KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,



Podobne dokumenty
TWIERDZENIE PITAGORASA

PLANIMETRIA. Poziom podstawowy

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

KONKURSY MATEMATYCZNE. Treść zadań

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM

NUMER IDENTYFIKATORA:

Trenuj przed sprawdzianem! Matematyka Test 4

Scenariusz lekcyjny. Klasa: II c. Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka.

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

Czas pracy 170 minut

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Test całoroczny z matematyki. Wersja A

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

Matematyka przed egzaminem gimnazjalnym fragmenty

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

XIII KONKURS MATEMATYCZNY

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

SPRAWDZIANY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

nie zdałeś naszej próbnej matury z matematyki?

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):

EGZAMIN MATURALNY Z MATEMATYKI

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Tematy zadań określonych jako rozmaite

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA. 1. Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r)

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

SCENARIUSZ LEKCJI. Podstawa programowa:

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)

RZUTOWANIE AKSONOMETRYCZNE

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

MATEMATYKA Zakres podstawowy

Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP)

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A i II C w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne

BANACH. Konkurs Matematyczny MERIDIAN wtorek, 6 marca W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych.

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

Wymagania na poszczególne oceny klasa 4

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I

KURS GEOMETRIA ANALITYCZNA

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych

MATERIA DIAGNOSTYCZNY Z MATEMATYKI

TEST WIADOMOŚCI: Równania i układy równań

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Metryczka: Zdzisława Mazurek Publiczna Szkoła Podstawowa nr 6 w Nowej Soli. Scenariusz lekcji

Przedmiotowy system oceniania z matematyki w klasach IV - VI

EGZAMIN MATURALNY Z MATEMATYKI

WOJEWÓDZKI KONKURS FIZYCZNY

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2015/2016 III stopień - wojewódzki Kryteria oceniania Suma punktów = 25.

KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

Własności figur płaskich

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJ CEGO KWALIFIKACJE ZAWODOWE STYCZEŃ 2014

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI KL. IV

WYMAGANIA EDUKACYJNE - MATEMATYKA klasa 6

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?

Podstawowe działania w rachunku macierzowym

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3

MATEMATYKA POZIOM PODSTAWOWY

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

Właściwości materii - powtórzenie

POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM. Vademecum doradztwa edukacyjno-zawodowego. Akademia

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Matematyka klasa 6 Wymagania na poszczególne oceny

Instrukcja Laboratoryjna

Transkrypt:

KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, aby każdy mógł zapoznać się z twierdzeniem, utrwalić i poszerzyć swoje umiejętności, a także uzupełnić ewentualne braki w tym zakresie. Karty zawierają zadania o zróżnicowanym stopniu trudności.

KARTA 01 Przyjrzyj się trójkątom. Pogrupuj je według wspólnej cechy. Jak nazywamy boki trójkąta prostokątnego? Narysuj w zeszycie trójkąt prostokątny i napisz na nim nazwy jego boków. Przerysuj do zeszytu trójkąty prostokątne z zad.1 (w takim ułożeniu jak na karcie) i podpisz ich boki. KARTA 02 Oblicz pola kwadratów zbudowanych na bokach danego trójkąta. 3 5 4 Na bokach trzech różnych trójkątów prostokątnych zbuduj kwadraty. Oblicz pola tych kwadratów. Co zauważyłeś? Sformułuj twierdzenie. Pamiętaj o poprawnej budowie twierdzenia.

KARTA 03 Zapisz następujące twierdzenie w zeszycie; porównaj je z twierdzeniem sformułowanym przez siebie. TWIERDZENIE PITAGORASA: JEŻELI trójkąt jest prostokątny, TO suma pól kwadratów zbudowanych na przyprostokątnych, równa jest polu kwadratu zbudowanego na przeciwprostokątnej. a c a² + b² = c² b Zapisz to twierdzenie dla następujących trójkątów: x c m a d z......

KARTA 04 Narysuj 5 trójkątów prostokątnych, oznacz ich boki dowolnymi literami, a następnie zapisz dla nich twierdzenie Pitagorasa. 1)... 2)... 3)... 4)... 5)... Zapisz twierdzenie Pitagorasa dla trójkątów zakreskowanych na rysunku: Oznacz boki dowolnymi literami.

KARTA 05 Czy możemy zapisać twierdzenia dla następujących trójkątów? Odpowiedź uzasadnij. Dane są długości dwóch przyprostokątnych w trójkącie prostokątnym: s i g s=6 cm, g=8 cm. Oblicz długość przeciwprostokątnej x ROZW. Korzystam z tw. Pitagorasa: s² + g² = x² 6² + 8² = x² 36 + 64 = x² x² = 100 x = 100 x = 10 [ cm] Zad.3 Oblicz długości przeciwprostokątnej, gdy dane są przyprostokątne. Wykonaj rysunki pomocnicze, boki oznacz dowolnymi literami. a) 12cm, 5 cm b) 7 cm, 10 cm c) 2 cm, 3cm d) 2 2 cm, 4 5 cm

