Notatka o ekonomii matematycznej
|
|
- Marek Bukowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Notatka o ekonomii matematycznej Autor: Murray N. Rothbard Źródło: mises.org Tłumaczenie: Mateusz Benedyk Metoda matematyczna zdominowała myśl ekonomiczną z powodu wszędobylskiej epistemologii pozytywizmu. Pozytywizm jest w swej istocie próbą zinterpretowania metodologii fizyki jako ogólnej teorii nauki, odpowiedniej dla wszelkich dyscyplin. Rozumowanie zwolenników pozytywizmu jest następujące: fizyka jest jedyną dziedziną nauki, która osiąga sukcesy. Nauki społeczne są zacofane, ponieważ nie potrafią mierzyć, dokładnie przewidywać itp. Nauki te powinny zatem przejąć metody fizyki, by także osiągać sukcesy. Natomiast jednym z ważnych elementów fizyki jest oczywiście używanie matematyki. Pozytywiści zwykli dzielić świat na dwie części: prawdy fizyki i poezję. Stąd ich zamiłowanie do matematyki i pogarda dla werbalnej ekonomii (zbyt literackiej ). Jak jednak zauważył profesor Mises, istnieje zasadnicza różnica pomiędzy światem natury badanym przez fizykę a światem ludzkiego działania. W przypadku fizyki fakty są nam dane. Mogą zostać podzielone w laboratoriach na prostsze elementy, które możemy obserwować. Z drugiej strony nie znamy praw, które wyjaśniałyby, dlaczego cząstki w ogóle się poruszają, ich ruch jest nieumotywowany. Musimy tedy szukać przyczyn tworząc ogólne teorie, które są jedynie hipotezami. Dopiero z tych aksjomatów możemy próbować wydedukować nie tylko oryginalne fakty, lecz także inne teorie, które możemy bezpośrednio testować faktami (słynna idea operacyjnego znaczenia ). W miarę postępów w budowaniu praw fizyki nasza wiedza nie staje się jednak absolutna, ponieważ prawa mogą być zmienione pod wpływem bardziej ogólnych teorii lub w drodze empirycznego testowania. W przypadku ekonomii warunki są zgoła odmienne. Znamy przyczyny zjawisk, ponieważ ludzkie działanie, w przeciwieństwie do ruchu kamieni, jest
2 umotywowane. Możemy zatem budować ekonomię w oparciu o prawdziwe od początku aksjomaty takie jak istnienie ludzkiego działania i jego logiczne implikacje. Z aksjomatów możemy wydedukować krok po kroku prawa, które także uznajemy za prawdziwe. Wiedza taka jest raczej absolutna aniżeli względna, ponieważ początkowe aksjomaty są uznane za prawdziwe. Z drugiej strony, w ludzkim działaniu nie ma prostych faktów; wydarzenia historyczne to skomplikowane zjawiska, które nie mogę niczego poddać testowi. Wydarzenia mogą być jedynie wyjaśnione za pomocą stosownych teorii, które tłumaczą różne aspekty złożonych faktów. Dlaczego matematyka jest tak bardzo użyteczna w fizyce? Głównie dlatego, iż aksjomaty i prawa z nich wydedukowane są nieznane i w zasadzie bez znaczenia. Ich znaczenie jest czysto operacyjne, jako że znaczą coś tak długo, jak długo wyjaśniają dane fakty. Równanie opisujące prawo grawitacji jest samo w sobie bez znaczenia; równanie ma sens w odniesieniu do faktów, jakie ludzie obserwują, a które prawo grawitacji może wyjaśnić. Matematyka, która pozwala przeprowadzać dedukcyjne operacje na nic nieznaczących symbolach, znakomicie odpowiada metodom fizyki. Z kolei ekonomia rozpoczyna od aksjomatu, który jest znany i ma dla nas znaczenie od ludzkiego działania. Skoro działanie jest samo w sobie znaczące, to taką cechę posiadają też wszelkie prawa wydedukowane z niego krok po kroku. Taką odpowiedź można udzielić krytykom (jak p. Schuller, American Economics Review, March 1951, s. 188), którzy wzywali profesora Misesa do użycia metod logiki matematycznej zamiast logiki werbalnej. Logika matematyczna musi operować nic nieznaczącymi symbolami, zatem jej użycie pozbawiłoby ekonomię całego jej sensu. Natomiast logika werbalna pozwala na to, by każde prawo posiadało znaczenie, o ile zostało poprawnie wydedukowane. Prawa ekonomii są już prawdziwe i sensowne; nie muszą czerpać swojej sensowności z operacyjnego testowania. Matematyka mogłaby co najwyżej w pracochłonny sposób przekształcić werbalne symbole w pozbawione znaczenia symbole formalne, a następnie, na każdym kroku, ponownie tłumaczyć je na słowa.
3 Biorąc pod uwagę jałowość matematycznych symboli, takie operacje doprowadziłyby zapewne do poważnych błędów. Jeśli ktoś jednak jest dość zawzięty, by podjąć się takiego trudu, możemy mu tylko życzyć powodzenia. Dwukrotne tłumaczenie terminów natrafiłoby także na ostrze brzytwy Ockhama znanej naukowej reguły każącej unikać niepotrzebnego mnożenia bytów, czyli nakazu tworzenia nauki możliwie najprostszej 1. Wiedza w fizyce nigdy nie jest pewna ani absolutna, pozytywiści nie mogą z tego powodu pojąć, jak ekonomiści mogą dochodzić do pewnych rezultatów. Oskarżają zatem ekonomistów o aprioryzm i dogmatyzm. Podobnie dzieje się w przypadku pojęcia przyczyny, które ma dość chwiejną pozycję w świecie fizyki. Pozytywiści próbują zastąpić przyczynę ideą wzajemnej determinacji. Równania matematyczne wyjątkowo nadają się do opisu stanu wzajemnej determinacji czynników, gorzej zaś do jednokierunkowo zdeterminowanych relacji przyczyny i skutku. Jak już mówiliśmy, sprawia to, że matematyka znakomicie pasuje do fizyki. Mam sporo filozoficznych wątpliwości, czy naprawdę można pozbyć się pojęcia przyczyny z fizyki. Niezależnie jednak od tego, z pewnością nie można usunąć przyczynowości z ekonomii. W ekonomii przyczyna jest od początku znana jest nią ludzkie działanie, w którym środki użyte są, by osiągnąć cele. Można stąd wydedukować jednokierunkowe skutki, ale nie można współzależnych równań. Jest to kolejny powód wyjątkowego niedopasowania matematyki i ekonomii. Pozytywistyczni ekonomiści niepochlebnie wypowiadali się o swoich kolegach doceniających prakseologię, mówiąc, że są interesujący, lecz beznadziejnie niedokształceni w zakresie matematyki. Frank Knight tak pisał o Carlu Mengerze: Podaje on wadliwą obserwację (wziętą na serio przez niektórych jego uczniów), że wartość dobra, zdeterminowana przez jego marginalną użyteczność (jakbyśmy to dziś ujęli), wyznacza poziom wydatków na produkcję danego dobra daleko tu do poznania prawdziwych relacji wzajemnej determinacji powyższych zmiennych (Frank Knight, Introduction, [W:] Carl Menger, Principles of Economics [Glencoe, 1950], s. 23).
4 George Stigler pisał o niezrozumieniu przez Böhm-Bawerka pojęć wzajemnej determinacji i równowagi (rozwiniętych dzięki zastosowaniu teorii układów równań). Wzajemna determinacja (gegenseitige Interdependenz) zostaje u niego odrzucona na rzecz starszych pojęć: przyczyny i skutku. Stigler dodał także wyjaśniający przypis: Böhm-Bawerk nie był wykształconym matematykiem 2. My za te matematyczne braki możemy odmówić dziękczynną modlitwę. Przypomnijmy jeszcze słowa guru współczesnej ekonomii Paula Samuelsona który wsparł Alana Sweeny ego w krytykowaniu podejścia Misesa i Stiglera do użyteczności i teorii działania jako tautologicznego (ulubione pojęcie pozytywistów). Samuelson odrzucił także teoremat regresji Misesa jako nieważny, ponieważ zbudowany na lękach literatów przed błędnym kołem w rozumowaniu. Nie powinniśmy przejmować się takim typem rozumowania ani pojęciami przyczyny i skutku, ponieważ Walras i jego następcy sformułowali pojęcie ogólnej równowagi, w której wszystkie wielkości są jednocześnie determinowane przez współzależne relacje 3. W tym tekście próbowałem spoglądać na ekonomię matematyczną w jej najlepszej możliwej wersji. Tymczasem metody matematyczne muszą doprowadzić do licznych błędów i absurdów, o których nie mogę tu wspomnieć. Na przykład użycie analizy matematycznej, które jest bardzo powszechne w ekonomii matematycznej, zakłada nieskończenie małe kroki. Nieskończenie małe kroki mogą być w porządku w fizyce, gdzie cząsteczki poruszają się po wyznaczonych torach, lecz są zupełnie nieodpowiednie przy badaniu ludzkiego działania. Jednostki rozważają różne sprawy tylko wtedy, gdy stają się wystarczająco duże, by zostać zauważone i istotne. Ludzkie działanie odbywa się w krokach dyskretnych, nie zaś nieskończenie małych. Aby zdać sobie sprawę, do jakiego absurdu doszliśmy, proponuję zerknąć do niedawnego artykułu w Metroeconomica autorstwa hinduskiego ekonomisty S.S. Sengupty: Complex Numbers: An Essay in Identification (December 1954, s ). Sengupta traktuje transakcję wymiany jako liczbę zespoloną. Jeśli trzy dolary zostaną wymienione na dwie jednostki dobra, to otrzymujemy liczbę zespoloną z użyciem dwójki i trójki. Jeśli cztery dolary wymieniono na 6 jednostek dobra, to mamy do czynienia z kolejną liczbą zespoloną. Potem autor
5 sumuje, mnoży i wykonuje inne operacje na liczbach zespolonych, sądząc, że odkrywa ważne ekonomiczne fakty. Stykając się z dżunglą ekonomii matematycznej, czytelnik powinien zignorować kłębowisko równań i przyjrzeć się założeniom, na jakich się opierają. Te założenia są niezmiennie: nieliczne, proste, błędne. Są błędne, ponieważ ekonomiści matematyczni są pozytywistami, którzy nie wiedzą, że ekonomia opiera się na prawdziwych aksjomatach. Ekonomiści matematyczni działają w ramach założeń, które są jawnie fałszywe (przynajmniej częściowo), jednak mają prowadzić do użytecznych przybliżeń, jak w fizyce. Nie dajmy się zastraszyć matematycznym formułom. 1 Popularność w filozofii logiki matematycznej w porównaniu z werbalną może być wynikiem wpływu pozytywizmu na filozofię. Aby uświadomić sobie, że logika matematyczna jest podporządkowana werbalnej, zob. uwagi Andreé Laelandesa i Renée Poirera o logicznym i logistycznym w Vocabulaire Technique et Critique de la Philosophie, Ed. A. Laelande, wyd. 6, Paris 1951, s. 574, George Stigler, Production and Distribution Theories, New York 1946, s Paul Samuelson, Foundations of Economics, Cambridge 1947.
Rewolucja marginalistyczna
Rewolucja marginalistyczna Lata 70. XIX wieku Odrzucenie ekonomii klasycznej, ale zachowanie pewnej ciągłości Pomost do ekonomii neoklasycznej Rewolucja marginalistyczna, a nie marginalna Główna innowacja
Szkoła austriacka w ekonomii
Szkoła austriacka w ekonomii Ekonomia głównego nurtu a ekonomia heterodoksyjna (instytucjonalizm, szkoła historyczna itp.) Istnieje od końca XIX wieku do dziś Założyciel Carl Menger (1840-1921) Ważni przedstawiciele:
Filozofia przyrody - Filozofia Eleatów i Demokryta
5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej
Filozofia, ISE, Wykład V - Filozofia Eleatów.
2011-10-01 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii
Historia ekonomii. Mgr Robert Mróz. Zajęcia wprowadzające
Historia ekonomii Mgr Robert Mróz Zajęcia wprowadzające 04.10.2016 Plan Organizacja zajęć Warunki zaliczenia Co to jest historia ekonomii i po co nam ona? Organizacja zajęć robertmrozecon.wordpress.com
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne
Rachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Nazwa metodologia nauki etymologicznie i dosłownie znaczy tyle, co nauka o metodach badań.
Nazwa metodologia nauki etymologicznie i dosłownie znaczy tyle, co nauka o metodach badań. Metoda dedukcji i indukcji w naukach społecznych: Metoda dedukcji: 1. Hipoteza 2. Obserwacja 3. Przyjęcie lub
Filozofia, Germanistyka, Wykład IX - Immanuel Kant
Filozofia, Germanistyka, Wykład IX - Immanuel Kant 2011-10-01 Plan wykładu 1 Immanuel Kant - uwagi biograficzne 2 3 4 5 6 7 Immanuel Kant (1724-1804) Rysunek: Immanuel Kant - niemiecki filozof, całe życie
istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy
MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych
Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych 2 Podział dyscyplin filozoficznych Klasyczny podział dyscyplin filozoficznych:
Dlaczego matematyka jest wszędzie?
Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie
W badaniach 2008 trzecioklasiści mieli kilkakrotnie za zadanie wyjaśnić wymyśloną przez siebie strategię postępowania.
Alina Kalinowska Jak to powiedzieć? Każdy z nas doświadczał z pewnością sytuacji, w której wiedział, ale nie wiedział, jak to powiedzieć. Uczniowie na lekcjach matematyki często w ten sposób przekonują
5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.
Kryteria oceniania z języka angielskiego, obejmujące zakres umiejętności ucznia na poszczególne oceny:
Kryteria oceniania z języka angielskiego, obejmujące zakres umiejętności ucznia na poszczególne oceny: W każdym semestrze uczeń uzyskuje oceny cząstkowe za poszczególne umiejętności. Ocenianie ucznia przyjmuje
Rodzaje argumentów za istnieniem Boga
Rodzaje argumentów za istnieniem Boga Podział argumentów argument ontologiczny - w tym argumencie twierdzi się, że z samego pojęcia bytu doskonałego możemy wywnioskować to, że Bóg musi istnieć. argumenty
Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk
Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk 10 października 2009 Plan wykładu Czym jest filozofia 1 Czym jest filozofia 2 Filozoficzna geneza nauk szczegółowych - przykłady Znaczenie
Historia ekonomii. Mgr Robert Mróz. Alfred Marshall
Historia ekonomii Mgr Robert Mróz Alfred Marshall 29.11.2018 Alfred Marshall (1842-1924) Jeden z dwóch ojców neoklasycznej mikroekonomii (drugim Walras) Miał zostać duchownym, potem studiował matematykę
Historia ekonomii. Mgr Robert Mróz. Leon Walras
Historia ekonomii Mgr Robert Mróz Leon Walras 06.12.2016 Leon Walras (1834 1910) Jeden z dwóch ojców neoklasycznej mikroekonomii (drugim Marshall) Nie był tak dobrym matematykiem jak niektórzy inni ekonomiści
Filozofia, Germanistyka, Wykład I - Wprowadzenie.
2010-10-01 Plan wykładu 1 Czym jest filozofia Klasyczna definicja filozofii Inne próby zdefiniowania filozofii 2 Filozoficzna geneza nauk szczegółowych - przykłady 3 Metafizyka Ontologia Epistemologia
Rachunek zdao i logika matematyczna
Rachunek zdao i logika matematyczna Pojęcia Logika - Zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Rachunek zdao - dział logiki
Założenia ogólne przedmiotowego systemu oceniania z matematyki:
Założenia ogólne przedmiotowego systemu oceniania z matematyki: 1. Zgodnie z założeniami wewnątrzszkolnego regulaminu oceniania, klasyfikowania i promowania uczniów, ocena powinna być jawna. 2. Ocenianiu
6. Zagadnienia źródła poznania I Psychologiczne zagadnienie źródła poznania
6. Zagadnienia źródła poznania I Psychologiczne zagadnienie źródła poznania Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Dwa zagadnienia źródła poznania
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Dalszy ciąg rachunku zdań
Dalszy ciąg rachunku zdań Wszystkie możliwe funktory jednoargumentowe p f 1 f 2 f 3 f 4 0 0 0 1 1 1 0 1 0 1 Wszystkie możliwe funktory dwuargumentowe p q f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
INFORMATYKA a FILOZOFIA
INFORMATYKA a FILOZOFIA (Pytania i odpowiedzi) Pytanie 1: Czy potrafisz wymienić pięciu filozofów, którzy zajmowali się także matematyką, logiką lub informatyką? Ewentualnie na odwrót: Matematyków, logików
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z JĘZYKÓW NOWOŻYTNYCH NAUCZANYCH W GIMNAZJUM.
EDUKACYJNE NA POSZCZEGÓLNE OCENY Z JĘZYKÓW NOWOŻYTNYCH NAUCZANYCH W GIMNAZJUM. 1.Skala ocen: celujący, bardzo dobry, dobry, dostateczny, niedostateczny. 2.Ocenie podlegają następujące umiejętności : gramatyka
dr Anna Mazur Wyższa Szkoła Promocji Intuicja a systemy przekonań
dr Anna Mazur Wyższa Szkoła Promocji Intuicja a systemy przekonań Systemy przekonań Dlaczego mądrzy ludzie podejmują głupie decyzje? Odpowiedzialne są nasze przekonania. Przekonania, które składają się
Wprowadzenie. D. Wade Hands. Economic methodology is dead long live economic methodology: thirteen theses on the new economic methodology
Economic methodology is dead long live economic methodology: thirteen theses on the new economic methodology D. Wade Hands Dominik Komar Wprowadzenie Sukces intensyfikacja badań na polu metodologicznym
Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..
Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości
Alfred Marshall ( )
Alfred Marshall (1842-1924) Drugi (obok Leona Walrasa) twórca ekonomii neoklasycznej Zasady ekonomii, 1890 (osiem wydań do 1920) Ekonomia polityczna a ekonomia w ujęciu Marshalla Główny cel ekonomii: poprawa
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Maciej Oleksy Zenon Matuszyk
Maciej Oleksy Zenon Matuszyk Jest to proces związany z wytwarzaniem oprogramowania. Jest on jednym z procesów kontroli jakości oprogramowania. Weryfikacja oprogramowania - testowanie zgodności systemu
Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Logika stosowana Ćwiczenia Wnioskowanie przez abdukcję Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2013/2014 Marcin Szczuka (MIMUW) Logika stosowana
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
14a. Analiza zmiennych dyskretnych: ciągi liczbowe
14a. Analiza zmiennych dyskretnych: ciągi liczbowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 14a. wanaliza Krakowie) zmiennych dyskretnych: ciągi
LOGIKA Wprowadzenie. Robert Trypuz. Katedra Logiki KUL GG października 2013
LOGIKA Wprowadzenie Robert Trypuz Katedra Logiki KUL GG 43 e-mail: trypuz@kul.pl 2 października 2013 Robert Trypuz (Katedra Logiki) Wprowadzenie 2 października 2013 1 / 14 Plan wykładu 1 Informacje ogólne
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Raportowanie badań jakościowych i ilościowych. Ukryte podobieństwa i wyraźne różnice. Pisanie naukowe jest:
Raportowanie badań jakościowych i ilościowych. Ukryte podobieństwa i wyraźne różnice Emilia Soroko Instytut Psychologii UAM kwiecień 2008 Pisanie naukowe jest: 1. działalnością publiczną 2. czynnością
Filozofia, Historia, Wykład IV - Platońska teoria idei
Filozofia, Historia, Wykład IV - Platońska teoria idei 2010-10-01 Tematyka wykładu 1 Metafora jaskini 2 Świat materialny - świat pozoru Świat idei - świat prawdziwy Relacja między światem idei i światem
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
SCENARIUSZ LEKCJI DO DZIAŁU:
Autorka: Małgorzata Kacprzykowska SCENARIUSZ LEKCJI DO DZIAŁU: Wprowadzenie do filozofii Temat (4): Dlaczego zadajemy pytania? Cele lekcji: poznanie istoty pytań filozoficznych, stawianie pytań filozoficznych,
IMMANUEL KANT ETYKA DEONTOLOGICZNA
IMMANUEL KANT ETYKA DEONTOLOGICZNA PROJEKT ETYKI KANTA W POSZUKIWANIU OBIEKTYWNYCH PODSTAW ETYKI Wobec krytyki Huma Immanuel Kant stara się znaleść jakąś obiektywną podstawę dla etyki, czyli wykazać, że
Subiektywistyczna teoria wartości
Subiektywistyczna teoria wartości Autor: Robert P. Murphy Źródło: mises.org Tłumaczenie: Marcin Pasikowski W poprzednim artykule wymieniłem niektóre z najważniejszych wad kosztowych teorii wartości. W
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz
Przedmiotowy system oceniania z języka angielskiego
Przedmiotowy system oceniania z języka angielskiego Nauczyciel: Justyna Lisiak Ocenianie osiągnięć edukacyjnych ucznia bieżąca klasyfikacyjnych wyrażona jest w stopniach wg następującej skali: a) stopień
OCENA PRACOWNICZA 3 NAJCZĘSTSZE BŁĘDY
OCENA PRACOWNICZA 3 NAJCZĘSTSZE BŁĘDY WPROWADZENIE Przez lata fakt, że każda szanująca się organizacja powinna posiadać system ocen okresowych, przyjmowany był za pewnik. Jeszcze do niedawna każdy HR menadżer
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018 Do czego odnoszą się poniższe stwierdzenia? Do tego, czym jest matematyka dla świata, w
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska
Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem
3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Wykład 1. Wprowadzenie. Filozofia, metodologia, informatyka Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Filozofia, Germanistyka, Wykład VIII - Kartezjusz
2013-10-01 Plan wykładu 1 Krytyka nauk w Rozprawie o metodzie 2 Idea uniwersalnej metody Prawidła metody 3 4 5 6 Krytyka Kartezjusza Podstawą wiedzy jest doświadczenie Krytyka nauk Kartezjusz - krytyka
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
1. WPROWADZENIE. Metody myślenia ta części logiki, która dotyczy zastosowania. praw logicznych do praktyki myślenia.
1. WPROWADZENIE Metody myślenia ta części logiki, która dotyczy zastosowania praw logicznych do praktyki myślenia. Zreferowane będą poglądy metodologów, nie zaś samych naukowców. Na początek potrzebna
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
1. Dyscypliny filozoficzne. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016
1. Dyscypliny filozoficzne Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Pochodzenie nazwy filozofia Wyraz filozofia pochodzi od dwóch greckich słów:
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna 2009-09-04 Plan wykładu 1 Jońska filozofia przyrody - wprowadzenie 2 3 Jońska filozofia przyrody - problematyka Centralna problematyka filozofii
PRZEDMIOTOWY SYSTEM OCENIANIA DRUGI JĘZYK OBCY: Szkoła Podstawowa klasy VII
PRZEDMIOTOWY SYSTEM OCENIANIA DRUGI JĘZYK OBCY: Szkoła Podstawowa klasy VII 1. OBSZARY AKTYWNOŚCI PODLEGAJĄCE OCENIANIU Wypowiedzi ustne - wypowiedź na dany temat, przygotowane w domu lub na lekcji. Praca
z języka niemieckiego (IV-VIII)
Przedmiotowy system oceniania z języka niemieckiego (IV-VIII) mgr Beata Modzelewska Sprawności językowe podlegające ocenie w klasach 4-8: mówienie, czytanie, rozumienie tekstu czytanego, rozumienie ze
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,
Prof. UAM, dr hab. Zbigniew Tworak Zakład Logiki i Metodologii Nauk Instytut Filozofii Wstęp do logiki Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, kto poprawnie wnioskuje i uzasadnia
Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII
Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII I. Uwagi ogólne: Opracowała Dorota Kiersk-Królikowska 1. Ocenianiu podlegają osiągnięcia edukacyjne uczniów poprzez rozpoznawanie przez nauczyciela
Recenzja rozprawy doktorskiej mgr Bartosza Rymkiewicza pt. Społeczna odpowiedzialność biznesu a dokonania przedsiębiorstwa
Prof. dr hab. Edward Nowak Uniwersytet Ekonomiczny we Wrocławiu Katedra Rachunku Kosztów, Rachunkowości Zarządczej i Controllingu Recenzja rozprawy doktorskiej mgr Bartosza Rymkiewicza pt. Społeczna odpowiedzialność
Jesper Juul. Zamiast wychowania O sile relacji z dzieckiem
Jesper Juul Zamiast wychowania O sile relacji z dzieckiem Dzieci od najmłodszych lat należy wciągać w proces zastanawiania się nad różnymi decyzjami i zadawania sobie pytań w rodzaju: Czego chcę? Na co
Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Logika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
Historia ekonomii. Mgr Robert Mróz. Makroekonomia w XX wieku
Historia ekonomii Mgr Robert Mróz Makroekonomia w XX wieku 17.01.2017 Keynes To od jego Ogólnej teorii możemy mówić o nowoczesnej makroekonomii Sprzeciw wobec twierdzenia poprzednich ekonomistów, że rynki
PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ROSYJSKIEGO w GIMNAZJUM Nr 1 im. J. I. Kraszewskiego w Jelnicy w roku szkolnym 2016/2017
PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ROSYJSKIEGO w GIMNAZJUM Nr 1 im. J. I. Kraszewskiego w Jelnicy w roku szkolnym 2016/2017 Program realizowany według podręcznika "Progulka" w ciągu 3 lat w następującym
Ekonomia menedżerska William F. Samuelson, Stephen G. Marks
Ekonomia menedżerska William F. Samuelson, Stephen G. Marks Ekonomia menedżerska to doskonale opracowany podręcznik, w którym przedstawiono najważniejsze problemy decyzyjne, przed jakimi stają współcześni
OGÓLNE KRYTERIA OCENIANIA POSZCZEGÓLNYCH SPRAWNOŚCI JĘZYKOWYCH
OGÓLNE KRYTERIA OCENIANIA POSZCZEGÓLNYCH SPRAWNOŚCI JĘZYKOWYCH Poziom oczekiwanych osiągnięć uczniów w zakresie sprawności rozumienia ze słuchu (listening comprehension) czasem zrozumieć ogólny sens wypowiedzi
FILOZOFOWIE UMYSŁU. Angielskie oświecenie
FILOZOFOWIE UMYSŁU Angielskie oświecenie JOHN LOCKE (1632-1704) NOWY ARYSTOTELES Locke w 1690 roku wydaje swoje podstawowe dzieło filozoficzne: En essay concerning the human understanding (Rozważania dotyczące
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie
MIND-BODY PROBLEM. i nowe nadzieje dla chrześcijańskiej antropologii
MIND-BODY PROBLEM i nowe nadzieje dla chrześcijańskiej antropologii CZŁOWIEK JEST MASZYNĄ (THOMAS HOBBES) Rozumienie człowieka znacząco zmienia się wraz z nastaniem epoki nowożytnej. Starożytne i średniowieczne
Co to jest niewiadoma? Co to są liczby ujemne?
Co to jest niewiadoma? Co to są liczby ujemne? Można to łatwo wyjaśnić przy pomocy Edukrążków! Witold Szwajkowski Copyright: Edutronika Sp. z o.o. www.edutronika.pl 1 Jak wyjaśnić, co to jest niewiadoma?
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA. Temat lekcji: Liczby firankowe
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji: Liczby firankowe Na podstawie pracy Joanny Jędrzejczyk oraz jej uczniów.
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
INTUICJE. Zespół norm, wzorców, reguł postępowania, które zna każdy naukowiec zajmujący się daną nauką (Bobrowski 1998)
PARADYGMAT INTUICJE Zespół norm, wzorców, reguł postępowania, które zna każdy naukowiec zajmujący się daną nauką (Bobrowski 1998) PIERWSZE UŻYCIA językoznawstwo: Zespół form deklinacyjnych lub koniugacyjnych
Nowoczesna teoria atomistyczna
Nowoczesna teoria atomistyczna Joseph Louis Proust Prawo stosunków stałych (1797) (1754-1826) John Dalton, Prawo stosunków wielokrotnych (1804) Louis Joseph Gay-Lussac Prawo stosunków objętościowych (1808)
Filozofia, Historia, Wykład IX - Filozofia Kartezjusza
Filozofia, Historia, Wykład IX - Filozofia Kartezjusza 2010-10-01 Plan wykładu 1 Krytyka nauk w Rozprawie o metodzie 2 Zasady metody Kryteria prawdziwości 3 Rola argumentów sceptycznych Argumenty sceptyczne