Gdy > każdy z poziomów rotacyjnych składa się z dwóch podpoziomów wynikających z degeneracji. Każdy z nich ma przeciwną parzystość. Dlatego gałąź Q występuje gdy jeden ze stanów elektronowych biorących udział w przejściu jest inny niż. Podobnie ma się rzecz w strukturze rotacyjnej widm oscylacyjnych. 5 (a) (b) 5 4 4 = rotator = bąk symetryczny Rys. Parzystość termów rotacyjnych. Natężenie linii rotacyjnych w widmach elektronowych molekuł dwuatomowych Dla molekuł dwuatomowych natężenie linii odpowiadającej przejściu z pewnego stanu elektronowooscylacyjnorotacyjnego (górnego) scharakteryzowanego zbiorem liczb kwantowych (n'v'k') do odpowiedniego niższego stanu scharakteryzowanego zbiorem (m''v''k') jest proporcjonalna do energii kwantu, prawdopodobieństwa przejścia oraz do liczby molekuł znajdujących się w stanie wzbudzonym (n''v'k'): I (8) h A nm N m zczegółowe wyrażenie na prawdopodobieństwo przejścia ze stanu n do m, A nm, zależy od rodzaju cząstki, a więc czy jest to atom, jon, molekuła dwu lub wieloatomowa. Na przykład, dla dwuatomowych cząsteczek A nm przyjmuje postać (przy upraszczającym założeniu o stosowalności przybliżenia BornaOppenheimera): A nm 4 64 = nm hc g (K ' ) n nm (9) gdzie: n = (n''v'k' ), m = (n''''v''k'') to zbiory liczb kwantowych;

n', n'' główne liczby kwantowe stanu elektronowego, g n = (' )( '' ) stopień degeneracji poziomu elektronowego, ( '' ) = dla '' = dla ' = ' nm siła linii, nm = Rnn qv v, () gdzie: R n'n'' element macierzowy momentu dipolowego przejścia elektronowego (n' n''), q v'v'' czynnik FranckaCondona. est to całka przenikania dwóch funkcji oscylacyjnych należących do dwóch stanów elektronowych. Wzory na czynniki HL zostały wyprowadzone dla wszystkich praktycznie możliwych kombinacji stanów elektronowych. Dla przejść czynniki HönlaLondona mają następującą postać: R K', K' 4K'( K' ) 4K' P K', K' 4( K' )[ ( K' ) ] 4[( K' ) ] () Czynniki HL są przeważnie tak znormalizowane, że K' lub K''. W stanie równowagi termodynamicznej liczba molekuł znajdujących się w określonym stanie elektronowooscylacyjnorotacyjnym jest określona rozkładem Boltzmanna: K '' K ' N n' v' K ' En Ev EK ' kt g n' (K' ) e N () Q ( T ) Q ( T ) Q ( T ) el v r gdzie: N całkowita liczba molekuł danego rodzaju w jednostce objętości, E m E v E K energia termu elektronowooscylacyjnorotacyjnego, Q el( (T)Q v (T)Q r (T) suma stanów poziomów dla elektronowooscylacyjnorotacyjnych molekuł danego rodzaju. Np. Q r T K ' (K' ) e Bv h c K '( K ' ) kt przybliżeniem tej sumy stanów jest: Q r (T) kt/b v. (sumowanie obejmuje wszystkie poziomy rotacyjne). Dobrym Wykorzystując powyższe wyrażenia wzór na natężenie linii odpowiadającej przejściu elektronowooscylacyjnorotacyjnemu można zapisać w postaci uproszczonej: I EK ' kt 4 C e () gdzie C stała, która słabo zależy od temperatury (liniowo) w porównaniu z czynnikiem wykładniczym. Wyrażenie () odgrywa fundamentalną rolę przy wyznaczaniu temperatury gazu na podstawie rozkładu intensywności w strukturze rotacyjnej pasm molekularnych. Aby wyznaczyć temperaturę należy :. zidentyfikować odpowiednie linie rotacyjne przypisując im rotacyjne liczby kwantowe

. obliczyć czynniki HönlaLondona. określić współczynnik kierunkowy prostej: I Bv' hc ln( ) const K'( K' ) 4 kt z którego można następnie obliczyć temperaturę. (4) W niektórych przypadkach tak wyznaczona temperatura jest tzw. temperaturą rotacyjną i nie zawsze jest ona równa temperaturze gazu. Doświadczenie wskazuje, że np. rodniki dwuatomowe powstające w wyniku reakcji rozpadu molekuł wieloatomowych znajdują się często w stanach wzbudzonych: elektronowych, oscylacyjnych i rotacyjnych, których obsadzenie nie odpowiada lokalnej wartości temperatury gazu. Indywidua takie po pewnej ilości zderzeń dochodzą do stanu równowagi. Każdy z wewnętrznych stopni swobody ma swój czas relaksacji. Najmniejszy czas relaksacji dotyczy poziomów rotacyjnych. Z wyjątkiem lekkich molekuł relaksacja rotacyjna wymaga jedynie kilku zderzeń, stała czasowa relaksacji rotacyjnej jest więc zbliżona do czasu pomiędzy zderzeniami, czyli w przybliżeniu jest równa odwrotności częstości zderzeń. W takim przypadku wyznaczoną temperaturę rotacyjną można utożsamiać z temperaturą gazu. Część eksperymentalna W ćwiczeniu wyznaczamy temperaturę gazu na podstawie widma emisyjnego rodnika CN odpowiadającego przejściu B, v = X, v =. ymbole X i B oznaczają odpowiednio podstawowy i drugi wzbudzony poziom elektronowy, v i v to poziomy oscylacyjne w obu stanach elektronowych. Widmo emitowane jest przez gaz zjonizowany wytwarzany wyładowaniem elektrycznym w katodzie wnękowej, wykonanej z drążonego grafitu, przez którą przepływa hel z małą domieszką azotu. Wlot gazu Wylot gazu _ pektrograf DF 8 CC D Zasilacz wysokiego napięcia PC Rys. 4. chemat układu eksperymentalnego.

Wykonanie ćwiczenia Ćwiczenie składa się z dwóch części. Część pierwsza ćwiczenia (A) polega na symulacji komputerowej struktury rotacyjnej badanego widma w zależności od zadanych stałych rotacyjnych B v w obu stanach elektronowych, temperatury oraz funkcji aparaturowej układy dyspersyjnego. Część druga ćwiczenia (B) polega na zarejestrowaniu widm przy różnych mocach wyładowania elektrycznego. Opracowanie wyników. Zinterpretować strukturę rotacyjną, tj. zidentyfikować odpowiednie gałęzie w zarejestrowanym paśmie.. Na podstawie widma obliczyć stałe rotacyjne w obu stanach elektronowych. Z Rys. wynika, że różnica pomiędzy liczbami falowymi dwóch linii, które mają wspólny górny poziom rotacyjny, (K ) = R(K ) P(K ), jest równa (w przybliżeniu rotatora sztywnego): ' ( K' ) 4Bv ( K' ) (5) Analogicznie dla różnicy liczb falowych dwóch linii gałęzi P i R mających wspólny dolny poziom rotacyjny (K ) = R(K ) P(K ): '' ( K' ) 4Bv ( K' ), (6) gdzie prim oznacza wzbudzony stan elektronowy, bis stan podstawowy. Ze wzorów (5) i (6) wynika, że różnice odpowiednich liczb falowych tworzą funkcje liniowe od liczby rotacyjnej K. Na podstawie współczynnika kierunkowego można obliczyć stałe rotacyjne dla dwóch stanów elektronowych.. Przypisać rotacyjne liczby kwantowe poszczególnym liniom. 4. Określić względne intensywności linii rotacyjnych (proporcjonalne jest do wysokości). 5. Obliczyć czynniki HL 6. Wykonać wykres przedstawiający zależność ln(i K / K K 4 ) vs. K (K ). 7. Metodą najmniejszych kwadratów obliczyć współczynnik kierunkowy a następnie temperaturę. 8. Wykonać wykres przedstawiający zależność temperatury od mocy wyładowania.