Komputerowa analiza danych doświadczalnych

Podobne dokumenty
Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych

Wynik pomiaru jako zmienna losowa

Rachunek prawdopodobieństwa i statystyka

Ważne rozkłady i twierdzenia

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Zmienne losowe. Statystyka w 3

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

Statystyka. Magdalena Jakubek. kwiecień 2017

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

1 Podstawy rachunku prawdopodobieństwa

Statystyka matematyczna dla leśników

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Rozkłady prawdopodobieństwa zmiennych losowych

Rachunek Prawdopodobieństwa i Statystyka

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Matematyka stosowana i metody numeryczne

Komputerowa analiza danych doświadczalnych

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

Elementy Rachunek prawdopodobieństwa

Ważne rozkłady i twierdzenia c.d.

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

Wybrane rozkłady zmiennych losowych. Statystyka

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Statystyka i eksploracja danych

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Wykład 3 Jednowymiarowe zmienne losowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Biostatystyka, # 3 /Weterynaria I/

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

KURS PRAWDOPODOBIEŃSTWO

Weryfikacja hipotez statystycznych

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych.

Pozyskiwanie wiedzy z danych

Wybrane rozkłady zmiennych losowych. Statystyka

Zmienne losowe ciągłe i ich rozkłady

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Rozkłady zmiennych losowych

Testowanie hipotez statystycznych.

Komputerowa Analiza Danych Doświadczalnych

Matematyka 2. dr inż. Rajmund Stasiewicz

STATYSTYKA MATEMATYCZNA

Statystyka opisowa- cd.

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

Jednowymiarowa zmienna losowa

4,5. Dyskretne zmienne losowe (17.03; 31.03)

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

Rachunek prawdopodobieństwa i statystyka

Dyskretne zmienne losowe

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Zmienne losowe ciągłe i ich rozkłady

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Prawdopodobieństwo i statystyka

Statystyka opisowa. Robert Pietrzykowski.

Prawdopodobieństwo i statystyka

Rozkłady statystyk z próby

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Najczęściej spotykane rozkłady dyskretne:

Inteligentna analiza danych

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

Zadania ze statystyki, cz.6

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

W1. Wprowadzenie. Statystyka opisowa

Statystyka w analizie i planowaniu eksperymentu

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Z Wikipedii, wolnej encyklopedii.

Statystyczne metody analizy danych

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski

Komputerowa analiza danych doświadczalnych

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

Rozkłady dwóch zmiennych losowych

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Przestrzeń probabilistyczna

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),

Transkrypt:

Komputerowa analiza danych doświadczalnych Wykład.03.08 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08

Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych

Pomiar jako zdarzenie losowe Wyniki kolejnych pomiarów jakiegoś zjawiska, niezależnie od tego jak bardzo byśmy się starali przestrzegać procedury pomiarowej, będą różne (raz mniejsze, raz większe) oczywiście zakładając wysoką precyzję przyrządu pomiarowego (patrz Wykład ) Może to wynikać zarówno ze statystycznego charakteru badanego zjawiska (np. rozpad promieniotwórczy) jak i niedokładności przyrządów badawczych oraz innych czynników (np. zmienne warunki otoczenia) Z powyższego możemy założyć, że: pomiar jest zdarzeniem losowym wynik pomiaru (realizacja zdarzenia losowego) jest zmienną losową Uwzględniając powyższe założenia, wnioski na temat pomiaru możemy określać przy pomocy teorii (rachunku) prawdopodobieństwa (patrz Wykład ) http://www.phdcomics.com/comics/archive/phd09s.gif 3 / 6

Typy i rodzaje zmiennych losowych Zmienna losowa funkcja przypisująca liczby zdarzeniom elementarnym (np. wynik rzutu kostkami para liczb) Typy zmiennych losowych: jednowymiarowe (dzisiejszy wykład) dwuwymiarowe n-wymiarowe https://mosaicprojects.files.wordpress.com/03/0/diceposs.gif Rodzaje zmiennych losowych dyskretne (lub skokowe) ciągłe Oznaczenie: X, Y, 4 / 6

Rozkład i dystrybuanta zmiennej losowej Rozkład (gęstość) prawdopodobieństwa (ang. probability distribution, density) funkcja przypisująca zmiennym losowym (np. zmiennej X) prawdopodobieństwo uzyskania danej wartości zmiennej losowej (np. wartości x): f ( x)=p ( X= x) rozkład prawdopod. jest unormowany rozkład ciągły: f ( x) dx= rozkład dyskretny: P ( X =x i )= pi= i= i= Dystrybuanta (ang. cumulative distribution function) funkcja określająca prawdopodobieństwo tego, że zmienna losowa X przyjmie wartość mniejszą bądź równą x: F ( x)=p ( X x )= P(( ; x >) x rozkład ciągły: F ( x)= f ( x ' )dx ' rozkład dyskretny: F ( x)= P ( X = x ) i i: x i x 5 / 6

Własności dystrybuanty Własności dystrybuanty: funkcja niemalejąca lim F ( x)=0 x lim F ( x)= x jeżeli dystrybuanta F(x) jest ciągła oraz ma -szą pochodną: F ' ( x)= df ( x) =f ( x) dx prawdopodobieństwa: a P ( x a)= f ( x) dx=f (a) b P (a x b)= f ( x)dx= F (b) F (a) a 6 / 6

Rozkład i dystrybuanta - przykłady Rozkład położenia kątowego wskazówki zegara (rozkład jednorodny, lub jednostajny) zmienna losowa ciągła: ; x 0 ; 360 360 f ( x)=0; x ℝ 0; 360 f ( x)= F ( x)=0 ; x <0 x F ( x)= f ( x ') dx '= 0 F ( x)= ; x >360 x, x 0 ; 360 360 7 / 6

Rozkład i dystrybuanta - przykłady Rozkład normalny (rozkład Gaussa) zmienna losowa ciągła: ( x μ) f ( x)= exp, x ℝ σ π σ ( ) x ( x ' μ) F ( x)= exp dx ' σ π σ lim F ( x)=0 lim F ( x)= x ( ) x Dystrybuanta rozkładu normalnego nie ma postaci analitycznej Rozkład (funkcja gęstości) Dystrybuanta 8 / 6

Rozkład i dystrybuanta - przykłady Rzut kostką zmienna losowa dyskretna: P( X=x i )= P( x i )=,i={,,3,4,5,6 } 6 F ( x i )= i,i={,,3,4,5,6} 6 9 / 6

Funkcje zmiennej losowej, wartość oczekiwana Jeżeli Y jest funkcją zmiennej losowej X, to Y również jest zmienną losową (ze swoim rozkładem i dystrybuantą): Y =H ( X ) Wartość oczekiwana (średnia, przeciętna) (ang. mean value) suma wszystkich możliwych wartości xi zmiennej X, przemnożonych przez ich prawdopodobieństwa: n n E ( X ) μ x^ x = x i P( X = x i )= x i pi i= i = wartość oczekiwana to jedna liczba nie jest zmienną losową Wartość oczekiwana zmiennej Y: n E (Y )= E ( ( H ( X ) ) ) = H ( x i) P ( X = x i ) i = Dla zmiennych losowych typu ciągłego: E ( X )= x f ( x) dx E (Y )= E ( H ( X ) ) = H ( x) f ( x)dx 0 / 6

Momenty Jeżeli zdefiniujemy funkcję postaci: l Y =H ( X )=( X c) to jej wartości średnie al są momentami rzędu l względem c: l ml= E ( X ) = x l f ( x)dx - moment zwykły al =E ( ( X c)l )= ( x c)l f ( x)dx Jeżeli to c= x^, to momenty nazywane są momentami centralnymi: l μl =E (( X x^ ) ) Łatwo pokazać, że: 0 0 μ0 = E (( X x^ ) )= ( x x^ ) f ( x)dx= f ( x)dx= μ =E (( X x^ ) )= ( x x^ ) f ( x)dx= xf ( x )dx x^ f ( x)dx= x^ x^ =0 Najniższy moment, który niesie informacje o odchyleniu zmiennej losowej X od swojej wartości średniej nazywany jest wariancją (ang. variance): μ σ ( X ) var ( X ) E (( X x^ ) )= ( x x^ ) f ( x) dx jeżeli wariancja jest mała, to wyniki leżą blisko wartości oczekiwanej, jeśli duża, to wyniki są bardziej rozproszone / 6

Rozkład normalny o dużej i małej wariancji ( x μ) f ( x)= exp σ π σ ( ) / 6

Momenty wyższych rzędów Dodatnia wartość pierwiastka z wariancji nazywana jest odchyleniem standardowym (ang. standard deviation) lub dyspersją: σ σ ( X )= σ ( X ) odchylenie standardowe określa niepewność pomiaru (patrz Wykład ) Trzeci moment centralny nazywany jest skośnością lub współczynnikiem skośności (ang. skewness): najczęściej wprowadza się bezwymiarową wielkość nazywaną współczynnikiem asymetrii rozkładu: γ= μ 33 σ dla rozkładów symetrycznych (względem średniej) parametr ten wynosi 0 https://en.wikipedia.org/wiki/skewness#/media/file:negative_and_positive_skew_diagrams_(english).svg 3 / 6

Momenty wyższych rzędów Czwarty moment centralny nazywany jest kurtozą (ang. kurtosis): Analogicznie do skośności, najczęściej wprowadza się bezwymiarową wielkość: K = μ 44 σ ponieważ kurtoza rozkładu normalnego wynosi 3, często kurtozę (zwaną kurtozą nadmiarową ang. excess kurtosis) definiuje się odejmując 3 (by dla rozkł. normalnego wynosiła 0): K = μ 4 3 σ4 http://www.advisor.ca/wp-content/uploads/0/07/normal-not-always-the-norm.gif 4 / 6

Własności wartości oczekiwanej i wariancji Własności wartości oczekiwanej: E (c X )=c E ( X ); c ℝ E ( X +Y )=E( X )+ E (Y ) E ( X +c)=e ( X )+c ; c ℝ E (c)=c ; c ℝ Z czego wynika: E (a X +b Y +c)=a E ( X )+b E (Y )+c ; a, b, c ℝ E ( X E ( X ) ) =E ( X ) E ( E ( X ) )= E ( X ) E ( X )=0 Zależność między wariancją a wartością oczekiwaną: σ ( X )=E (( X x^ ) )= E ( X X x^ + x^ ) =E ( X ) ( E ( X )) +( E ( X )) =E ( X ) ( E ( X ) ) Własności wariancji: σ (c)=0 ; c ℝ σ (c X )=c σ ( X ); c ℝ σ ( X +c)=σ ( X ); c ℝ 5 / 6

Zmienna stand., wartość modalna, mediana Zmienna standardowa (o wartości oczekiwanej 0 i odchyleniu ): X x^ rozważmy funkcję: σ( X) wartość oczekiwana: E (U )= E ( X x^ )= ( x^ x^ )=0 σ( X) σ( X) σ (X) wariancja: σ (U )= E {( X x ^ ) }= = σ (X ) σ (X) Wartość modalna, dominanta (ang. mode): P ( X =x max )=max U= wartość najbardziej prawdopodobna rozkład jednomodalny ( maksimum) rozkład wielomodalny (wiele maksimów) warunki maksimum: df ( x) =0 dx Mediana (ang. median): d f ( x) <0 dx http://lh3.ggpht.com/-uhjcsgume9q/ugcqcj00_ni/aaaa AAAAWXU/-0ZlMA9pPnU/image_thumb%555B%555D.png?imgmax=800 wartość zmiennej losowej, dla której dystrybuanta wynosi / F ( x 0,5 )=P ( X < x 0,5 )=0,5 6 / 6

Kwantyle Mediana dzieli rozkład prawdopodobieństwa na dwa obszary o równym prawdopodobieństwie W przypadku rozkładów symetrycznych jednomodalnych wartości: średnia = dominanta = mediana Mediana x0,5 jest kwantylem (ang. quantile) rzędu 0,5 Ogólna definicja kwantylu rzędu q, xq: kwartyl dolny x0,5 kwartyl górny x0,75 F ( x q )=P ( X < x q )=q xq F ( x q )= f ( x) dx=q, q ; decyle x0,, x0,,..., x0,9 funkcja xq(q) jest funkcją odwrotną do dystrybuanty Kwantyl rzędu q jest taką liczbą xq, że q 00% elementów w danej próbce (populacji) ma wartość pomiaru (badanej cechy) nie większą niż xq 7 / 6

Kwantyle xq x 0,5 F ( x q )= f ( x) dx=q - kwantyl rzędu q F ( x 0,5 )= f ( x)dx=0,5 - kwartyl dolny F ( x 0,5 )= f ( x) dx=0,5 - mediana F ( x 0,75 )= f ( x)dx=0,75 - kwartyl górny x 0,5 x 0,75 Max F(x0.75)=0.75 F(x0.5)=0.5 F(x0.5)=0.5 (xm) (x0.5) (x0.5) (x0.75) 8 / 6

Przykład rozkład jednostajny Gęstość prawdopodobieństwa: f(x) f ( x)=c ; x a, b f ( x)=0 ; x ℝ a, b Współczynnik (normalizacja) c: b f ( x) dx=c dx=c (b a)= c= a f ( x)= ; x a, b b a f ( x)=0 ; x ℝ a, b Dystrybuanta: F ( x)=0 ; x <a x x a F ( x)= dx '= ; x a ; b b a a b a F ( x)= ; x >b c b a a b x Wariancja: σ ( X )=E ( X ) ( E ( X )) b (b3 a 3 ) E ( X )= x dx= 3(b a) = b a a (b a)(b +ba+a ) b +ba+a = = 3(b a) 3 b +ba+a b+a σ ( X )= = 3 b + ba+a b + ba+a (b a) = = 3 4 ( ) Wartość oczekiwana: b (b a)(b+a) b +a E ( X )= x^ = xdx= (b a )= = b a a (b a) (b a) 9 / 6

Przykład rozkład dwumianowy ang. binomial distribution Wynik zawsze jedną z dwóch wykluczających się wartości (sukces i porażka) Funkcja prawdopodobieństwa: n! pn (k )= n p k qn k = p k q n k ; p 0 ; ; q= p k!(n k )! k () k sukcesów w n niezależnych próbach przeprowadzonych w identycznych warunkach p prawdopodobieństwo sukcesu w pojedynczej próbie q=-p prawdopodobieństwo porażki w pojedynczej próbie https://pl.wikipedia.org/wiki/rozk%c5%8ad_dwumianowy Wartość oczekiwana pojedynczej próby xi: E ( x i)= p +0 q= p Wartość oczekiwana: E ( X )=np Wariancja poj. próby xi: σ ( x i )=E ( ( x i p) ) = =( p) p+(0 p) q= pq Wariancja: σ ( X )=npq 0 / 6

Przykład 3 rozkład prędkości wiatru Rozkład czestości występowania danej prędkości wiatru opisuje funkcja Weibulla Funkcja prawdopodobieństwa: k v f (v)= A A k ( ) http://www.ien.pw.edu.pl/eig/instrukcje/elektr-ew.pdf [ ( )] v exp A k ; v 0 k, A parametry rozkładu (otrzymywane z danych dośw.) Mapa gęstości mocy wiatru na wys. 0 m Wartość oczekiwana: z t E ( v)= A Γ + ; Γ( z )= t e dt k 0 ( ) Wariancja: [( ) ( ( )) ] σ ( x)= A Γ + Γ + k k Trzeci moment rozkładu prędkości wiatru służy do obliczenia gęstości mocy wiatru: Gęstość mocy [W/m] http://www.renewableenergyst.org/wind.htm P w = ρ v 3 f (v )dv 0 ρ gęstość powietrza / 6

Rozkłady w praktyce dane medyczne Jednym z ważniejszych zastosowań statystyki są badania medyczne W testach nowych leków wykonuje się badania kliniczne podwójnie ślepej próby double blinded trial (ani lekarz ani pacjent nie wiedzą, czy przyjmują lek, czy placebo) http://www.onlinejacc.org/content/69/5/47 Przykład : substancja alirokumab nazwa handlowa Praluent lek stosowany w celu obniżenia dużego stężenia złego cholesterolu LDL we krwi średni poziom LDL u pacjetów przyjmujących lek: 58,8 mg/dl średni LDL u pacjentów placebo: 7,7 mg/dl / 6

Rozkłady w praktyce dane medyczne Jednym z ważniejszych zastosowań statystyki są badania medyczne Statystykę wykorzystuje się również do badania farmakokinetyki i bezpieczeństwa stosowania http://www.bloodjournal.org/content//8/40 leków Przykład : substancja imatinib nazwa handlowa Glivec lek stosowany w celu leczenia przewlekłej białaczki szpikowej Mierzono trough level (stężenie leku przed podaniem kolejnej dawki) 3 / 6

Rozkłady w praktyce dane medyczne http://www.bloodjournal.org/content//8/40 4 / 6

Rozkłady w praktyce wynagrodzenia https://stat.gov.pl/obszary-tematyczne/rynek-pracy/pracujacyzatrudnieni-wynagrodzenia-koszty-pracy/strukturawynagrodzen-wedlug-zawodow-w-pazdzierniku-06r-,5,5.html 5 / 6

Rozkłady w praktyce tablice centylowe chłopcy dziewczynki 6 / 6

KONIEC

Rozkład dwumianowy Prawdopodobieństwo: n! pn (k )= k!(n k pk qn k )! p [0,] q= p Wartość oczekiwana:! E x = nk=0 k pn k = nk=0 k k! nn k pk qn k! n! k n k n E x =np nk= k! p q =np p q =np n k! Wariancja: σ (x)=e(x ) (E(x )) n! E x = nk=0 k k! n k pk qn k = nk = k k! n! k! n k! pq q n k! n! k n k n k n k E x = nk= k n! n k p q p q k=! k! n k! n! n! E x =n n p nk= k pk qn k np nk= k! pk qn k! n k! n k! E x =n n p p q n np p q n =n n p np σ (x)=n (n )p +np (np)=npq Odchylenie standardowe: σ (x)= (npq) 8 / 6

Rozkłady w praktyce dane medyczne Mediana długości przyjmowania leku wyniosła 78 tygodni W badaniu alirokumabu sprawdzano również pacjentów, którzy uzystaki w trakcie przyjmowania leku stężenie LDL < 5 mg/dl W przypadku pacjentów, którzy w przynajmniej dwóch badaniach kontrolnych uzyskali LDL < 5 mg/dl, mediana jego utrzymywania się wynosiła 43,3 tygodnie Rozkład utrzymywania się LDL < 5 mg/dl w czasie prezentuje wykres po lewej http://www.onlinejacc.org/content/69/5/47 9 / 6