KONKURSY MATEMATYCZNE. Treść zadań
|
|
- Daniel Duda
- 9 lat temu
- Przeglądów:
Transkrypt
1 KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy, że w każdym rozgałęzieniu rurek, ilość wody dzieli się na dwie równe części. Ile litrów wody wleje się do pojemnika Y? Zadanie 2 Janek użył 36 identycznych sześciennych kostek do ogrodzenia na ziemi obszaru w kształcie kwadratu. Ile dodatkowych identycznych kostek będzie mu potrzebnych do wypełnienia powstałego kwadratowego obszaru? Zadanie 3 Mnożymy liczby od 1 do 25: 1 x 2 x 3 x 4 x x 23 x 24 x 25. Iloma zerami kończy się wynik takiego mnożenia? Zadanie 4 Rozważmy pokolorowanie każdego z elementów jednym z 4 kolorów (czerwonym, zielonym, niebieskim, żółtym) w taki sposób, aby każde dwa sąsiadujące elementy były różnych kolorów. Jakiego koloru będzie prostokąt oznaczony znakiem zapytania? A) Czerwony (rouge) B) Zielony (vert) C) Niebieski (bleu) D) Żółty (jaune) E) Nie można powiedzieć.
2 Zadanie 5 Składamy sześcian z siatki danej na rysunku po lewej stronie. Na sześcianie zaznaczamy linię, która przechodzi przez dwa przeciwległe wierzchołki oraz przez środki dwóch krawędzi (jak na rysunku po prawej stronie). Następnie rozkładamy sześcian. Co możemy zobaczyć? Zadanie 7 W liczbie 5-cyfrowej 24 8, zamieniamy i przez dwie cyfry w ten sposób, że otrzymana liczba jest podzielna przez 4, 5 i 9. Ile wynosi suma +? Zadanie 8 Pośród liczb trzycyfrowych, w których suma cyfr jest równa 8, ile wynosi suma najmniejszej i największej z tych liczb? Zadanie 9 Wszystkie czterocyfrowe liczby całkowite, zawierające te same cyfry co liczba 2013, są wypisane na tablicy w porządku wzrastającym. Jaka jest największa możliwa różnica pomiędzy dwoma bezpośrednio następującymi po sobie liczbami? Zadanie 10 Z której z danych poniżej siatek nie można złożyć sześcianu?
3 Zadanie 11 Liczba 36 ma tę właściwość, że jest podzielna przez liczbę jej dzielników, gdyż 36 jest podzielne przez 6. Ile liczb z przedziału od 20 do 30 ma tę samą właściwość? Zadanie 12 Marysia dysponuje wieloma elementami o formie jak na rysunku. Ona zamierza włożyć ich jak najwięcej do prostokąta o wymiarach 4 na 5. Elementy nie mogą się przykrywać. Ile najwięcej elementów uda jej się włożyć? Zadanie 13 Które części należy wybrać, aby dokończyć kwadrat? Zadanie = 312. W tym dodawaniu, każdy symbol oznacza cyfrę różną od zera, i dwa różne symbole oznaczają dwie różne cyfry. Jaka cyfra kryje się pod symbolem? Zadanie15 Umieszczamy liczby od 1 do 7 w okręgach w ten sposób, że suma na każdej z pięciu linii jest taka sama. Jaka liczba znajduje się w okręgu w górnym wierzchołku trójkąta?
4 Zadanie 16 Dwie figury są złożone z tych samych pięciu elementów. Wymiary prostokąta to 5 cm na 10 cm. Pozostałe elementy są ćwiartkami kólł o promieniu 5 cm lub 10 cm. Jaka jest różnica pomiędzy obwodami tych dwóch figur? Zadanie 17 Benjamin skonstruował kostkę przy pomocy czterech części. Każda część składa się z czterech sześcianów jednakowego koloru. Jaki jest kształt części białej? Zadanie 18 W wierzchołkach trójkąta równobocznego o boku 6 cm, zaznaczono trzy identyczne trójkąty równoboczne (jak na rysunku). Suma obwodów trzech małych trójkątów jest równa obwodowi powstałego sześciokąta zaznaczonego na szaro. Jaka jest miara boku małych trójkątów? Zadanie 19 Basia uzupełniła tabelę daną obok trzema liczbami, wpisując po jednej liczbie do każdej kratki. Udało jej się tak dobrać liczby, że suma liczb w trzech pierwszych kratkach wynosi 100, suma liczb w trzech środkowych kratkach wynosi 200, a suma liczb w trzech ostatnich kratkach wynosi 300. Jaką liczbę Basia wpisała do kratki po środku?
