Obwody elektryczne. Elementy obwodu elektrycznego. Obwód elektryczny. Źródła energii - elementy czynne (idealne)
|
|
- Bogumił Barański
- 7 lat temu
- Przeglądów:
Transkrypt
1 Obody elekrycne Obód elekrycny Q Q Prąd elekrycny płyne u obode amknęym źródło energ Obód elekrycny Zespół elemenó preodących prąd, aerający prynajmnej jedną drogę amknęą dla prepłyu prądu Elemeny obodu elekrycnego Źródła energ - elemeny cynne (dealne) Źródło napęca u u en Źródło prądu en Odbornk energ - elemeny berne (dealne) reysancja ndukcyjność pojemność L C u u d u L d dq d d(cu) du C d d
2 Elemeny obodu elekrycnego Elemeny berne (recyse) reysor ceka ndukcyjna kondensaor Każdy elemen obodu elekrycnego charakeryuje sę: reysancją, ndukcyjnoścą, pojemnoścą elekrycną, L schemay asępce L L C C C Elemeny obodu elekrycnego Obód elekrycny 5 raf obodu gałąź ęeł ocko odaje napęć prądó 6 sały menny okresoy () premenny ()d snusodalny () m sn( )
3 Praca moc prądu elekrycnego 7 dq u u dw dq u dq d dw ud Praca: Moc: W ud dw p d u Dla u==cons, ==cons : W P Praca moc prądu elekrycnego 8 Moc reysancj p u Dla u==cons, ==cons : u u Energa reysancj E d u p p d E P P - prao Joule a Praa Krchhoffa prao Krchhoffa Wersja Suma prądó ęźle jes róna eru n k k 9 5 Wersja Suma prądó dopłyających do ęła jes róna sume prądó nego ypłyających 5 5
4 Praa Krchhoffa prao Krchhoffa Suma napęć ocku jes róna eru n k k u u u u u u u u eysancja asępca ) połącene seregoe as as Ogólne dla połącena seregoego n reysancj n as k k
5 5 eysancja asępca ) połącene rónoległe Ogólne dla połącena rónoległego n reysancj as n k k as as n k k as eysancja asępca ) połącene rónoległe k k as as 5 Delnk napęca
6 6 6 Delnk prądu as 7 Preksałcene gada-rójką 8 Preksałcene rójką-gada
7 Pryrądy pomaroe ) Pomar napęca Wolomer dealny en Wolomer recysy oserane akresu pomaroego 9 p n p (n ) p Pryrądy pomaroe ) Pomar prądu mperomer dealny en = mperomer recysy oserane akresu pomaroego b n b b b (n ) Pryrądy pomaroe ) Pomar mocy Waomer dealny * W * P W = = W * * W W PW P 7
8 Zasada superpoycj opły prądó obode, kórym dała n źródeł, jes sumą n ropłyó ymusonych pre każde e źródeł osobna. suane źródeł en u erdene hevenna Dójnk: cęść obodu elekrycnego yróżnonym doma punkam Dójnk pobaony źródeł dójnk pasyny Dójnk aerający źródła dójnk akyny. hevenna (o asępcym źródle napęca) Każdy lnoy dójnk akyny można asąpć źródłem napęca reysancją enęrną Dójnk akyny Doolne łożona seć elekrycna B B erdene hevenna Określane parameró źródła asępcego ) napęce ) reysancja B Dójnk akyny B Dójnk akyny Dójnk akyny Dójnk pasyny B B B B B B B 8
9 Model źródła recysego 5 Źródło dealne Źródło recyse (np. akumulaor) = + Paramery źródła recysego. hevenna + + źródło małej mocy źródło dużej mocy + Model źródła recysego Charakerysyka enęrna źródła recysego 6 Model źródła recysego ónoażność źródeł 7 Charakerysyka enęrna recysego źródła prądoego 9
10 Meoda superpoycj 8 = = Meoda pra Krchhoffa X 5 X 5 rónana lnoo ależne X X 5 7 X X rónana lnoo ależne Meoda pra Krchhoffa Obód aera: L W ęłó, L gałę = L N neadomych prądó Należy sformułoać L N rónań, ym: L W rónań p. Krchhoffa + L N L W rónań p. Krchhoffa aem: L N L W = L WN - lcba ęłó neależnych L L WN = L L W =L ON - lcba ocek neależnych
11 Meoda pra Krchhoffa Prykład : L W = ęły, L = gałęe L N = nenane prądy L WN =L W = rónane p. Krchhoffa L ON =L L WN = rónana p. Krchhoffa Meoda pra Krchhoffa Prykład : 5 5 L W = ęły, L =6 gałę L N =5 nenanych prądó L WN =L W = rónana p. Krchhoffa L N L WN = rónana p. Krchhoffa Meoda poencjałó ęłoych Obód aera L W ęłó Założene: k = (k L W ) L W neadomych poencjałó ęłoych Należy sformułoać: L W rónań p. Krchhoffa L WN
12 Meoda poencjałó ęłoych Prykład: 5 Meoda poencjałó ęłoych Kondukancje łasne ęła Kondukancje ajemne ęłó Prądy źródeł prądoych Prąd asępcy źródła napęcoego 5 Dla ęła o poencjale : 6 6 Meoda poencjałó ęłoych Obód o L W ęłach opsuje rónane: - macer kondukancj; kadraoa o ymare (L W -)(L W -) - ekor poencjałó ęłoych; (L W -) - elemenoy - ekor prądó źródłoych; (L W -) - elemenoy,l L, L, L,L,,,L,, W W W W W W k,k suma kondukancj łasnych ęła k k,m suma kondukancj ajemnych ęłó k m; k,m = m,k ; k,m = gdy ęły k ora m ne są połącone gałęą
13 Meoda poencjałó ęłoych 7 LW L W m suma prądó źródłoych dopłyających do ęła m Dla gałę e źródłem napęcoym: k k k Meoda prądó ockoych 8 o o L W = ęły, L = gałęe L N = nenane prądy L ON =L L WN = = o = o o o = o o o o o Meoda prądó ockoych 9 o6 o o5 o o o7 o Dla ocka prądem o : o o o o o o o o o o o o o o o o eysancje łasne ocka eysancje ajemne ocek
14 Meoda prądó ockoych Obód o L ON ockach neależnych opsuje rónane: o - macer reysancj; kadraoa o ymare L ON L ON o - ekor prądó ockoych; L ON - elemenoy - ekor napęć źródłoych; L ON - elemenoy,,,l,,,l L ON, LON, LON,L kk suma reysancj łasnych ocka k ON ON ON km reysancj ajemnych ocek k m; km = mk ; km = gdy ocka k ora m ne mają pólnej reysancj Meoda prądó ockoych o o o ol ON L ON m suma napęć źródeł napęcoych aarych gałęach ocka m Dla gałę e źródłem prądoym: k k k k k k k Blans mocy obodu P źródeł =P odbornkó P Z Prykład: P Z Z P O P P O P Z PO
15 5 Dopasoane mocoe P =? P = P max P P. hevenna d dp Dopasoane mocoe P. hevenna max P Z P moc źródła: spraność: Z P P 5 Dopasoane mocoe max P P
Podstawy Elektrotechniki i Elektroniki
Podsay lekroechnk lekronk Obód elekrycny Q Q Prąd elekrycny płyne u obode amknęym źródło energ Obód elekrycny Zespół elemenó preodących prąd, aerający prynajmnej jedną drogę amknęą dla prepłyu prądu lemeny
ELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego.
ELEKOEHNK Q Q rąd elerycy płye w obwode amęym Źródło eerg Wyład Obwody eleryce Zespół elemeów prewodących prąd, awerający pryajmej jedą drogę amęą dla prepływ prąd W elemeach obwod elerycego achodą procesy
Elementy i Obwody Elektryczne
Elemeny Obwody Elekryczne Elemen ( elemen obwodowy ) jedno z podsawowych pojęć eor obwodów. Elemen jes modelem pewnego zjawska lb cechy fzycznej zwązanej z obwodem. Elemeny ( jako modele ) mogą meć róŝny
Zasada superpozycji.
Zasada sperpozycj. e e e n rotnk skpony bezźródłoy m j m m j m n j n k ymszena atonomczne, fnkcje kładoe ( obodoe ) Zasada sperpozycj: W obodze SL doolna fnkcja kładoa (prąd lb napęce ) jest smą algebraczną
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z
adane W obwode, o schemace pokaanym na rysnk, oblcyć moc reystora. Dane: 4,5,,. ( ) K: [] G [W] adane Wynacyć stosnek napęć k / w obwode o schemace pokaanym na rysnk. Dane: k, 4 k, 5 k, g,5. g s s g s
Metody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
WYBRANE STANY NIEUSTALONE TRANSFORMATORA
WYBRANE STANY NIEUSTAONE TRANSFORMATORA Analę pracy ransformaora w sanach prejścowych można preprowadć w oparcu o równana dynamk. Rys. Schema deowy ransformaora jednofaowego. Onacmy kerunk prądów napęć
Obwody elektryczne. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy.