KARTA 06 Dane są: długość przyprostokątnej i przeciwprostokątnej. Oblicz długość drugiej przyprostokątnej. x z p z=10 cm p=8 cm ROZW. p² + x² = z² x² = z² - p² x² = 10² - 8² x² = 100-64 x² = 36 x = 36 x = 6 [cm] Odp: Długość przyprostokątnej wynosi 6 cm. Dane są: długość przyprostokątnej i przeciwprostokątnej. Oblicz długość drugiej przyprostokątnej. Wykonaj rysunki; boki oznacz dowolnymi literami. a) 13 cm, 12 cm b) b) 40cm, 41 cm c) 25 cm, 15 cm d) 3 cm, 23 cm Zad.3 W kwadracie o boku a oblicz długość przekątnej. a x a

Oblicz długości przekątnej w kwadratach o boku c i m. c m c m Co zauważyłeś? Zapisz ten wzór w zeszycie. Jest to wzór na obliczanie długości przekątnej kwadratu. x = a 2 x - przekątna, a- bok kwadratu Zad.4 Oblicz pole i obwód kwadratu, którego przekątna ma długość 98 cm. c w c Zad.5 Oblicz długość boku prostokąta, gdy przeciwprostokątna ma długość 3 6cm, a przyprostokątna z =2 cm. m z c Zad.6 Oblicz pole i obwód prostokąta o przekątnej 13 cm i krótszym boku 5 cm.

KARTA 07 Oblicz wysokość w trójkącie równoramiennym podanym na rysunku. 6 6 h 5 Oblicz wysokość w trójkątach równobocznych podanych na rysunku. a h a x x h a x 1 2 2 2 2 h + ( a = a ) Czy w wyniku swoich obliczeń otrzymałeś taką zależność? a 3 h = 2 h - wysokość trójkąta równobocznego a - bok trójkąta

KARTA 08 Oblicz długość boku trójkąta równobocznego o wysokości 3 3 dm. Zapisz twierdzenie Pitagorasa dla trójkąta zamalowanego na rysunku. Dlaczego możliwe jest zapisanie tego twierdzenia? x -krótsza przekątna y - dłuższa przekątna m - bok rombu Zad.3 Oblicz bok rombu o przekątnych 8 cm i 6 cm.

KARTA 09 Dane jest x= 8 cm, y = 14 cm, c = 5 cm. Oblicz wysokość h. x c h h c y Oblicz pole trapezu równoramiennego, którego obwód wynosi 48 cm, a podstawy mają długość 20 cm i 8 cm. Zad.3 Dane są przyprostokątne trójkąta o długości 1 cm. Jaką długość ma przeciwprostokątna? Zbuduj taki trójkąt. Zad.4 Zbuduj odcinki, które mają długość: 3, 5, 6, 7, 11, 2 2, 4 3 Wskaż w twierdzeniu Pitagorasa tezę i założenie. Sformułuj twierdzenie odwrotne do twierdzenia Pitagorasa.

KARTA 10 Jeżeli spełnione założenie twierdzenia odwrotnego, to co z tego wynika? Czy trójkąty o wymiarach: a) 6cm, 8 cm, 10 cm b) 2 3 cm, 3 2 cm, 30 cm c) 6 cm, 9 cm, 12 cm są prostokątne? Oblicz długość przekątnej sześcianu o krawędzi a = 2 cm. Zaznacz trójkąt prostokątny, z którego skorzystasz. h x h a b Zad.3 Oblicz długość przekątnej prostopadłościanu o wymiarach 6 cm, 8 cm, 20 cm.

KARTA 11 W trójkącie prostokątnym długość jednej z przyprostokątnych wynosi 5 cm, a przeciwprostokątna jest o 1 cm od dłuższa od drugiej przyprostokątnej. Oblicz pole tego trójkąta. W trapezie równoramiennym wysokość poprowadzona z wierzchołka kąta rozwartego dzieli większą podstawę na odcinki długości 4 cm i 16 cm. Obwód trapezu wynosi 42 cm. Oblicz pole trapezu. Zad.3 Z trójkąta równobocznego o boku 8 cm wycięto koło wpisane w ten trójkąt. Oblicz pole powierzchni pozostałej części tego trójkąta. Zad.4 Oblicz pole i obwód koła opisanego na trójkącie prostokątnym o przyprostokątnych 2 cm i 6 cm. Zad.5 Oblicz obwód trójkąta równobocznego, gdy pole tego trójkąta wynosi 16 3 cm² Zad.6 Oblicz pole trapezu równoramiennego o wysokości 5 cm i przekątnej 13 cm. Zad.7 Pole kwadratu wpisanego w koło wynosi 9 cm². Oblicz o ile cm² większe jest pole koła od pola kwadratu? Zad.8 Bok rombu ma długość 10 cm, a dłuższa przekątna 10 3 cm. Oblicz pole tego rombu. Zad.9 Oblicz obwód trójkąta równoramiennego, którego obwód wynosi 56cm, a długość podstawy stanowi 80% długości ramienia.