5 Zadanie 20 W którym z następujących wyrażeń, można zastąpić liczbę 8 przez inna liczbę (taką samą, ale różną od zera) i otrzymać ten sam wynik?
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,
KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013
Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,
Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny
25.10.2013r. Kod ucznia: Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych - etap szkolny Wypełnia komisja konkursowa Nr zadania Punktacja 1 2 3 4 5 A B C D A B C D A B C D A
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk
Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność
Zadania. SiOD Cwiczenie 1 ;
1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A
XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011
XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011 Etap III Klasa IV Z 24 patyczków jednakowej długości ułożono 9 małych kwadratów tworzących jeden duży kwadrat 3 3. Ile
PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4
PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym
Matematyka przed egzaminem gimnazjalnym fragmenty
42. Na osi liczbowej (ilustracja obok) liczba 0,77 leży między punktami: A) K i L, B) L i M, C) M i N, D) N i P. 8 7 6 5 4 : C. 54. Butelka o pojemności litra napełniona jest w połowie sokiem. Arek wypił
Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem
Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
KOMBINATORYKA I RACHUNEK PRAWDOPODOBIEŃSTWA
KOMBINATORYKA I RACHUNEK PRAWDOPODOBIEŃSTWA Ile róŝnych liczb trzycyfrowych podzielnych przez moŝna zapisać za pomocą cyfr :,,,4, Na ile sposobów moŝna ustawić na półce sześć ksiąŝek tak, aby dwie wybrane
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
PIZZA FIESTA. CO MOŻNA ZOBACZYĆ NA KOSTCE? Składniki ( ryba, papryka, pieczarki, salami, ser)
22705 PIZZA FIESTA Kto poradzi sobie pierwszy ze złożeniem składników na pizze? Zwycięzcą jest gracz, który jako pierwszy zapełni dwie karty pizzy. Zawartość: -4 kawałki pizzy -6 kawałków ryby -6 kawałków
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą.
Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą. Po pierwsze - notacja - trzymasz swoją kostkę w rękach? Widzisz ścianki, którymi można ruszać? Notacja to oznaczenie
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Zbudujmy z klocków prostopadłościan
Zapewne niemal każdy z młodszych Czytelników miał okazję w dzieciństwie bawić się klockami Lego. Zbudujmy z klocków prostopadłościan Michał KIEZA, Warszawa Wprowadzenie Zazwyczaj za wielomino (ang. polymino)
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
WZORU PRZEMYSŁOWEGO PL 18581. FUNDACJA SYNAPSIS, Warszawa, (PL) 31.10.2012 WUP 10/2012
PL 18581 RZECZPOSPOLITA POLSKA (12) OPIS OCHRONNY WZORU PRZEMYSŁOWEGO (19) PL (11) 18581 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 19021 (22) Data zgłoszenia: 29.11.2011 (51) Klasyfikacja:
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
Test całoroczny z matematyki. Wersja A
Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
Segment B.XII Opór elektryczny Przygotował: Michał Zawada
Segment B.XII Opór elektryczny Przygotował: Michał Zawada Zad. 1 Człowiek może zostać porażony nawet przez tak słaby prąd, jak prąd o natężeniu 50 ma, jeżeli przepływa on blisko serca. Elektryk, pracując
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
3b. Rozwiązywanie zadań ze skali mapy
3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
Trenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej
Międzyszkolny Konkurs Matematyczny dla klasy trzeciej Cele konkursu : - rozwijanie zainteresowań matematycznych u dzieci w młodszym wieku szkolnym; - wdrażanie do logicznego myślenia; - zwiększanie efektywności
I. Zakładanie nowego konta użytkownika.
I. Zakładanie nowego konta użytkownika. 1. Należy wybrać przycisk załóż konto na stronie głównej. 2. Następnie wypełnić wszystkie pola formularza rejestracyjnego oraz zaznaczyć akceptację regulaminu w
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.
Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia
ZARZĄDZENIE NR 1283/13 BURMISTRZA GŁUBCZYC z dnia 13 września 2013 r.
