Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy podobne w sumie lgebricznej dodje, odejmuje i mnoży sumy lgebriczne przeksztłc wyrżeni lgebriczne, uwzględnijąc kolejność wykonywni dziłń przeksztłc wyrżenie lgebriczne z zstosowniem wzorów skróconego mnożeni stosuje wzory skróconego mnożeni do wykonywni dziłń n liczbch postci b c rozwiązuje równni kwdrtowe niepełne metodą rozkłdu n czynniki orz stosując wzory skróconego mnożeni rozwiązuje równni kwdrtowe, stosując wzory n pierwistki przedstwi trójmin kwdrtowy w postci iloczynowej rozwiązuje równni wyższych stopni, korzystjąc z definicji pierwistk i włsności iloczynu Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wymgni n ocenę dopuszczjącą lub dostteczną orz dodtkowo: sprwnie przeksztłc wyrżenie lgebriczne z zstosowniem wzorów skróconego mnożeni rozwiązuje zdni tekstowe prowdzące do równń wielominowych rozwiązuje równni wyższych stopni, stosując zsdę wyłączni wspólnego czynnik przed nwis 2. FUNKCJE WYMIERNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: wskzuje wielkości odwrotnie proporcjonlne stosuje zleżność między wielkościmi odwrotnie proporcjonlnymi do rozwiązywni prostych zdń wyzncz współczynnik proporcjonlności podje wzór proporcjonlności odwrotnej, znjąc współrzędne punktu nleżącego do wykresu szkicuje wykres funkcji f ( ), gdzie 0 i podje jej włsności (dziedzinę, zbiór wrtości, przedziły monotoniczności, równni symptot) wyzncz współczynnik tk, by funkcj f ( ) spełnił podne wrunki szkicuje wykresy funkcji f ( ) q orz f ( ) i odczytuje jej włsności p wyzncz symptoty wykresu powyższych funkcji dobier wzór funkcji do jej wykresu wyzncz dziedzinę prostego wyrżeni wymiernego oblicz wrtość wyrżeni wymiernego dl dnej wrtości zmiennej skrc i rozszerz proste wyrżeni wymierne
dodje, odejmuje, mnoży, dzieli wyrżenich wymiernych i podje odpowiednie złożeni-proste przypdki rozwiązuje proste równni wymierne stosuje wyrżeni wymierne do rozwiązywni prostych zdń tekstowych Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wymgni n ocenę dopuszczjącą lub dostteczną orz dodtkowo: rozwiązuje zdni tekstowe, stosując proporcjonlność odwrotną szkicuje wykres funkcji f ( ) w podnych przedziłch szkicuje wykresy funkcji f ( ) q i odczytuje jej włsności: dziedzinę, zbiór wrtości, miejsc p zerowe, njmniejszą i njwiększą wrtość funkcji, wrtość funkcji dl dnego rgumentu orz rgument dl dnej wrtości funkcji, rgumenty, dl których funkcj przyjmuje wrtości dodtnie, ujemne; przedziły monotoniczności funkcji wyzncz wzory funkcji f ( ) q orz f ( ) spełnijących podne wrunki p wyzncz dziedzinę wyrżeni wymiernego, korzystjąc z prostych równń kwdrtowych wykonuje dziłni n wyrżenich wymiernych i podje odpowiednie złożeni przeksztłc wzory, stosując dziłni n wyrżenich wymiernych rozwiązuje równni wymierne wykorzystuje wyrżeni wymierne do rozwiązywni zdń tekstowych wykorzystuje wielkości odwrotnie proporcjonlne do rozwiązywni zdń tekstowych 3. FUNKCJE WYKŁADNICZE I LOGARYTMY Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: oblicz potęgi o wykłdnikch wymiernych zpisuje dną liczbę w postci potęgi o wykłdniku wymiernym zpisuje dną liczbę w postci potęgi o dnej podstwie wykonuje dziłni, stosując prw dziłń n potęgch (proste przypdki) porównuje liczby przedstwione w postci potęg (proste przypdki) zn definicję funkcji wykłdniczej rysuje wykres funkcji wykłdniczych dl różnych podstw wyzncz wrtości funkcji wykłdniczej dl podnych rgumentów sprwdz, czy punkt nleży do wykresu funkcji wykłdniczej wyzncz wzór funkcji wykłdniczej i szkicuje jej wykres, znjąc współrzędne punktu nleżącego do jej wykresu szkicuje wykres funkcji wykłdniczej, stosując przesunięcie o wektor i określ jej włsności szkicuje wykres funkcji wykłdniczej, stosując symetrię względem osi OX, OY i określ jej włsności posługuje się funkcjmi wykłdniczymi do opisu zjwisk fizycznych, chemicznych stosuje włsności funkcji wykłdniczej do rozwiązywni prostych zdń o kontekście prktycznym zn definicję logrytmu oblicz logrytm dnej liczby stosuje równości wynikjące z definicji logrytmu do prostych obliczeń wyzncz podstwę logrytmu lub liczbę logrytmowną, gdy dn jest jego wrtość oblicz logrytm iloczynu, ilorzu i potęgi, stosując odpowiednie twierdzeni o logrytmch
Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wymgni n ocenę dopuszczjącą lub dostteczną orz dodtkowo: uprszcz wyrżeni, stosując prw dziłń n potęgch porównuje liczby przedstwione w postci potęg odczytuje rozwiązni nierówności n postwie wykresów funkcji wykłdniczych podje odpowiednie złożeni dl podstwy logrytmu lub liczby logrytmownej stosuje twierdzenie o logrytmie iloczynu, ilorzu i potęgi do uzsdnieni równości wyrżeń wykorzystuje włsności funkcji wykłdniczej i logrytmu do rozwiązywni zdń o kontekście prktycznym 4. CIĄGI Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: zn definicje ciągu, ciągu liczbowego wyzncz dowolne wyrzy ciągu określonego wzorem ogólnym w tym wyrzy postci n1 szkicuje wykres ciągu wyzncz wyrzy ciągu o podnej wrtości sprwdz, które wyrzy ciągu nleżą do dnego przedziłu wyzncz wzór ogólny ciągu, mjąc dnych kilk jego początkowych wyrzów określ monotoniczność ciągu n podstwie dnych jego kolejnych wyrzów uzsdni, że dny ciąg nie jest monotoniczny, mjąc dne jego kolejne wyrzy zn definicję ciągu rytmetycznego, geometrycznego podje przykłdy ciągów rytmetycznych, geometrycznych wyzncz wyrzy ciągu rytmetycznego, mjąc dny pierwszy wyrz i różnicę wyzncz wyrzy ciągu geometrycznego, mjąc dny pierwszy wyrz i ilorz wyzncz wzór ogólny ciągu rytmetycznego, geometrycznego mjąc dne dowolne dw jego wyrzy sprwdz, czy dny ciąg jest rytmetyczny, geometryczny (proste przypdki) stosuje średnią rytmetyczną do wyznczni wyrzów ciągu rytmetycznego (proste przypdki) stosuje średnią geometryczną do wyznczni wyrzów ciągu geometrycznego (proste przypdki) określ monotoniczność ciągu rytmetycznego, geometrycznego mjąc dnych kilk jego początkowych wyrzów zn wzór orz oblicz sumę n początkowych wyrzów ciągu rytmetycznego, geometrycznego stosuje włsności ciągu rytmetycznego lub geometrycznego do rozwiązywni prostych zdń zn procent prosty, procent skłdny orz oblicz wysokość kpitłu przy różnym okresie kpitlizcji oblicz oprocentownie lokty (proste przypdki) Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wymgni n ocenę dopuszczjącą lub dostteczną orz dodtkowo: wyzncz ciąg rytmetyczny, geometryczny n podstwie wskznych dnych wyzncz wrtości zmiennych tk, by wrz z podnymi wrtościmi tworzyły ciąg rytmetyczny lub geometryczny sprwdz, czy dny ciąg jest rytmetyczny, geometryczny rozwiązuje równni z zstosowniem wzoru n sumę wyrzów ciągu rytmetycznego rozwiązuje równni z zstosowniem wzoru n sumę wyrzów ciągu geometrycznego stosuje wzór n wyrz ogólny, wzór n sumę częściową orz poznne włsności ciągu rytmetycznego i geometrycznego w zdnich rozwiązuje zdni związne z kredytmi dotyczące okresu oszczędzni i wysokości oprocentowni
5. TRYGONOMETRIA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: zn definicje funkcji trygonometrycznych kąt ostrego w trójkącie prostokątnym zn wrtości funkcji trygonometrycznych kątów 30, 45, 60 oblicz wrtości funkcji trygonometrycznych kątów ostrych w trójkącie prostokątnym odczytuje z tblic wrtości funkcji trygonometrycznych dnego kąt ostrego znjduje w tblicch kąt ostry, gdy dn jest wrtość jego funkcji trygonometrycznej rozwiązuje trójkąty prostokątne w prostych zdnich oblicz wrtości pozostłych funkcji trygonometrycznych kąt ostrego, mjąc podn wrtość jednej z nich podje związki między funkcjmi trygonometrycznymi tego smego kąt uprszczni proste wyrżeni zwierjące funkcje trygonometryczne stosuje funkcje trygonometryczne do rozwiązywni prostych zdń osdzonych w kontekście prktycznym zzncz kąt w ukłdzie współrzędnych zn definicje funkcji trygonometrycznych dowolnego kąt wyzncz wrtości funkcji trygonometrycznych kąt, gdy dne są współrzędne punktu leżącego n jego końcowym rmieniu określ znki funkcji trygonometrycznych dnego kąt oblicz wrtości funkcji trygonometrycznych kątów: 90, 120, 135, 150, 180 zn związek między współczynnikiem kierunkowym kątem nchyleni prostej do osi OX potrfi npisć równnie kierunkowe prostej, znjąc kąt nchyleni tej prostej do osi OX orz współrzędne punktu nleżącego do tej prostej; potrfi n podstwie równni kierunkowego prostej podć mirę kąt nchyleni tej prostej do osi OX Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wymgni n ocenę dopuszczjącą lub dostteczną orz dodtkowo: oblicz wrtości funkcji trygonometrycznych kątów ostrych w brdziej złożonych sytucjch stosuje funkcje trygonometryczne do rozwiązywni zdń prktycznych o podwyższonym stopniu trudności rozwiązuje trójkąty prostokątne uzsdni związki między funkcjmi trygonometrycznymi stosuje związek między współczynnikiem kierunkowym kątem nchyleni prostej do osi OX 6. PLANIMETRIA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: zn i stosuje wzory n długość okręgu, długość łuku, pole koł i pole wycink koł określ wzjemne położenie okręgów, mjąc dne promienie tych okręgów orz odległość ich środków oblicz pol figur, stosując zleżności między okręgmi (proste przypdki) określ liczbę punktów wspólnych prostej i okręgu przy dnych wrunkch stosuje włsności stycznej do okręgu do rozwiązywni prostych zdń rozpoznje kąty wpisne i środkowe w okręgu orz wskzuje łuki, n których są one oprte stosuje twierdzenie o kącie środkowym i kącie wpisnym, oprtych n tym smym łuku do rozwiązywni prostych zdń zn wzory n pole trójkąt
oblicz pole trójkąt stosując wzory, tw. Pitgors orz funkcje trygonometryczne rozwiązuje zdni dotyczące okręgu wpisnego w trójkąt prostokątny lub równoboczny rozwiązuje zdni związne z okręgiem opisnym n trójkącie prostokątnym lub równobocznym zn wzory n pole równoległoboku, rombu i trpezu wykorzystuje funkcje trygonometryczne orz tw. Pitgors do obliczni pól czworokątów (proste przypdki) oblicz długość odcink korzystjąc ze wzoru oblicz odwód wielokąt, mjąc dne współrzędne jego wierzchołków stosuje wzór n odległość między punktmi do rozwiązywni prostych zdń wyzncz współrzędne środk odcink, mjąc dne współrzędne jego końców wyzncz współrzędne jednego z końców odcink mjąc dne współrzędne drugiego z nich orz współrzędne środk oblicz współrzędne punktu przecięci dwóch prostych rozwiązuje proste zdni stosując: proste, środek odcink, długość odcink określ liczbę i wskzuje osie symetrii figury wskzuje środek symetrii figury znjduje obrzy figur geometrycznych w symetrii osiowej względem osi ukłdu współrzędnych znjduje obrzy figur geometrycznych w symetrii środkowej względem początku ukłdu współrzędnych stosuje włsności symetrii osiowej i środkowej do rozwiązywni prostych zdń Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł wymgni n ocenę dopuszczjącą lub dostteczną orz dodtkowo: stosuje wzory n długość okręgu, długość łuku okręgu, pole koł i pole wycink koł do obliczni pól i obwodów figur oblicz pole figury, stosując zleżności między okręgmi stosuje włsności stycznej do okręgu do rozwiązywni zdń stosuje twierdzenie o kącie środkowym i kącie wpisnym, oprtych n tym smym łuku orz wnioski z tego twierdzeni do rozwiązywni zdń o większym stopniu trudności wykorzystuje umiejętność wyznczni pól trójkątów do obliczni pól innych wielokątów rozwiązuje zdni związne z okręgiem wpisnym w dowolny trójkąt i opisnym n dowolnym trójkącie stosuje włsności środk okręgu opisnego n trójkącie w zdnich z geometrii nlitycznej stosuje funkcje trygonometryczne, tw. Pitgors do obliczni pól trójkątów, czworokątów stosuje wzór n odległość między punktmi orz środek odcink do rozwiązywni trudniejszych zdń rozwiązuje zdni z geometrii nlitycznej stosując wiedzę o prostych rozwiązuje zdni z geometrii nlitycznej, w których występują prmetry stosuje włsności symetrii osiowej i środkowej do rozwiązywni trudniejszych zdń Ocenę celującą otrzymuje uczeń, który opnowł wymgni n ocenę brdzo dobrą orz potrfi rozwiązywć różne problemy dotyczące relizownych dziłów, które wymgją niestndrdowych metod prcy orz niekonwencjonlnych pomysłów.