ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ"

Transkrypt

1 ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: Cel główny: Obserwacja osiągniętego poziomu sprawności uczniowskich w zakresie rozdziału Graniastosłupy - pola powierzchni. Umiejętności kluczowe: Uczeń: -poprawnie posługuje się językiem matematycznym ( terminologią matematyczną ) -logicznie myśli -rozwija wyobraźnie przestrzenną -doskonali ocenę własnych umiejętności -współdziała w zespole i podejmuje decyzje Rejestr umiejętności opanowanych przez uczniów Uczeń: zna podstawowe pojęcia dotyczące graniastosłupa potrafi kreślić siatki i szkice w rzutach (rysunki do graniastosłupów) potrafi odczytać wymiary na podstawie rysunku Rejestr umiejętności opanowanych częściowo (kształconych) przez uczniów Uczeń: rozwiązuje zadania dotyczące zewnętrznych elementów bryły (krawędzie, wierzchołki, powierzchnie) i wewnętrznej struktury (przekątne, płaszczyzny przechodzące przez te przekątne, przekroje) bierze aktywny udział w pracy zespołowej Rejestr umiejętności, których kształcenie Obserwacje hospitującego Obserwacje hospitującego Obserwacje hospitującego

2 nauczyciel rozpoczyna Uczeń: rozpoznaje zadania tekstowe związane z polem powierzchni całkowitej graniastosłupa. WNIOSKI Z OBSERWACJI HOSPITUJĄCEGO poziom sprawności uczniów w określonych poziomach: KIERUNKI DALSZEJ PRACY NAUCZYCIELA - usprawnienia, modyfikacje, promowanie i utrwalanie osiągnięć: DATA ROZMOWY POHOSPITACYJNEJ: PODPIS NAUCZYCIELA: PODPIS DYREKTORA:

3 Uczeń odczytuje informacje przedstawione w formie rysunku. Uczeń czyta tekst matematyczny ze zrozumieniem SCENARIUSZ ZAJĘĆ: GRANIASTOSŁUPY POLA POWIERZCHNI. STANDARD WSKAŹNIKI ZADANIE PRZEBIEG LEKCJI UWAGI 1.Podanie tematu zajęć oraz ich celu. Uczeń zna pojęcie: Zad.1 2.Przypomnienie wzorów na pole: kwadratu, sześcianu Krzyżówka- prostokąta, trapezu, trójkąta oraz Tw. Pitagorasa graniastosłupa wirówka 3.Rozdanie kart samooceny i podanie prostego - załącznik nr 1 sposobu wypełniania karty. graniastosłupa 4.Rozwiązanie zad. 1 ucz. otrzymują krzyżówkę prawidłowego wirówkę i rozwiązują ją samodzielnie, następnie jedna osoba czyta swoje rozwiązania, pozostali ucz. sprawdzają swoje odpowiedzi (wpisując + za każdą poprawną odp.) 5. Uczniowie wypełniają karty samooceny. Uczeń umie nazwać i określić wymiary: prostopadłościanu, graniastosłupa trójkątnego i sześciokątnego. Zad. 2 Nazwij graniastosłupy i podaj ich wymiary - załącznik nr 1 6.Uczniowie samodzielnie wykonują zad.2. Po rozwiązaniu jedna osoba przedstawia poprawne rozwiązanie. Uczniowie porównują rozwiązania i wpisują + za każdą poprawną odpowiedź. 7. Uczniowie wypełniają karty samooceny.