ZARZĄDZENIE NR 1283/13 BURMISTRZA GŁUBCZYC w sprawie ustalenia regulaminu VI Edycji Konkursu Zbieramy baterie i butelki z tworzyw sztucznych oraz makulaturę i opakowania tetra pak w przedszkolach Na podstawie
WYJAŚNIENIE I ZMIANA TREŚCI SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA
MINISTERSTWO Warszawa, dnia 16 grudnia 2014 r. PRACY I POLITYKI SPOŁECZNEJ DYREKTOR GENERALNY BA-II-271-25.(8).KP/2014 L.dz. 10217/14 Uczestnicy postępowania Dotyczy: postępowania o udzielenie zamówienia
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
PLAN PRACY KOMISJI PRZYZNAJĄCEJ
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Załącznik nr 1 do Regulaminu Pracy Komisji Konkursowej przyznającej środki na rozwój przedsiębiorczości PLAN PRACY
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,
W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych
TWIERDZENIE PITAGORASA
PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw
TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3
KLASA IV Pierwszy autobus odjeżdża z przystanku o godzinie 5.30, a następne autobusy odjeżdżają z tego przystanku co 45 minut. Janek przyszedł na przystanek o godzinie 14.22. o ile minut przyszedł za późno
INSTRUKCJA DO INTERNETOWEGO ROZKŁADU JAZDY
INSTRUKCJA DO INTERNETOWEGO ROZKŁADU JAZDY Internetowy rozkład jazdy służy do ułatwienia komunikacji między stacjami. Pokazuje jakie pociągi aktualnie kursują między stacjami i gdzie są. Pomaga nie dopuścić
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój
STRONA GŁÓWNA SPIS TREŚCI. Zarządzanie zawartością stron... 2 Tworzenie nowej strony... 4 Zakładka... 4 Prawa kolumna... 9
STRONA GŁÓWNA SPIS TREŚCI Zarządzanie zawartością stron... 2 Tworzenie nowej strony... 4 Zakładka... 4 Prawa kolumna... 9 1 ZARZĄDZANIE ZAWARTOŚCIĄ STRON Istnieje kilka sposobów na dodanie nowego szablonu
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
RUCH KONTROLI WYBORÓW. Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu 6 września 2015 r.
RUCH KONTROLI WYBORÓW Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu września r. Plik zawiera - dwie tabele pomocnicze do zliczania wyników cząstkowych
Logowanie do systemu Faktura elektroniczna
Logowanie do systemu Faktura elektroniczna Dostęp do Systemu Faktury Elektronicznej możliwy jest poprzez kliknięcie odnośnika Moja faktura w prawym górnym rogu strony www.wist.com.pl, a następnie przycisku
Przedmiotowy system oceniania z matematyki w klasach IV - VI
Przedmiotowy system oceniania z matematyki w klasach IV - VI 1. Ocenie podlegają: a) wiadomości i umiejętności związane z realizacją podstawy programowej kształcenia ogólnego z matematyki, b) praca na
Opis modułu analitycznego do śledzenia rotacji towaru oraz planowania dostaw dla programu WF-Mag dla Windows.
Opis modułu analitycznego do śledzenia rotacji towaru oraz planowania dostaw dla programu WF-Mag dla Windows. Zadaniem modułu jest wspomaganie zarządzania magazynem wg. algorytmu just in time, czyli planowanie
ZAŁĄCZNIK NR 1. Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii
ZAŁĄCZNIK NR 1 Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii I. Obszary umiejętności sprawdzane na kaŝdym etapie Konkursu 1. Wykorzystanie i tworzenie informacji. Uczeń: 1) interpretuje
Formularz Zgłoszeniowy propozycji zadania do Szczecińskiego Budżetu Obywatelskiego na 2016 rok
Formularz Zgłoszeniowy propozycji zadania do Szczecińskiego Budżetu Obywatelskiego na 2016 rok 1. KONTAKT DO AUTORA/AUTORÓW PROPOZYCJI ZADANIA (OBOWIĄZKOWE) UWAGA: W PRZYPADKU NIEWYRAŻENIA ZGODY PRZEZ
29. TRZY W LINII CZYLI O POSZUKIWANIU ZWIĄZKÓW
129 Anna Pregler 29. TRZY W LINII CZYLI O POSZUKIWANIU ZWIĄZKÓW Cele ogólne w szkole podstawowej: myślenie matematyczne umiejętność korzystania z podstawowych narzędzi matematyki w życiu codziennym oraz
Moduł Pulpit opcji oraz Narzędzia. Opis v 1.0
Moduł Pulpit opcji oraz Narzędzia. Opis v 1.0 Syriusz sp. z o.o. Rzeszów 2013 MODUŁ PULPIT OPCJI ORAZ NARZĘDZIA [1.0] OPIS str. 2 Spis treści Spis treści...2 Zmiany...3 1. Informacje ogólne...4 2. Praca
KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych
INSTRUKCJA KASA EDUKACYJNA WARIANT I - dla dzieci młodszych rekwizyty: 1) plansza (żółta) 2) pionki - 4 szt. 3) kostka do gry 4) żetony (50 szt.) 6) kaseta z monetami i banknotami rys. 1 Przygotowanie
WYŚCIG ORTOGRAFICZNY INSTRUKCJA. gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7
INSTRUKCJA WYŚCIG ORTOGRAFICZNY gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7 zawartość pudełka: 1) tabliczki z obrazkami - 32 szt. 2) pionek - 1 szt. 3) plansza 4) kostka 5) żetony - 30 szt.
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak
Regulamin w konkurencjach solowych
sezon 2016-2017 Regulamin w konkurencjach solowych SENIORZY Program krótki : dozwolona jest muzyka wokalna - czas trwania programu krótkiego 2:40 (+/- 10 sek.) Ogólne: Wycofanie dodatkowych 30 sek. przed
BINGO LOTTO INSTRUKCJA. zabawka i gra rekomendowany wiek: od lat 5 liczba graczy: 2-18
BINGO INSTRUKCJA LOTTO zabawka i gra rekomendowany wiek: od lat 5 liczba graczy: 2-18 Zawartość pudełka: 1) Tabliczki z numerami - 90 szt. 2) Żetony - 270 szt. 3) Karty z numerami - 18 szt. 4) Worek 5)
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak
KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych
KONSPEKT LEKCJI MATEMATYKI Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum TEMAT: Działania łączne na liczbach wymiernych Cele lekcji: Cel ogólny: - utrwalenie wiadomościiumiejętności z działu
Część matematyczna sprawdzian 2013 r.
Część matematyczna sprawdzian 2013 r. 1. Szyfr zabezpieczający zamek jest liczbą czterocyfrową podzielną przez 9. Trzy cyfry szyfru są już ustawione. Brakującą cyfrą jest A. 5 B. 2 C. 0 D. 9 4 2? 7 2.
Regulamin Obrad Walnego Zebrania Członków Stowarzyszenia Lokalna Grupa Działania Ziemia Bielska
Załącznik nr 1 do Lokalnej Strategii Rozwoju na lata 2008-2015 Regulamin Obrad Walnego Zebrania Członków Stowarzyszenia Lokalna Grupa Działania Ziemia Bielska Przepisy ogólne 1 1. Walne Zebranie Członków
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
Spis treści. 1. Znak... 3. Konstrukcja symbolu... 3. Budowa znaku... 3. 2. Kolorystyka wersja podstawowa... 3. Kolorystyka wersja czarno-biała...
KSIĘGA ZNAKU 1 Spis treści 1. Znak... 3 Konstrukcja symbolu... 3 Budowa znaku... 3 2. Kolorystyka wersja podstawowa... 3 Kolorystyka wersja czarno-biała... 4 Kolorystyka wersja jednokolorowa druk aplą,
Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego
Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego Białystok, 19 grudzień 2012 r. Seminarium współfinansowane ze środków Unii Europejskiej w ramach
GRY I ZABAWY MATEMATYCZNE KLASA IV
Jolanta Luciszewska Szkoła Podstawowa nr 1 w Mławie GRY I ZABAWY MATEMATYCZNE KLASA IV MATEMATYKA KL. IV c TEMAT: Gry i zabawy matematyczne Cele operacyjne w kategorii czynności ucznia: Uczeń potrafi -
Katedra Technik Wytwarzania i Automatyzacji TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH
Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH 1. Cel ćwiczenia Zapoznanie studentów z narzędziami do pomiaru
BANACH. Konkurs Matematyczny MERIDIAN wtorek, 6 marca 2012. W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych.
BANACH Konkurs Matematyczny MERIDIAN wtorek, Czas pracy: 120 minut Maksymalna liczba punktów do uzyskania: 120 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1. Zasady punktowania
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
PLANIMETRIA. Poziom podstawowy
LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Nowe funkcjonalności
Nowe funkcjonalności 1 I. Aplikacja supermakler 1. Nowe notowania Dotychczasowe notowania koszykowe, z racji ograniczonej możliwości personalizacji, zostały zastąpione nowymi tabelami z notowaniami bieżącymi.
UCHWAŁA NR./06 RADY DZIELNICY PRAGA PÓŁNOC M. ST. WARSZAWY
UCHWAŁA NR./06 RADY DZIELNICY PRAGA PÓŁNOC M. ST. WARSZAWY Z dnia 2006r. Projekt Druk nr 176 w sprawie: zarządzenia wyborów do Rady Kolonii Ząbkowska. Na podstawie 6 ust. 1, 7 i 8 Załącznika nr 2 do Statutu
Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych
Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja
Instrukcja obsługi platformy zakupowej e-osaa (klient podstawowy)
Instrukcja obsługi platformy zakupowej e-osaa (klient podstawowy) 1. Wejście na stronę http://www.officemedia.com.pl strona główną Office Media 2. Logowanie do zakupowej części serwisu. Login i hasło należy
Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.
Aleksandra Zalejko Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.pl Organizacja kolejnych edycji Konkursu Matematycznego
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie