Kombinatoryka w liceum
|
|
- Miłosz Kowalski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Kombinatoryka w liceum n HALINA BERA Lekcję wg tego konspektu (z modyfikacjami treści zadań) realizuję od lat w klasie IV liceum. Równie dobrze może on być wykorzystany w przyszłym roku szkolnym w klasie III zreformowanego liceum (z rozszerzoną matematyką). n Temat Rozwiązywanie zadań ugruntowujących poznane pojęcia z kombinatoryki. Czas: 45 min. n Cele lekcji A) Ogólne: o powtarzać i utrwalać poznane wcześniej definicje i wzory z zakresu kombinatoryki, o ćwiczyć umiejętność wyboru właściwej drogi do rozwiązania każdego zadania, o dobierać zadania o treści realistycznej; o uatrakcyjniać proces uczenia się anegdotą, dowcipem czy opowiadaniem związanym jednak tematycznie z lekcją, o wyrabiać umiejętność współpracy w grupie. B) Operacyjne (efekty) po skończonej lekcji uczeń potrafi: o odróżniać, które z pojęć i który wzór należy zastosować do rozwiązania danego zadania; o stosować terminologię właściwą dla omawianego zagadnienia; o sprawnie wykonywać obliczenia stosując rachunek pamięciowy i kalkulator; o wyciągać i formułować wnioski. n Metody pracy: o praca w grupach; o praca pod kierunkiem z elementami dyskusji; o rozmowa nauczająca z elementami anegdoty. n Środki dydaktyczne: o kartka z anegdotami i zagadkami; o kartki dla poszczególnych grup z treścią zadań; o karty pracy dla grup; koperty z zadaniami domowymi. n Typ lekcji: lekcja ćwiczeniowa. n Realizowane ścieżki edukacyjne: 1. Edukacja filozoficzna: Stawianie pytań, definiowanie i argumentacja. Dyskusja. 2. Edukacja czytelnicza i medialna: Nawiązanie do literatury polskiej, zachęcanie do korzystania ze zbiorów bibliotecznych oraz samodzielnej analizy tekstów. 3. Edukacja patriotyczna i obywatelska: Dobór zadań o treści patriotycznej, np. związanych ze znanym sportowcem polskim, klubem poselskim itd. I
2 n Tok lekcji Faza lekcji wstępna Czynności nauczyciela 1. Wzajemne powitanie, podział klasy na grupy, sprawdzenie zadania domowego. 2. Powtórzenie wiadomości teoretycznych: o Czym zajmuje się kombinatoryka? o Co oznacza symbol n!? o Kiedy stosujemy permutację z powtórzeniami, a kiedy bez (wzory)? o Kiedy stosujemy wariacje z powtórzeniami, a kiedy bez (wzory)? o Pojęcie, wzór i własności kombinacji bez powtórzeń. Symbol Newtona. o Na czym polega reguła mnożenia? Czynności ucznia Uczniowie dzielą się na grupy, wybierają lidera, zgłaszają ewentualne problemy z zadaniem domowym. Odpowiadają na pytania nauczyciela, zaś odpowiednie wzory zapisują na tablicy. realizacyjna 3. Podanie tematu lekcji. 4. Rozdanie grupom kartek z zadaniem wielowątkowym z fabułą pod tytułem: Przyjęcie urodzinowe Doroty (Załącznik nr 1). Zapisują temat lekcji. Każdy uczeń otrzymuje kartkę z treścią zadania; grupa otrzymuje jedną kartę odpowiedzi. Grupa pracuje, a lider wpisuje odpowiedzi na kartę. Kolejno liderzy odczytują rozwiązania: 1a) 7!, 1b) 3! 4!. 2) C ) C ) 7!.5a) C b) C 1 3 C C ) C ) osoba pokój, czyli W8 3 = ) V 2 8 = 8 7 lub bezpośrednio z reguły mnożenia. 5. Informacja o tym, że Julian Tuwim pisał felietony matematyczne. Zawarł je w książce Cicer cum caule czyli groch z kapustą. Odczytanie jednej z nich (Załacznik nr 2, ciekawoska 1). Rozmawiamy o tym kto jeszcze stosuje kombinatorykę, np. Polski Monopol Loteryjny. Uczniowie słuchają czytanego przez nauczyciela tekstu. Później rozmawiają na temat różnych kombinatorycznych niespodzianek. 6. Rozdanie grupom kartek z 3 zadaniami (Załącznik nr 3). Uczniowie rozwiązują zadania w grupach. Kartkę z rozwiązanym zadaniem lider przekazuje nauczycielowi. Odpowiedzi do zadań: Zad. 1a) W 3 8 = 8 3 = 512 sposobów b) V 3 8 = 8! 5! = = 336 c) P 3 = 3! = 6 II matematyka
