Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Podobne dokumenty
Semantyka rachunku predykatów

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Adam Meissner.

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda

Metoda Tablic Semantycznych

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Składnia rachunku predykatów pierwszego rzędu

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

LOGIKA Klasyczny Rachunek Zdań

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Klasyczny rachunek predykatów

Uzgadnianie formuł rachunku predykatów

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Kultura logicznego myślenia

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

ROZDZIAŁ 1. Rachunek funkcyjny

Podstawy Sztucznej Inteligencji (PSZT)

Drobinka semantyki KRP

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Automatyczne dowodzenie twierdzeń metodą rezolucji

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Elementy logiki Klasyczny rachunek predykatów

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Matematyka ETId Elementy logiki

Twierdzenie Łosia o ultraprodukcie

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Schematy Piramid Logicznych

Programowanie deklaratywne i logika obliczeniowa

Definicja: alfabetem. słowem długością słowa

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

Funkcje elementarne. Matematyka 1

Logika Matematyczna 16 17

1. Klasyczny Rachunek Zdań

Rachunki relacji. Rachunki relacji. RRK Relacyjny Rachunek Krotek

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Wprowadzenie do Sztucznej Inteligencji

Adam Meissner SZTUCZNA INTELIGENCJA

Wstęp do logiki. Klasyczny Rachunek Predykatów I

Elementy logiki matematycznej

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

Internet Semantyczny i Logika I

Programowanie logiczne a negacja

Logika pragmatyczna dla inżynierów

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Logiczne podstawy informatyki 1. Wojciech Buszkowski. Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM

Zasada indukcji matematycznej

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Logiki modalne. notatki z seminarium. Piotr Polesiuk

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

LOGIKA ALGORYTMICZNA

Rachunek zdań. 2.1 Podstawowe pojęcia

domykanie relacji, relacja równoważności, rozkłady zbiorów

Logika dla informatyków

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Struktury formalne, czyli elementy Teorii Modeli

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Rekurencyjna przeliczalność

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

LOGIKA I TEORIA ZBIORÓW

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

Podstawowe Pojęcia. Semantyczne KRZ

Rozstrzygalność logiki modalnej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Internet Semantyczny. Logika opisowa

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Kultura logiczna Klasyczny rachunek zdań 2/2

Logika Radosna 4. Jerzy Pogonowski. Semantyka KRP. Zakład Logiki Stosowanej UAM

Adam Meissner SZTUCZNA INTELIGENCJA

Wyuczalność w teorii modeli

Metalogika (12) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Logika Matematyczna (10)

Wprowadzenie do Sztucznej Inteligencji

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

III. Funkcje rzeczywiste

Transkrypt:

Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna równoważność formuł Model formuły Formuła spełnialna i prawdziwa Logiczna równoważność formuł Dziedzina interpretacji Stałe, zmienne, funkcje Czy formuła rachunku zdań A = p jest spełnialna? Czy formuła rachunku predykatów B = x, y p(x, y) jest spełnialna? Należy podać intepretację (znaczenie) predykatu p oraz dziedzinę interpretacji zmiennych, czyli określić jakie wartości mogą przyjmować zmienne x, y. Niech x X oraz y Y, gdzie X jest zbiorem kotów dachowców, a Y jest zbiorem samochodów, natomiast p(x, y) oznacza relację x jest właścicielem y. Niech x X oraz y Y, gdzie X jest zbiorem osób posiadających prawo jazdy, a Y jest zbiorem samochodów, natomiast p(x, y) oznacza relację x jest właścicielem y. Dalej, niech x =Kowalski oraz y =Fiat-PO247Z. Dziedzina interpretacji jest to zbiór, do którego należą: zmienne, stałe, wartości funkcji występujące w formule rachunku predykatów.

Predykaty Intepretacja w rachunku predykatów Predykaty reprezentują relacje określone na dziedzinie interpretacji. Predykat n-argumentowy oznacza relację R D n. Interpretacją predykatu p(x, y, z) może być relacja R określona na zbiorze kątów ostrych, taka, że kąty x, y, z są w relacji R, gdy są kątami tego samego trójkąta. (x, y, z) R wtw. x + y + z = 180. Aby określić wartość (logiczną) formuły rachunku predykatów należy podać: dziedzinę interpretacji (zbiór wartości jakie mogą przyjmować stałe, zmienne i funkcje), funkcje odpowiadające symbolom funkcyjnym, relacje odpowiadające symbolom predykatywnym. Funkcja interpretacji Niech U będzie zbiorem formuł, dla którego: {p 1,..., p k } - zbiór wszystkich symboli predykatywnych w U, {f 1,..., f l } - zbiór wszystkich symboli funkcyjnych w U, {a 1,..., a m } - zbiór wszystkich stałych w U. p(a, f (x)) Interpretacja Interpretacją I nazywamy czwórkę: {D, {R 1,...R k }, {F 1,..., F l }, {d 1,..., d m }}, gdzie: D - niepusta dziedzina, R i - relacja przyporządkowana symbolowi predykatywnemu p i, F i - funkcja przyporządkowana symbolowi funkcyjnemu f i, d i - element dziedziny D, przyporządkowany stałej a i. Interpretacja I 1 = {N, { }, {x 2 }, {5}} D N f x 2 a 5 5 x 2 Interpretacja I 2 = {N, { }, {2x}, {0}} D N f 2x a 0 0 2x Interpretacja I 3 = {Z, { }, {x 2 }, {5}} D Z f x 2 a 5 5 x 2

Jeszcze raz Kowalski Wartościowanie Czy p(x, y) jest spełnialne? Niech x X oraz y Y, gdzie X jest zbiorem osób posiadających prawo jazdy, a Y jest zbiorem samochodów, natomiast p(x, y) oznacza relację x jest właścicielem y. Musimy jeszcze podać wartości x i y, dla których p(x, y) jest spełnione. Niech x =Kowalski oraz y =Fiat-PO247Z. Niech I będzie interpretacją. Wartościowaniem σ I : V D nazywamy funkcję przyporządkowującą każdej zmiennej element dziedziny interpretacji I. Zapis σ I[xi d i ] będzie oznaczał, że w wartościowaniu σ I zmiennej x i została przyporzadkowana wartość d i. Zakres wartości termu Formuła p(a, f (x)) Interpretacja I 1 = {N, { }, {x 2 }, {5}} UWAGA! Wartość termu należy do dziedziny interpretacji D i nie musi być wartością logiczną. Wartościowanie σ I[x 3] 5 x 2 5 9 Wartość termu zależy zarówno od interpretacji, jak i wartościowania.

Wartość termu t w interpretacji I i wartościowaniu σ I oznaczamy przez v σi (t) i definiujemy przez indukcję: v σi (x i ) = σ I (x i ) v σi (a i ) = d i v σi (f i (t 1,..., t n )) = F i (v σi (t 1 ),..., v σi (t n )) gdzie: d i - element dziedziny przyporządkowany stałej a i w interpretacji I, F i - funkcja przyporządkowana w interpretacji I symbolowi funkcyjnemu f i Wartość termu: t = f (x) + g(f (a)) Interpretacja: I = {N, {}, {2x, y 2 }, {0}} Wartościowanie: σ I (x) = 1 Wartość termu: v σi (t) = v σi (f (x) + g(f (a))) = 2σ I (x) + (2σ I (a)) 2 = 2 1 + (2 0) 2 = 2 Wartość atomu Wartość formuły złożonej Atom ma wartość logiczną (0 lub 1). A = p k (t 1,..., t n ) v σi (A) = 1 wtw (v σi (t 1 ),..., v σi (t n )) R k R k - relacja przyporządkowana w interpretacji I predykatowi p k A = p(a, x) Niech I = {N, { }, {}, {0}} i σ I (x) = 1 (x, y) R wtw x y (v σi (a), v σi (x)) = (0, 1) (0, 1) R (v σi (A)) = 0 Wartość logiczną formuły A przy wartościowaniu σ I oznaczamy przez v σi (A) i definiujemy przez indukcję ze względu na budowę formuły: A - dowolna formuła v σi ( A) = 1 wtw v σi (A) = 0 v σi (A 1 A 2 ) = 1 wtw v σi (A 1 ) = 1 lub v σi (A 2 ) = 1 podobnie dla pozostałych operatorów logicznych v σi ( x A) = 1 wtw v σi [x d](a) = 1 dla każdego d D v σi ( x A) = 1 wtw v σi [x d](a) = 1 dla pewnego d D

Wartość formuły zamkniętej A = p(x, a), B = A I = {N, { }, {}, {2}} Formuła A w interpretacji I oznacza: x N i x 2 Wartość formuły A zależy od wartościowania σ I. σ I (x) = 3 v σi (A) = 0, a zatem v σi (B) = 1 Niech A będzie formułą zamknietą. Wówczas v σi (A) nie zależy od wartościowania σ I. A = y x p(x, y) I = {Z +, { }, {}, {0}} y Z + x Z + x y v σi [y 1,x d](p(x, y)) = 1 dla każdego d Z + v σi ( y x p(x, y)) = 1 Wartość domknięcia uniwersalnego formuły Niech A = A(x 1,..., x n ) nie będzie formułą zamkniętą, a I niech będzie interpretacją. Wówczas: v σi (A ) = 1 dla wszystkich wartościowań σ I wtw, gdy v I ( x 1,..., x n A ) = 1. A = p(x, y) Domknięcie uniwersalne A: A = x y p(x, y) I = {N, { }, {}, {}} x N y N x y v σi [x 0,y 1](p(x, y)) = 0 v σi ( x y p(x, y)) = 0 Wartość domknięcia egzystencjalnego formuły Niech A = A(x 1,..., x n ) nie będzie formułą zamkniętą, a I niech będzie interpretacją. Wówczas: v σi (A ) = 1 dla pewnego wartościowania σ I wtw, gdy v I ( x 1,..., x n A ) = 1, A = p(x, y) Domknięcie egzystencjalne A: A = x y p(x, y) I = {N, { }, {}, {}} x N y N x y v σi [x 1,y 0](p(x, y)) = 1 v σi ( x y p(x, y)) = 1

Formuła spełniona A = x p(a, x) I 1 = A Formuła zamknięta A jest spełniona w interpretacji I, czyli interpretacja I jest modelem A, jeśli v I (A) = 1, co oznaczamy I = A. I 2 = A I 3 = A Interpretacja I 1 = {N, { }, {x 2 }, {5}} Interpretacja I 2 = {N, { }, {2x}, {0}} Interpretacja I 3 = {Z, { }, {2x}, {0}} D N f x 2 a 5 D N f 2x a 0 D Z f 2x a 0 5 x 2 0 2x 0 2x Formuła spełnialna Formuła prawdziwa Formuła zamknięta A jest spełnialna, jeśli dla pewnej interpretacji I mamy I = A. A = y x p(x, y) I = {N, { }, {}, {0}} y N x N x y v σi [y 1,x d](p(x, y)) = 1 dla każdego d N v σi ( y x p(x, y)) = 1 I = A Formuła zamknięta A jest prawdziwa, jeśli dla wszystkich interpretacji I mamy I = A, co będziemy oznaczać = A. A = x (p(x) p(x)) = A

Formuła niespełnialna i nieprawdziwa Logiczna równoważność formuł Formuła A jest niespełnialna, jeśli nie jest spełnialna, a jest nieprawdziwa, gdy nie jest prawdziwa. A = x (p(x) p(x)) Dla każdej interpretacji I v σi (A) = 0 zatem A jest niespełnialna. Niech A 1 i A 2 będą formułami zamkniętymi. Jeśli v I (A 1 ) = v I (A 2 ) dla wszystkich interpretacji I, to A 1 jest logicznie równoważna A 2, co oznaczamy A 1 A 2. A = x p(x, a) Istnieje interpretacja I = {N, { }, {}, {2}} w której v σi (A) = 0 zatem A jest nieprawdziwa. Warunek konieczny i dostateczny Twierdzenie A B wtw gdy = A B. Niech U = {A 1,... A n } U = A wtw gdy = (A 1... A n ) A. Wykażemy, że x (p(x) q(x)) jest równoważne ( x p(x) x q(x)) x (p(x) q(x)) x ( p(x) q(x)) x p(x) x q(x) x p(x) x q(x) x p(x) x q(x)

Pytania 1 Podać interpretację (wraz z wartościowaniem) podanej formuły rachunku predykatów. 2 Czy w podanej interpretacji formuła rachunku predykatów jest spełnialna (prawdziwa)?