San salony san prjścoy Obody lkrycn San salony W obod prąd sałgo Warośc prądó napęć n lgają an W obod prąd nngo Warośc śrdn skcn prądó napęć n lgają an Prądy napęca są fnkcja okrsoy o akj saj cęsolośc,
8. MOC W OBWODZIE PRĄDU SINUSOIDALNEGO
OBWODY I SYGNAŁY 8. MOC W OBWODZIE PRĄD SINSOIDALNEGO 8.. MOC CHWILOWA Jeśl na zacskach dójnka SLS ystępje napęcoe ymszene harmonczne, to prąd zmena sę róneż snsodalne z tą samą plsacją Nech () t m sn
Prąd sinusoidalny. najogólniejszy prąd sinusoidalny ma postać. gdzie: wartości i(t) zmieniają się w czasie sinusoidalnie
Opracował: mgr nż. Marcn Weczorek www.marwe.ne.pl Prąd snsodalny najogólnejszy prąd snsodalny ma posać ( ) m sn(2π α) gdze: warość chwlowa, m warość maksymalna (amplda), T okres, α ką fazowy. T m α m T
Moc wydzielana na rezystancji
Opracoał: mgr inż. Marcin Wieczorek.marie.net.pl Moc ydzielana na rezystancji moc oddaana na odcinku, przez który płynie prąd ipomiędzy końcami którego panuje napięcie, ynosi za pomocą praa Ohma =, = /
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)
Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych Materał lustracyjny do przedmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zelńsk (-9, A10 p.408, tel. 30-3 9) Wrocław 005/6 PĄD ZMENNY
Pomiar mocy i energii
Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko
ROZDZIAŁ 4 I 3 U 2 U 3 U V 180 V U 4 4,6 A. Elektrotechnika podstawowa 57
Eletrotechnia podstaoa 57 OZDZŁ oziązyanie obodó p rądu stałego Ω Ω Ω Ω, Przez roziązanie obodu rozumie się zyle yznaczenie artości prądó bądź napięć gałęzioych, gdy znane są artości parametró elementó
5. Rezonans napięć i prądów
ezonans napęć prądów W-9 el ćwczena: 5 ezonans napęć prądów Dr hab nŝ Dorota Nowak-Woźny Wyznaczene krzywej rezonansowej dla szeregowego równoległego obwodu Zagadnena: Fzyczne podstawy zjawska rezonansu
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 5-37 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 32 321 Fax:
Wykład lutego 2016 Krzysztof Korona. Wstęp 1. Prąd stały 1.1 Podstawowe pojęcia 1.2 Prawa Ohma Kirchhoffa 1.3 Przykłady prostych obwodów
Wykład Obwody prądu stałego zmennego 9 lutego 6 Krzysztof Korona Wstęp. Prąd stały. Podstawowe pojęca. Prawa Ohma Krchhoffa.3 Przykłady prostych obwodów. Prąd zmenny. Podstawowe elementy. Obwody L.3 mpedancja.4
Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
Ą Ż ń ś Ś Ą Ę ś ń ś ń ź ź ś ś ń Ą ś Ę ń ś Ś Ń ź ś ś ń ś ń Ś ń ś ś ń Ą ź Ł ś ń ś Ń ź ń ś ć ś ń ź Ś ś ś ś ś ś ń ść Ś ś ń ń ś ń ść Ś ź ś ś ń Ą ś Ś ś ń ś Ę ś ć ś ś Ś ś ś ć ń ść ś ń ś ś ź Ą ń ń ź Ń ś ś ń Ś
Obwody elektryczne. Stan ustalony i stan przejściowy. Metody analizy obwodów w stanie przejściowym. przejściowym. Stan ustalony i stan przejściowy
Obody elerycze Meody aalzy obodó sae rzejścoym Wyład W obodze rąd sałego Warośc rądó aęć e legają zmae W obodze rąd zmeego Warośc średe secze rądó aęć e legają zmae Prądy aęca są fcjam oresoym o aej samej
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego
Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
ELEMENTY ELEKTRONICZNE
AKADMA GÓNZO-HTNZA M. STANSŁAWA STASZA W KAKOW Wydział nformayki, lekroniki i Telekomunikacji Kaedra lekroniki MNTY KTONZN dr inż. Pior Dziurdzia paw. -3, pokój 43; el. 67-7-0, pior.dziurdzia@agh.edu.pl
Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,
Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.