4 Uczeń posługuje się własnościami figur - oblicza miary figur płaskich i przestrzennych Uczeń umie rozwiązywać proste zadanie dotyczące powierzchni bocznej graniastosłupa. Zad. 3 Oblicz pole powierzchni bocznej narysowanych graniastosłupów - załącznik nr 2 8.Uczniowie po otrzymaniu zestawu zadań wykonują samodzielnie zad.3 wpisując odpowiedź w wyznaczonym miejscu kartki. Następnie podnoszą kartki do góry a nauczyciel sprawdza, którzy uczniowie rozwiązali poprawnie. W tym czasie jedna osoba rozwiązuje na tablicy. 9. Uczniowie wypełniają karty samooceny. Uczeń umie rozwiązać proste zadanie dotyczące powierzchni całkowitej graniastosłupa. Zad. 4 Oblicz pole powierzchni całkowitej graniastosłupa przedstawionego na rysunku - załącznik nr 2 10.Uczniowie wykonują samodzielnie zad.4 wpisując odpowiedź w wyznaczonym miejscu kartki. Następnie nauczyciel sprawdza poprawność rozwiązań. 11.Uczniowie wypełniają karty samooceny. Uczeń umie obliczyć sumę długości wszystkich krawędzi prostopadłościanu. Zad. 5 Jedna krawędź prostopadłościanu jest równa 10 cm, druga stanowi 0,4 długości krawędzi pierwszej, a wysokość jest 5 razy dłuższa od krótszej krawędzi podstawy. 12.Uczniowie otrzymują karty pracy i rozwiązują zadanie w parach. Następnie trzy osoby przedstawiają swoje rozwiązanie (każda inny podpunkt). Klasa ocenia ich poprawność. Grupa, która wykonała poprawnie wszystkie podpunkty otrzymuje trzy Uczniowie wypełniają karty samooceny.

5 Uczeń wykonuje obliczenia w różnych sytuacjach praktycznych Uczeń: - umie rozwiązywać zadania tekstowe z polem powierzchni - sprawnie współpracuje w grupie - dokonuje samooceny Oblicz: a)pole powierzchni tego prostopadłościanu b)ile drutu potrzeba na zrobienie szkieletu tego prostopadłościanu c)czy z drutu o tej długości można zbudować graniastosłup prawidłowy trójkątny o krawędzi postawy 11cm i wysokości 2dm - załącznik nr 3 Zad. 6 Liczbom zostały przyporządkowane litery. Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania - załącznik nr 4 14.Klasa dzieli się na 4-osobowe grupy. Grupa wybiera lidera. 15.Rozdanie kartek z zadaniami, określenie czasu pracy. 16.Lider zgłasza rozwiązanie (każda grupa w wyniku poprawnego rozwiązania otrzyma inne hasło). Grupa, która najszybciej rozwiąże może dostać zadanie dodatkowe. 17. Rozwiązania są prezentowane klasie. 18.Uczniowie wypełniają karty samooceny. 19.Zestawienie wyników z kart samooceny. 20.Dokonanie analizy wyników samooceny, ustalenie mocnych i słabych stron

6 umiejętności uczniów. 21.Wyciągnięcie wniosków co umiemy, a co powinniśmy doskonalić.

7 ZAŁĄCZNIK NR 1 Zad. 1 Krzyżówka wirówka Uzupełnij wyrazy w następujących zdaniach. Wpisywanie wyrazów do wirówki zacznij od wyróżnionej litery i poruszając się ruchem wirowym wpisz kolejno odgadnięte wyrazy. Po każdym wyrazie jest pusta kratka. Następnie wypisz litery według podanej kolejności. Otrzymasz hasło. S Prostopadłościan, którego wszystkie ściany są kwadratami to Graniastosłup, którego wszystkie ściany są prostopadłe do podstaw, nazywa się graniastosłupem Proste, które nie mają punktów wspólnych i nie leżą w jednej płaszczyźnie, to proste.. Proste, które nie mają punktów wspólnych i leżą w jednej płaszczyźnie, to proste.. Graniastosłup prosty, którego podstawami są wielokąty foremne, to graniastosłup.. Graniastosłup prosty, którego podstawami są trójkąty równoboczne, nazywa się graniastosłupem prawidłowym.. Polem powierzchni graniastosłupa nazywamy.pól wszystkich jego ścian Punkty przecięcia się krawędzi graniastosłupa nazywamy. HASŁO:

8 ZAŁĄCZNIK NR 3 Zad. 5 Jedna krawędź prostopadłościanu jest równa 10cm, druga stanowi 0,4 długości krawędzi pierwszej, wysokość jest 5 razy dłuższa od krótszej krawędzi podstawy. Oblicz pole powierzchni tego prostopadłościanu Oblicz, ile drutu potrzeba na zrobienie szkieletu tego prostopadłościanu Czy z drutu o tej długości można zrobić graniastosłup prawidłowy trójkątny o krawędzi podstawy 11cm i wysokości 2dm

9 ZAŁĄCZNIK NR 4 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa I I litera: Oblicz pole powierzchni całkowitej graniastosłupa, który w podstawie ma trójkąt prostokątny o przyprostokątnych 6cm i 8cm, a wysokość bryły jest równa 12cm. II litera: Pole powierzchni akwarium jest równe 6 300cm ². Oblicz wysokość akwarium, jeśli podstawa ma wymiary 60cm i 3dm. III litera: Sześcian o krawędzi 10cm i prostopadłościan mający w podstawie prostokąt o wymiarach 5cm i 8cm mają równe pola powierzchni. Oblicz wysokość prostopadłościanu.

10 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa II I litera: Oblicz pole powierzchni całkowitej graniastosłupa, który w podstawie ma trójkąt prostokątny o przyprostokątnych 6cm i 8cm, a wysokość bryły jest równa 12cm. II litera: Pole powierzchni akwarium jest równe 6 300cm ². Oblicz wysokość akwarium, jeśli podstawa ma wymiary 60cm i 3dm. III litera: Ile farby należy zużyć na pomalowanie 5 prostopadłościennych belek o wymiarach 20cm, 30cm i 3,5m jeśli 1 litr farby wystarcza na pomalowanie 7m ².Farba jest sprzedawana w puszkach litrowych.

11 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa III I litera: Oblicz pole powierzchni całkowitej graniastosłupa, który w podstawie ma trójkąt prostokątny o przyprostokątnych 6cm i 8cm, a wysokość bryły jest równa 12cm. II litera: Pole powierzchni akwarium jest równe 6 300cm ². Oblicz wysokość akwarium, jeśli podstawa ma wymiary 60cm i 3dm. III litera: Pokój ma kształt prostopadłościanu, którego podstawą jest kwadrat. Długość podłogi ma 4m, a wysokość pokoju 2,5m. Ile litrów farby trzeba kupić na dwukrotne pomalowanie ścian i sufitu, jeśli 1 litr farby starcza na 12m ² powierzchni.

12 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa IV I litera: Pokój ma kształt prostopadłościanu, którego podstawą jest kwadrat. Długość podłogi ma 4m, a wysokość pokoju 2,5m. Ile litrów farby trzeba kupić na dwukrotne pomalowanie ścian i sufitu, jeśli 1 litr farby starcza na 12m ² powierzchni. II litera: Pole powierzchni akwarium jest równe 6 300cm ². Oblicz wysokość akwarium, jeśli podstawa ma wymiary 60cm i 3dm. III litera: Oblicz pole powierzchni całkowitej graniastosłupa, który w podstawie ma trójkąt prostokątny o przyprostokątnych 6cm i 8cm, a wysokość bryły jest równa 12cm.

13 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa V I litera: Ściany łazienki wyłożono kwadratowymi kafelkami o boku równym 30cm. Wymiary łazienki: długość 3m, szerokość 3m, wysokość 2,5m. Drzwi mają 90cm na 2,1m. Oblicz ile kafelków trzeba na wyłożenie ścian łazienki, jeśli miały one sięgać tylko do wysokości 2m i 10cm II litera: Pole powierzchni akwarium jest równe 6 300cm ². Oblicz wysokość akwarium, jeśli podstawa ma wymiary 60cm i 3dm. III litera : Oblicz pole powierzchni całkowitej graniastosłupa, który w podstawie ma trójkąt prostokątny o przyprostokątnych 6cm i 8cm, a wysokość bryły jest równa 12cm.

14 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa VI I litera: Ile farby należy zużyć na pomalowanie 5 prostopadłościennych belek o wymiarach 20cm, 30cm i 3,5m jeśli 1 litr farby wystarcza na pomalowanie 7m ².Farba jest sprzedawana w puszkach litrowych. II litera: Pole powierzchni akwarium jest równe 6 300cm ². Oblicz wysokość akwarium, jeśli podstawa ma wymiary 60 cm i 3 dm. III litera: Ściany łazienki wyłożono kwadratowymi kafelkami o boku równym 30cm. Wymiary łazienki: długość 3m, szerokość 3m, wysokość 2,5m. Drzwi mają 90cm na 2,1m. Oblicz ile kafelków trzeba na wyłożenie ścian łazienki, jeśli miały one sięgać tylko do wysokości 2m i 10cm.

15 Zad. 6 HASŁO: LICZBOM ZOSTAŁY PRZYPORZĄDKOWANE LITERY: K P T C A S O R Odczytaj zakodowane hasło. Każdej literze odpowiada liczba, która jest rozwiązaniem zadania. Grupa VII I litera: Ściany łazienki wyłożono kwadratowymi kafelkami o boku równym 30cm. Wymiary łazienki: długość 3m, szerokość 3m, wysokość 2,5m. Drzwi mają 90cm na 2,1m. Oblicz ile kafelków trzeba na wyłożenie ścian łazienki, jeśli miały one sięgać tylko do wysokości 2m i 10cm. II litera: Oblicz pole podstawy graniastosłupa prawidłowego czworokątnego, którego pole powierzchni bocznej jest równe 160cm ², a wysokość ma 8cm. III litera: Oblicz pole powierzchni całkowitej graniastosłupa, który w podstawie ma trójkąt prostokątny o przyprostokątnych 6cm i 8cm, a wysokość bryły jest równa 12cm.

16 KARTA SAMOOCENY I UMIEJĘTNOŚCI UCZNIA Zaznacz + w odpowiednim miejscu tabeli. Liczę, że zrobisz to sumiennie. UMIEJĘTNOŚCI Znam podstawowe pojęcia dotyczące graniastosłupów Potrafię nazywać i określać wymiary prostopadłościanu, graniastosłupa trójkątnego i sześciokątnego Umiem rozwiązywać zadania dotyczące powierzchni bocznej graniastosłupa Umiem rozwiązywać zadania dotyczące powierzchni całkowitej graniastosłupa Umiem policzyć sumę długości wszystkich krawędzi prostopadłościanu Rozwiązuję zadania tekstowe związane z polem powierzchni graniastosłupów. TAK CZASEM POPEŁNIAM BŁĘDY MUSZĘ TO DOSKONALIĆ OCENA PRACY ZESPOŁOWEJ Moje zaangażowanie w rozwiązywanie zadania nr 6 PEŁNE ŚREDNIE NIEWIELKIE

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa

Bardziej szczegółowo

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach. 12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie

Bardziej szczegółowo

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy. 1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III gimnazjum

Wymagania edukacyjne z matematyki dla klasy III gimnazjum Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy

Bardziej szczegółowo

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe

Bardziej szczegółowo

1 Odległość od punktu, odległość od prostej

1 Odległość od punktu, odległość od prostej 24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14

Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14 I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

KONSPEKT do przeprowadzenia lekcji matematyki

KONSPEKT do przeprowadzenia lekcji matematyki Zespół Szkół im A. Mickiewicza we Wręczycy Wielkiej Szkoła Podstawowa Przedmiot: Matematyka, klasa VI b. Podręcznik: Matematyka wokół nas Prowadzący: mgr Ewa Mika KONSPEKT do przeprowadzenia lekcji matematyki

Bardziej szczegółowo

Kąty przyległe, wierzchołkowe i zewnętrzne

Kąty przyległe, wierzchołkowe i zewnętrzne Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne

Przedmiotowe zasady oceniania i wymagania edukacyjne Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem

Bardziej szczegółowo

Temat: Graniastosłupy- obliczanie pola powierzchni i objętości graniastosłupa.

Temat: Graniastosłupy- obliczanie pola powierzchni i objętości graniastosłupa. Scenariusz lekcji z matematyki dla klasy I Gimnazjum Temat: Graniastosłupy- obliczanie pola powierzchni i objętości graniastosłupa. Cel ogólny: rozróżniać rodzaje graniastosłupów oraz obliczać pole powierzchni

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji

Bardziej szczegółowo

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są. GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

Gabriela Mysłowska Państwowe Liceum sztuk Plastycznych W Olsztynie PLAN METODYCZNY

Gabriela Mysłowska Państwowe Liceum sztuk Plastycznych W Olsztynie PLAN METODYCZNY Celem poniższego opracowania jest chęć podzielenia się moją wiedzą i umiejętnościami z nauczycielami uczącymi matematyki w szkołach ponadgimnazjalnych. Scenariusz przedstawionej propozycji lekcji zawiera

Bardziej szczegółowo

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych.

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. KONSPEKT DO LEKCJI MATEMATYKI W KL.V TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. CELE LEKCJI: kształcenie umiejętności stosowania zdobytych wiadomości w różnych sytuacjach rzeczywistych utrwalenie

Bardziej szczegółowo

Klasa 2. Ostrosłupy str. 1/4

Klasa 2. Ostrosłupy str. 1/4 Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...

SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe... SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

5. Oblicz pole powierzchni bocznej tego graniastosłupa.

5. Oblicz pole powierzchni bocznej tego graniastosłupa. 11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi

Bardziej szczegółowo

Klasa 3.Graniastosłupy.

Klasa 3.Graniastosłupy. Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................

Bardziej szczegółowo

STEREOMETRIA. Poziom podstawowy

STEREOMETRIA. Poziom podstawowy STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

TWÓJ KOD. do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU

TWÓJ KOD. do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU TWÓJ KOD do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU 2 część 2 klasa Spis treści V. Wyrażenia algebraiczne 1. Wyrażenia algebraiczne / 5 2. Wartość liczbowa wyrażenia algebraicznego / 9 3.

Bardziej szczegółowo

Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył

Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,

Bardziej szczegółowo

II. III. Scenariusz lekcji. I. Cele lekcji

II. III. Scenariusz lekcji. I. Cele lekcji Scenariusz lekcji I. Cele lekcji 1) Wiadomości i umiejętności sprawdzane w zadaniach testu: Uczeń: zna sumę miar kątów w trójkącie, rozpoznaje proste równoległe, rozpoznaje wielokąty, rozpoznaje figury

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej

Bardziej szczegółowo

Edyta Milanowska Scenariusz lekcji

Edyta Milanowska Scenariusz lekcji Edyta Milanowska Temat lekcji: Objętość ostrosłupa. Scenariusz lekcji Cele lekcji: Uczeń: oblicza pole powierzchni i objętość graniastosłupa i ostrosłupa, zamienia jednostki objętości, rozwiązuje zadania

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 2a Rozkład łatwości zadań Średni wynik klasy.26 pkt 59% Średni wynik szkoły 3.55 pkt 7% Średni wynik ogólnopolski.9 pkt 43% 0.9 0. 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0. 0 2 3 4 5 6 7 9a 9b 0 a b 2 3

Bardziej szczegółowo

Plan wynikowy, klasa 3 ZSZ

Plan wynikowy, klasa 3 ZSZ Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDBNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRDROCZNYCH I ROCZNYCH OCEN Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDBNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRDROCZNYCH I ROCZNYCH OCEN Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE NIEZBĘDBNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRDROCZNYCH I ROCZNYCH OCEN Z MATEMATYKI W KLASIE V Sprawności Wiadomości i umiejętności przewidywane dla klasy V Wymagania edukacyjne ocena:

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

Scenariusz lekcji matematyki dla klasy I Gimnazjum

Scenariusz lekcji matematyki dla klasy I Gimnazjum Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przekształcanie wzorów. Cel ogólny : przekształcanie wzorów matematycznych i fizycznych z zastosowaniem metod rozwiązywania równań. Cele operacyjne:

Bardziej szczegółowo

Skrypt 26. Stereometria: Opracowanie Jerzy Mil

Skrypt 26. Stereometria: Opracowanie Jerzy Mil Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku

mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.

Bardziej szczegółowo

DZIAŁ 1. STATYSTYKA DZIAŁ 2. FUNKCJE

DZIAŁ 1. STATYSTYKA DZIAŁ 2. FUNKCJE DZIAŁ 1. STATYSTYKA poda pojęcie diagramu słupkowego i kołowego (2) poda pojęcie wykresu (2) poda potrzebę korzystania z różnych form prezentacji informacji (2) poda pojęcie średniej, mediany (2) obliczy

Bardziej szczegółowo

SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.

SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D. SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.

Bardziej szczegółowo

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a. ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY VI : 1. zamieni ułamek zwykły na dziesiętny dowolnym sposobem 2. porówna ułamek zwykły i dziesiętny 3.

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI

KONSPEKT LEKCJI MATEMATYKI KONSPEKT LEKCJI MATEMATYKI Temat lekcji: Matematyka w codziennym zastosowaniu. Klasa: III gimnazjum Cele główne lekcji: Uczeń umie stosować wzory na obliczanie powierzchni całkowitej i objętości brył przestrzennych.

Bardziej szczegółowo

Maraton Matematyczny Klasa I październik

Maraton Matematyczny Klasa I październik Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry);

Bardziej szczegółowo

Zagadnienia na powtórzenie

Zagadnienia na powtórzenie Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki kl.ii

Przedmiotowy system oceniania z matematyki kl.ii DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników

Bardziej szczegółowo

LEKCJA OTWARTA Z MATEMATYKI. Temat lekcji: Pole powierzchni prostopadłościanu i sześcianu.

LEKCJA OTWARTA Z MATEMATYKI. Temat lekcji: Pole powierzchni prostopadłościanu i sześcianu. LEKCJA OTWARTA Z MATEMATYKI w ramach Rządowego programu rozwijania szkolnej infrastruktury oraz kompetencji uczniów i nauczycieli w zakresie technologii informacyjno-komunikacyjnych Aktywna tablica Prowadząca:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

KRYTERIA OCENIANIANIA Z MATEMATYKI W KL.VII

KRYTERIA OCENIANIANIA Z MATEMATYKI W KL.VII KRYTERIA OCENIANIANIA Z MATEMATYKI W KL.VII DZIAŁ 1: LICZBY I DZIAŁANIA Na ocenę dopuszczającą (2) uczeń : (4 godziny tygodniowo) umie porównywać liczby wymierne umie zaznaczać liczbę wymierną na osi liczbowej

Bardziej szczegółowo

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,

Bardziej szczegółowo

Matematyka podstawowa IX. Stereometria

Matematyka podstawowa IX. Stereometria Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość

Bardziej szczegółowo

Określenie wymagań edukacyjnych z matematyki w klasie II

Określenie wymagań edukacyjnych z matematyki w klasie II Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. VI

WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. VI WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. VI Wymagania na ocenę DOPUSZCZAJĄCĄ Zna pojęcie potęgi Uzupełnia brakujący licznik w równości ułamków Odczytuje ułamki na osi liczbowej Oblicza upływ czasu

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 7

NaCoBeZU z matematyki dla klasy 7 NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA VII. LICZBY i DZIAŁANIA

WYMAGANIA EDUKACYJNE KLASA VII. LICZBY i DZIAŁANIA WYMAGANIA EDUKACYJNE KLASA VII A uczeń zna, B uczeń rozumie, C uczeń umie stosować wiadomości w sytuacjach typowych, D uczeń umie stosować wiadomości w sytuacjach problemowych. LICZBY i DZIAŁANIA zna PSO,

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. V.

Scenariusz lekcji matematyki w kl. V. Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt

Bardziej szczegółowo

Karta pracy w grupach

Karta pracy w grupach Karta pracy w grupach WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. To jest siatka sześcianu. P

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania

Bardziej szczegółowo

MATEMATYKA klasa VIII wymagania edukacyjne na poszczególne oceny

MATEMATYKA klasa VIII wymagania edukacyjne na poszczególne oceny MATEMATYKA klasa VIII wymagania edukacyjne na poszczególne oceny Opracowano na podstawie Programu nauczania matematyki dla klas 4 8 szkoły podstawowej Matematyka z kluczem wydawnictwa Nowa Era I. OGÓLNY

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria 1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość

Bardziej szczegółowo