3 końcowa Zad. 2a) C 13 3 C 39 1 b) C 13 3 C C 13 4 c) C 13 2 C 13 1 C 13 1 Zad. 3. Równanie C 2 n + C 2 n-1. = 49; Odp. n = Odczytanie innego opowiadania Juliana Tuwima (Załącznik nr 2, ciekawoska 2). 8. Podsumowanie lekcji i wylosowanie zestawu zadań do domu. Oprócz 3 zadań w zestawie uczniowie będą musieli odpowiedzieć na pytania: 1) Na ile sposobów mogli wylosować jeden z 5 zestawów zadań domowych? 2) Na ile sposobów ja mogłam ułożyć te zestawy (5 zestawów po 3 zadania)? Uczniowie słuchają potem dyskutują na temat przedstawionego problemu. Liderzy otwierają koperty i dzielą w grupie zestawy (w każdej jest zestaw dla każdego ucznia). 9. Podziękowanie i zakończenie lekcji. Załącznik nr 1 Przyjęcie urodzinowe Doroty. Na przyjęciu urodzinowym Doroty spotkało się w jej trzypokojowym mieszkaniu 4 chłopców i 4 dziewczyny (łącznie z Dorotą). 1. Oblicz, na ile sposobów goście mogą wejść gęsiego do tego mieszkania: a) w sposób dowolny; b) tak, aby dziewczyny weszły przed chłopcami, bo są oni przecież dżentelmenami. 2. Po wejściu do mieszkania każdy wita się z każdym przez podanie ręki. Ile będzie powitań? 3. Jednym z prezentów jaki otrzymała Dorota był kupon na jeden zakład Dużego lotka. Oblicz, na ile sposobów ofiarodawca mógł wypełnić ten kupon (wybiera się 6 liczb z 49). 4. Wszyscy uczestnicy przyjęcia wybierają miejsce przy okrągłym stole. Na ile sposobów mogą to uczynić? 5. Na ile sposobów Dorota może wybrać w sposób losowy dwie osoby do pomocy w kuchni: a) w sposób dowolny, b) tak, aby wśród wybranych osób była chociaż jedna dziewczyna? 6. Grupa w kuchni robi kanapki, kładąc na każdą z nich po 4 różne plasterki spośród produktów: ser, szynka, pomidor, ogórek, jajko i pasztet. Ile rodzajów kanapek powstanie? Kolejność układania plasterków jest nieistotna. 7. W czasie przyjęcia telewizja transmituje sprawozdanie ze skoków narciarskich, którymi wszyscy się interesują. Wiedząc, że w każdym pokoju jest telewizor, oblicz na ile sposobów uczestnicy spotkania mogą rozdzielić się w tych pokojach, aby obejrzeć skoki Adama Małysza. 8. Wszyscy uczestnicy przyjęcia wysyłają sobie nawzajem kartki z wakacji. Ile będzie kartek? III
4 Załącznik nr 2. Materiały dla nauczyciela Ciekawostka osób jadało codziennie obiady przy podłużnym stole. Wszyscy zajmowali zawsze to samo miejsce. Pewnego dnia siedzący na szarym końcu najmłodszy ze stołowników wystąpił z projektem, by miejsca zajmować za każdym razem inaczej, aż do wyczerpania wszystkich możliwych rozmieszczeń. Po obiedzie starszy pan, nauczyciel matematyki w gimnazjum, zaprosił młodego człowieka na kawę. Więc Pan chciałby przesadzać 14 osób codziennie inaczej, aż do wyczerpania wszystkich możliwości, czy tak? Tak jest proszę pana. I co pan sądzi, że to tak długo będzie trwało, aż Pan te wszystkie możliwości wyczerpie? No nie wiem... może nawet parę tygodni... ale musi być sprawiedliwość. Owszem, musi być odrzekł fundator kawy i zaczął coś obliczać ołówkiem na marmurze stolika. Po paru minutach powiedział: Ale będzie to panie drogi trwało niech Pan słucha: Dwieście trzydzieści osiem milionów osiemset czterdzieści cztery tysiące sześćset trzydzieści trzy lata. Osłupiałem, myśląc, że mam do czynienia z wariatem. Ciekawostka 2. Tuwim opisuje również przygody i zagadki z życia doktora Przypadka. Pewnego razu doktor Przypadek zapowiedział swoim uczniom sprawdzian. Dam wam do przygotowania 12 zadań, na sprawdzianie będzie 10 spośród nich wyjaśnił doktor Przypadek. Czy można mieć gotowce? zażartował jeden z uczniów. Doktor Przypadek chwilę zastanawiał się. Mogą być, ale w takim razie tu Przypadek lekko się uśmiechnął na sprawdzianie będzie tylko 6 zadań. Przypominam, że praca ma być oddana na jednej kartce i bez żadnych skreśleń. Doktor Przypadek przekonany był, że przygotowanie 924 gotowców przerasta możliwości uczniów. A jednak mniej ambitni, ale inteligentni uczniowie zauważyli, że wystarczy 220 gotowców. Na czym polegała ich sztuczka? Załącznik nr 3. Zadanie 1. Trzy osoby ruszyły windą z parteru w bloku ośmiopiętrowym. Oblicz, na ile sposobów mogą one: a) opuścić windę w sposób dowolny; b) wysiąść na różnych piętrach, c) wysiąść z windy na ósmym piętrze? Zadanie 2. Z talii 52 kart losujemy 4 karty. Ile jest możliwych wyników losowania, jeśli wśród nich mają być: a) trzy kiery, b) co najmniej trzy kiery, c) dwa kiery, jeden pik i jeden trefl. Zadanie 3. Na turnieju szachowym każdy z uczestników rozegrał z każdym po jednej partii, po czym jeden z uczestników turnieju się wycofał. Pozostali rozegrali jeszcze każdy z każdym po jednej partii. Łącznie rozegrano 49 partii. Ilu było uczestników na początku tego turnieju? Załącznik nr 4. Zadanie domowe I 1. Ile dzielników naturalnych ma liczba: ? 2. Pewien klub poselski liczy 8 posłów. Na ile sposobów można w sposób losowy IV matematyka
5 wybrać posła sprawozdawcę i jego zastępcę, w razie gdyby ten nie mógł uczestniczyć w obradach Sejmu? 3. Dziecko sprawne manualnie, ale nie umiejące czytać rozsypało litery słowa SKAKANKA. Ile różnych słów (mających sens lub nie) może ono ponownie ułożyć? II 1. Na okręgu zaznaczono 6punktów. Ile istnieje wielokątów o wierzchołkach w tych punktach? 2. Ile jest wszystkich liczb trzycyfrowych o różnych cyfrach podzielnych przez 5? 3. Ile różnych wyników możemy otrzymać przy; a) trzykrotnym rzucie kostką sześcienną, b) rzucie trzema różnokolorowymi kostkami? III 1. Czy wśród 1000 osób muszą być dwie osoby mające te same inicjały? (Pierwsze litery imienia i nazwiska). Przyjmij, że alfabet ma 24 litery. 2. Na ile sposobów można z grupy 2 kobiet i 3 mężczyzn wybrać 3-osobową delegację, tak aby w jej skład weszła chociaż jedna kobieta? 3. Ile różnych 3-kolorowych chorągiewek można skleić mając do dyspozycji paski w 8 kolorach, jeśli barwy w chorągiewce nie mogą się powtarzać? IV 1. W pojemniku znajduje się 6 kul białych, 6 kul czarnych oraz 6 zielonych. Na ile różnych sposobów możemy wyjąć z pojemnika 3 kule, tak by otrzymać kule w dwóch kolorach? 2. Ile samochodów można zarejestrować używając tablic, na których najpierw są 3 litery z 24 literowego alfabetu, a następnie 3 cyfry. 3. Ile jest różnych rozkładów kart w brydżu? (Talia ma 52 karty, każdy z 4 graczy dostaje13). V 1. Na peronie czeka na pociąg 5 osób. Podjeżdża skład złożony z 7 wagonów. Ile jest sposobów na rozmieszczenie tych pasażerów dokładnie w dwóch wagonach? 2. W pudełku znajdują się patyczki długości: 3 cm, 4 cm, 5 cm, 6 cm i 7 cm. Wybieramy trzy. Na ile sposobów możemy to zrobić, tak by można z nich ułożyć trójkąt? 3. Na ile sposobów można uporządkować zbiór liczb : 1, 2, 3,..., 19 tak, aby iloczyn każdych dwóch kolejnych był liczbą parzystą? q HALINA BERA nauczycielka w ZSP nr 1 oraz w Społecznym Liceum Ogólnokształcącym w Kwidzynie LITERATURA [1] Krzysztof Kłaczkow, Marcin Kurczab i Elżbieta Świda, Podręcznik i zbiór zadań do klas III IV; [2] Marek Zakrzewski i Tomasz Żak, Kombinatoryka, prawdopodobieństwo i zdrowy rozsądek; [3] Anna Zalewska i Edward Stachowski, I Ty zostaniesz Euklidesem, klasa IV. V
Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.
PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile
Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe
Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6
Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna
1. Elementy kombinatoryki - zadania do wyboru
. Elementy kombinatoryki - zadania do wyboru Bernadeta Tomasz Zadania dodatkowe Zadanie.. Mamy do wyboru mieszkania i auta. Na ile sposobów można dokonać wyboru, jeśli. mamy wybrać mieszkanie i samochód,.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć
Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I
Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 07.10.2011 Spis treści 1 Kombinatoryka 1 1 Kombinatoryka permutacja bez powtórzeń
Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka
Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach
Wykład 4. Elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 4. Elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna Wstęp do probabilistyki
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B
KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich.
Katarzyna Gawinkowska Hanna Małecka VI L.O im J. Korczaka w ZSO nr 2 w Sosnowcu SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temat: Powtórzenie i utrwalenie wiadomości dotyczących geometrii
Matematyka dyskretna zestaw II ( )
Matematyka dyskretna zestaw II (17-18.10.2016) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak,
{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
Scenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 25 wrzesień 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
SPRAWDZIAN KOMBINATORYKA
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI SPRAWDZIAN KOMBINATORYKA 12 GRUDNIA 2011 CZAS PRACY: 45 MIN. ZADANIE 1 Spośród liczb {1, 2, 3,..., 1000} losujemy jednocześnie dwie, które
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Metryczka Justyna Płonka Szkoła Podstawowa nr 1 z Oddziałami Integracyjnymi im. Jana III Sobieskiego w Kozach
Metryczka Justyna Płonka Szkoła Podstawowa nr 1 z Oddziałami Integracyjnymi im. Jana III Sobieskiego w Kozach Temat: Dzielenie z resztą Dział: Liczby i działania Klasa: IV szkoły podstawowej Czas realizacji:
( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).
KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.
Wprowadzenie do kombinatoryki
Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Skrypt 30. Prawdopodobieństwo
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.
Temat: Pole równoległoboku.
Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -
KONSPEKT MATEMATYKA. Temat lekcji: Rozwiązujemy zadania tekstowe wykorzystując dodawanie i odejmowanie ułamków dziesiętnych.
KONSPEKT MATEMATYKA Przedmiot: matematyka Klasa: 5 Temat lekcji: Rozwiązujemy zadania tekstowe wykorzystując dodawanie i odejmowanie ułamków dziesiętnych. Cel lekcji wynikający z podstawy programowej:
Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2 Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku
RACHUNEK PRAWDOPODOBIEŃSTWA
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Typy zadań kombinatorycznych:
Typy zadań kombinatorycznych: I. Ustawianie wszystkich elementów zbioru w pewnej kolejności Przestawieniem nazywamy ustawienie elementów danego zbioru w pewnej kolejności. Liczba przestawień określa na
Scenariusz lekcji matematyki dla klasy I Gimnazjum
Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przekształcanie wzorów. Cel ogólny : przekształcanie wzorów matematycznych i fizycznych z zastosowaniem metod rozwiązywania równań. Cele operacyjne:
KOMBINATORYKA. Problem przydziału prac
KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty
Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?
Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.
IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Wybrane zagadnienia z kombinatoryki i rachunku prawdopodobieństwa oraz realizacja ośmiu głównych kompetencji kluczowych
Wybrane zagadnienia z kombinatoryki i rachunku prawdopodobieństwa oraz realizacja ośmiu głównych kompetencji kluczowych Kategoria: Materiały z warsztatów przedmiotowych Słowa kluczowe: kombinatoryka, rachunek
Konspekt do lekcji matematyki w klasie I
Konspekt do lekcji matematyki w klasie I Prowadzący: Edyta Pikor Miejsce: Publiczne Gimnazjum w Jacie Temat lekcji: O ile procent więcej, o ile procent mniej. Punkty procentowe. Cel główny: Poznanie podstawowych
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
ELEMENTY KOMBINATORYKI
ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź
Środki dydaktyczne Zestaw zadań/pytań z działu Mnożenie i dzielenie ułamków zwykłych. Każde pytanie znajduje się na osobnej karteczce.
Scenariusz lekcji I. Cele lekcji ) Wiadomości Uczeń zna: a) algorytm mnożenia ułamków zwykłych i liczb mieszanych przez liczby naturalne, b) sposób obliczania ułamka z liczby, c) algorytm mnożenia liczb
c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
1. Mamy do wyboru 2 mieszkania i 3 auta. Na ile sposobów można dokonać wyboru, jeśli
Repetytorium z matematyki, kierunek informatyka, I rok, studia niestacjonarne I stopnia Semestr zimowy 01/016 KOMBINATORYKA. Zasada mnożenia, dodawania. 1. Mamy do wyboru mieszkania i auta. Na ile sposobów
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy 1. Cele lekcji Cel ogólny: Uczeń podaje przykłady funkcji i odczytuje jej własności z wykresów. Cele szczegółowe: Uczeń potrafi: określić monotoniczność
Działania na ułamkach zwykłych powtórzenie wiadomości
Działania na ułamkach zwykłych powtórzenie wiadomości. Cele lekcji a) Wiadomości. Uczeń zna pojęcia sumy, różnicy i iloczynu. 2. Uczeń zna sposób obliczania sumy ułamków zwykłych, różnicy ułamków zwykłych,
SCENARIUSZ LEKCJI W KLASIE I GIMNAZJUM
Opracowała Elżbieta Tomczak SCENARIUSZ LEKCJI W KLASIE I GIMNAZJUM Motto lekcji: To, co musiałeś odkryć samodzielnie, zostawia w twym umyśle ścieżkę, którą w razie potrzeby możesz pójść jeszcze raz. Georg
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Prawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
KWIECIEŃ klasa 2 MATEMATYKA
26. tydzień nauki Jak dzielimy? Jak mnożymy? Temat: Jak dzielimy? Jak mnożymy? Mnożenie i dzielenie liczb w zakresie 50. 7.6 Zagadki matematyczne zapisywanie działań. 7.8 Rozwiązywanie zadań tekstowych
SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Data : 01.10.2012 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II
80 Mirosław Dąbrowski 16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości
Cele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne:
Konspekt lekcji matematyki: Klasa: czwarta Prowadzący: Elżbieta Kruczek, nauczyciel Samorządowej Szkoły Podstawowej w Brześciu (z wykorzystaniem podręcznika Matematyka z plusem) Temat: Odejmowanie ułamków
SCENARIUSZ ZAJĘĆ DYDAKTYCZNO- WYRÓWNAWCZYCH Z MATEMATYKI DLA KLASY VI
Barbara Zimnoch nauczycielka matematyki Szkoła Podstawowa nr 50 z Oddziałami Integracyjnymi im. Świętej Jadwigi Królowej Polski w Białymstoku SCENARIUSZ ZAJĘĆ DYDAKTYCZNO- WYRÓWNAWCZYCH Z MATEMATYKI DLA
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym
Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania
Rachunek prawdopodobieństwa Rozdział 1. Wstęp
Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich
LEKCJA OTWARTA Z MATEMATYKI. Temat lekcji: Pole powierzchni prostopadłościanu i sześcianu.
LEKCJA OTWARTA Z MATEMATYKI w ramach Rządowego programu rozwijania szkolnej infrastruktury oraz kompetencji uczniów i nauczycieli w zakresie technologii informacyjno-komunikacyjnych Aktywna tablica Prowadząca:
Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa
Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy
Scenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
liczb naturalnych czterocyfrowych. Mamy do dyspozycji następujące cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. g) Ile jest liczb czterocyfrowych parzystych?
KOMBINATORYKA ZADANIA Z ROZWIĄZANIAMI 1. Udziel odpowiedzi na poniższe pytania: a) Ile jest możliwych wyników w rzucie jedną kostką? W rzucie jedną kostką możemy otrzymać jeden spośród następujących wyników:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
KONSPEKT LEKCJI MATEMATYKI W KLASIE II GIMNAZJUM
KONSPEKT LEKCJI MATEMATYKI W KLASIE II GIMNAZJUM TEMAT: Układanie równań do zadań z treścią. CZAS TRWANIA ZAJĘĆ: 45 minut CELE ZAJĘĆ: Matematyzowanie sytuacji opisanych słowami redagowanie treści z użyciem
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 1 Elementy kombinatoryki ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kombinatorykę można określić
mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku
Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 2018/2019 ETAP REJONOWY
Dodawanie ułamków dziesiętnych
Dodawanie ułamków dziesiętnych 1. Cele lekcji a) Wiadomości 1. Uczeń utrwala pojecie sumy i składników. 2. Uczeń zna algorytm dodawania ułamków dziesiętnych. b) Umiejętności 1. Uczeń potrafi dodawać ułamki
Scenariusz zajęć nr 8
Autor scenariusza: Małgorzata Marzycka Blok tematyczny: Świat wokół nas Scenariusz zajęć nr 8 Temat dnia: Zabawy matematyką. I. Czas realizacji: 2 jednostki lekcyjne. II. Czynności przed lekcyjne: przygotowanie
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1
Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1 Rozdział V: Równania i nierówności I stopnia z jedną niewiadomą Temat: Ćwiczenia utrwalające przekształcanie
Scenariusz zajęć dla uczniów gimnazjum
I. Temat: Na własnych śmieciach Scenariusz zajęć dla uczniów gimnazjum II. Cel ogólny: Rozwijanie wśród uczniów podczas zajęć świadomości ekologicznej związanej z potrzebą ograniczenia ilości wytwarzanych
KONSPEKT do przeprowadzenia lekcji matematyki
Zespół Szkół im A. Mickiewicza we Wręczycy Wielkiej Szkoła Podstawowa Przedmiot: Matematyka, klasa VI b. Podręcznik: Matematyka wokół nas Prowadzący: mgr Ewa Mika KONSPEKT do przeprowadzenia lekcji matematyki
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B
KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA P A = A Ω PRAWDOPOD OBIEŃSTW O W A RUNKOWE P(A B) P A B =, P B 0 PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B P A B = P A B = P
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: 12.06.2006. Cel główny: Obserwacja osiągniętego poziomu sprawności
Scenariusz lekcji matematyki, klasa 1 LO.
Scenariusz lekcji matematyki, klasa 1 LO. Temat lekcji: Czworokąty: rodzaje, własności, pola czworokątów. Cele: po lekcji uczeń: - rozpoznaje czworokąty, - zna własności czworokątów, - potrafi wskazać
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie Temat: Obliczanie procentu danej liczby z wykorzystaniem sytuacji praktycznych. Klasa VI szkoły
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Kombinatoryka. Reguła dodawania. Reguła dodawania
Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich
Uczniowie zapisują temat do zeszytów.
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI SZKOŁY PODSTAWOWEJ Prowadzący: mgr Józef Kochanek Data: 9 IX 2003 r. Temat: Trójkąty- przypomnienie wiadomości. Cele: Uczeń po lekcji: - zna rodzaje trójkątów,
Scenariusz lekcji matematyki w klasie 1 technikum
Scenariusz lekcji matematyki w klasie 1 technikum TEMT: Funkcja i jej własności - powtórzenie. Cele: Uczeń zna - definicję funkcji, miejsca zerowego, dziedziny, zbioru wartości funkcji - sposoby przedstawiania
PRZYKŁADOWE SCENARIUSZE ZAJĘĆ
PRZYKŁADOWE SCENARIUSZE ZAJĘĆ SCENARIUSZ NR 1 Temat zajęć: Obliczanie pól i obwodów prostokątów. Cele zajęć: Uczeń: Zna jednostki pola; Umie obliczyć pole i obwód prostokąta i kwadratu; Wykorzystuje swoje
KONSPEKT LEKCJI MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ. Temat: Wyznaczanie liczb pierwszych metodą sita Eratostenesa.
Krysztof Jerzy Szkoła Podstawowa w Sicinach KONSPEKT LEKCJI MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Temat: Wyznaczanie liczb pierwszych metodą sita Eratostenesa. Cel ogólny: Cele operacyjne: Uczeń potrafi:
Scenariusz lekcyjny Zastosowanie układów równań liniowych do rozwiązywania zadań tekstowych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,
Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK.
Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK. Temat: Uwielbiam liczyć - Utrwalenie dodawania i odejmowania w zakresie 1000 oraz mnożenia i dzielenia w zakresie 100.
Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012
dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?