Dział 1. Opłaty za energię elektryczną od odbiorców finalnych i hurtowych. Energia czynna Opłata Liczba Grupa taryfowa. abonamento odbiorców
MINISTERSTWO GOSPODARKI pl. Trech Kryży 5, 00-507 Wars Na adres jednostk Numer dentyfkacyjny - REGON G - 10.4 m Sprawodane o dałalnośc predsęborst energetycnego jmującego sę presyłem obrotem energą elektrycną
III. Przetwornice napięcia stałego
III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa
. Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa
POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH
ĆWICZEIE R 9 POMIAR MOCY BIEREJ W OBWODACH TRÓJFAZOWYCH 9.. Cel ćiczenia Celem ćiczenia jest poznanie metod pomiaru mocy biernej odbiornika niesymetrycznego obodach trójfazoych. 9.. Pomiar mocy biernej
Ń Ł Ł Ś ć Ż ń Ś ń Ą ś ń ś ń ń ń ś Ą ź ś ś ś ń Ą ś ś Ż ś ś ź Ć ń ś ś ś ń Ą Ą Ą ś Ą ś ś ć ść Ą ś ć ść ś ź Ę Ś ć Ą Ą ś Ą ś ś ść ń Ą ś ś Ś Ś ś Ą ść Ę ść ść Ę ść Ą ń Ą ń Ę ś ś Ś ś ść Ę ś Ą ś ń ś ś Ę ś Ą ś ść
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu
Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych A KŁ A D M A S Z YN E EK T Materał lustracyjny do przedmotu EEKTOTEHNKA Y Z N Y Z H Prowadzący: * (z. ) * M N Dr nż. Potr Zelńsk (-9,
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
MECHANIKA BUDOWLI 13
1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym
Rozdział 4 Instrukcje sekwencyjne
Rozdział 4 Insrukcje sekwencyjne Lisa insrukcji sekwencyjnych FBs-PLC przedsawionych w niniejszym rozdziale znajduje się w rozdziale 3.. Zasady kodowania przy zasosowaniu ych insrukcji opisane są w rozdziale
Prąd elektryczny - przepływ ładunku
Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest
Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny
kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
Podstawy Teorii Obwodów
Podstawy Teorii Obwodów 203 Model obwodowy... 2 Klasyfikacjaobwodów.... 3 Założenia.... 4 Opis obwodów...... 5 Topologiaobwodu........ 6 Rodzaje elementówobwodów.... 7 Konwencje oznaczeńelementówobwodów....
Ć W I C Z E N I E N R E-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIRII PRODUKCJI I TCHNOLOGII MATRIAŁÓW POLITCHNIKA CZĘSTOCHOWSKA PRACOWNIA LKTRYCZNOŚCI I MAGNTYZMU Ć W I C Z N I N R -3 SPRAWDZANI II PRAWA KIRCHHOFFA DLA POJDYNCZGO OBWODU
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Symulacja czasu wychładzania powietrza w przewodzie wentylacyjnym
Por Prybycn Symulacja casu ychłaana pora pro nylacyjnym Symulacja casu ychłaana pora pro nylacyjnym ) Do cgo służy program: Program służy o okrślna sybkośc ychłaana, lub ograna pora nąr prou nylacyjngo
Obwody prądu stałego i zmiennego
Obody prądu stałego i zmiennego Tomasz Słupiński Zakład Fizyki iała Stałego FD W 8.0.07 Praconia Fizyczna i Elektroniczna, dla nżynierii Nanostruktur oraz Energetyki i hemii Jądroej Plan W. Spray organizacyjne
Kier. MTR Programowanie w MATLABie Laboratorium
Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu
DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.
DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
ELEMENTY ELEKTRONICZNE
AKADEMA GÓNCO-HTNCA M. STANSŁAWA STASCA W KAKOWE Wydział nformayki, Elekroniki i Telekomunikacji Kaedra Elekroniki ELEMENTY ELEKTONCNE dr inż. Pior Dziurdzia paw. C-3, pokój 413; el. 617-27-02, pior.dziurdzia@agh.edu.pl
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
AMD. Wykład Elektrotechnika z elektroniką
Andrzej M. Dąbrowski AGH Universiy of Science and Technology Kaedra Elekroechniki i Elekroenergeyki e-mail: amd@agh.edu.pl Wykład Elekroechnika z elekroniką Wykład. Informacje wsępne i organizacyjne, zaliczenie
INSTRUKCJA DO ĆWICZENIA
INSTRKCJA DO ĆWICZENIA Temat: omiary mocy czynnej obodach jednofazoego prądu przemiennego Wiadomości ogólne Moc chiloa, moc czynna, bierna i pozorna Mocą chiloą nazyamy iloczyn artości chiloych napięcia
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
GAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
Podstawy elektrotechniki
Wydzał Mechanczno-Energeyczny Podsawy elekroechnk Prof. dr hab. nż. Jlsz B. Gajewsk, prof. zw. PWr Wybrzeże S. Wyspańskego 7, 50-370 Wrocław Bd. A4 Sara kołowna, pokój 359 Tel.: 7 30 30 Fax: 7 38 38 E-al:
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO
ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz
Automatyzacja punktów rozłącznikowych w głębi sieci średniego napięcia
Auomayzacja punkó rozłącznikoych głębi sieci średniego napięcia Rodzaje auomayzacji 1. Auomayzacja ykorzysująca przekładniki prądoe oraz zabezpieczenia 2. Auomayzacja bez ykorzysania przekładnikó prądoych
latarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól.
T ę Ł ó 499 ż Y ę ą T T ą ść ż B ę ó ąż ę ąż żą ó ę ż ę ś Ś SZ ź ź S żó ż śó ś ść E ó E ń ó ó ó E ó ś ż ó Ł Gó ę ó SZ ś ż ę ę T 6 5 ó ż 6 5 : 685 75 ą ę 8 Ó ńó ę: : U 5 ó ż ó 5 Śą Gó 4 ść ę U żę ż ć Z
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki
W płaszczowo-rurowych wymiennikach ciepła pęczek rur umieszczany jest w płaszczu najczęściej o przekroju kołowym.
Wnikanie ciepła pry opłyie pęcka rur 1. Wdłużny opły pęcka W płascoo-ruroych ymiennikach ciepła pęcek rur umiescany jest płascu najcęściej o prekroju kołoym. Rys. 1-1. Wymiennik płascoo-ruroy, rónoległo
Elektryczność i Magnetyzm
Elektryczność Magnetyzm Wykład: Potr Kossack Pokazy: Paweł Trautman, Aleksander Boguck Wykład dwudzesty szósty 8 czerwca 7 Z poprzednego wykładu Paramagnetyzm Paulego Obserwacja domen magnetycznych, MFM,
Ciepło topnienia lodu
Cepło topnena lodu CELE SPIS TREŚCI Obseracja procesu ymany energ toarzyszącego zmane stanu skupena - topnenu. Pomary zman temperatury ody trakce topnena proadzonej do nej znanej masy lodu. Uzyskane dane
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)
1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE
Praca dwustanowa półprzewodnikowych elementów mocy straty statyczne i dynamiczne.
aca dwusanowa półpewodnkowych elemenów mocy say saycne dynamcne. anysoy mocy w układach enegoelekoncnych anysoy mocy pacują w układach alownków peywacy pądu sałego dwusanowo, współpacują one uądenam o
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
Ćwiczenie 1. BADANIE OBWODÓW LINIOWYCH PRĄDU STAŁEGO
Laboratorium elektrotechniki Ćiczenie. BDN OBWODÓW LNOWYCH ĄD STŁGO odstaoymi elementami chodzącymi skład badanych układó są rezystancje (elementy pasyne) oraz rzeczyiste ódła napięcioe i prądoe, złożone
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B
Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego
cz.2 dr inż. Zbigniew Szklarski
Wykład 1: Prąd sały cz. dr nż. Zbgnew Szklarsk szkla@agh.edu.pl hp://layer.uc.agh.edu.pl/z.szklarsk/ Pasma energeyczne pasma energeyczne - 198 Felx Bloch zblżane sę aomów do sebe powoduje rozszczepene
Gmina Brzeg ul. Robotnicza Brzeg. Biuro Usług Projektowo - Budowlanych. Maciej Boberski ul. Rynek 10/6, Brzeg
Zą: G B 9- B W: W: B Uł P - B M B /, 9- B N S: DOGI POJEKT WYKONAWCZY Z : P Wś B Bż: S DOGOWA T : P ł Wś B - EWIZJA Ię N ń P K P / P: ż M B OPL//PWOM/ P: ż A Kę OPL//POOD/ N W// D N B Uł P - B M B SPIS
Macierze hamiltonianu kp
Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej
Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó
Temat: Operacje elementarne na wierszach macierzy
Temat: Operacje elementarne na erszach macerzy Anna Rajfura Anna Rajfura Operacje elementarne na erszach macerzy n j m n A Typy operacj elementarnych. Zamana mejscam erszy oraz j, ozn.: j. Mnożene ersza
PRZESTRZEŃ WEKTOROWA (LINIOWA)
PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura
LABORATORIUM Z ELEKTRONIKI
LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5
LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU
gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła,
Struktury drewaste rogrywające parametrycne od każdego werchołka pocątkowego różną sę medy sobą kstałtem własnoścam. Stopeń łożonośc struktury może być okreśony pre współcynnk łożonośc L G ++ ) ++ L G
pionowe od kół suwnic, zgodnie z warunków równowagi statecznej (rys. 6.4) dla
6.7. Prkład oblicania słupa pełnościennego esakad podsuwnicowej Pełnościenne słup esakad podsuwnicowej podpierają or podsuwnicowe na kórch pracują suwnice pomosowe naorowe o udźwigach i paramerach echnicnch
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.
Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,
η =, to energia potencjalna wody o masie m podniesionej na wysokość h ( Ewe
WFIS PRACOWNIA FIZYCZNA I II Imę nazsko: 1 TMAT: ROK GRUPA ZSPÓŁ NR ĆWICZNIA Daa konana: Daa oddana: Zro do popra: Daa oddana: Daa zlczena: OCNA C ćczena: Dośadczalna ocena oparcu o zasadę zachoana energ
Mierniki cyfrowe. Mierniki, których wskazania są dyskretną funkcją wartości wielkości mierzonej. Realizowane głównie jako multimetry Zaciski pomiarowe
Przearzanie C/C Przearzanie cyfroo-cyfroe (C/C) realizoane jes poprzez układy cyfroe (od elemenarnych po mikroprocesoroe), kóre operują sygnałami cyfroymi zaróno na ejściu jak i na yjściu. Sygnały cyfroe
Kolokwium z Algebry II R 7 maja 2018
Kolokium z Algery II R 7 maja 208 S T W Zadanie OliczyÊ expa dla A U 2 V œ R 0 Zadanie 2 Niech Q Ídzie formπ kadraoπ okreúlonπ na R 2 2 zorem Q r T GH gdzie œ R 2 2G C D H C 0 0 D ZnaleüÊ jakπú azí R 2
Podstawy Elektroniki dla Elektrotechniki
AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie
Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8
Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji
LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników
Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego:
PAŃSTWOWA WYŻSA SKOŁA AWODOWA W TANOWE NSTYTUT POTEHNNY ABOATOUM METOOG nstrukcja do ykonania ćiczenia laboratoryjnego: "Pomiary impedancji metody techniczne i mostkoe " Tarnó 0 PAŃSTWOWA WYŻSA SKOŁA AWODOWA
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym
ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE
Ą Ą Ż Ż ś Ś ś ń ń Ę Ż Ę ś Ż ś Ę ś ź ń ź ś ś Ó ś ś Ż Ś ń Ę Ę Ą Ż Ę ś ś Ę ś Ę ś ść Ż Ć ź Ę ń Ć Ż Ę ź ś Ź Ż ź ś Ę ś śń Ż ś ń Ż ń Ą Ż Ż Ę ś ź ŻŻ ś ś ń Ż ń Ó ś Ż ń Ż ś Ę ń Ż Ż Ę ń Ż Ę Ż ź ś ń ś Ę ś ś Ż ń Ś
ń ń ś ń ń ś ść ś ś ń ś ś ć ć ć ś ś ś ś ś ść ść ź ść ś ś ś ś ś ś ś ń ść ć ść ść ś ń ź ń ń ś ś ń ś Ś ś ść ś ś ś ś ź ć ź ś ź ś ń ś ść ć ń ś ś ć ś ń ś ź ń ń ś ś ś ś ź ś ź ść ń ś ś ś ć ś ć ś ś ć ś ć ć ś ś ć
Rozruch silnika prądu stałego
Rozruch silnika prądu sałego 1. Model silnika prądu sałego (SPS) 1.1 Układ równań modelu SPS Układ równań modelu silnika prądu sałego d ua = Ra ia + La ia + ea d równanie obwodu wornika d uf = Rf if +
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź