SPRAWD DOŒWIADCZALNIE: CO WSPÓLNEGO Z BOSK PROPORCJ MA MATEMATYKA I INNE DZIEDZINY YCIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "SPRAWD DOŒWIADCZALNIE: CO WSPÓLNEGO Z BOSK PROPORCJ MA MATEMATYKA I INNE DZIEDZINY YCIA"

Transkrypt

1 24. SPRAWD DOŒWIADCZALNIE: CO WSPÓLNEGO Z BOSK PROPORCJ MA MATEMATYKA I INNE DZIEDZINY YCIA 1. Realizowane treœci podstawy programowej Przedmiot Matematyka Biologia Realizowana treœæ podstawy programowej 6. Wyra enia algebraiczne. Uczeñ: 6.7. wyznacza wskazan¹ wielkoœæ z podanych wzorów, w tym geometrycznych i fizycznych 10. Figury p³askie. Uczeñ: rozpoznaje symetraln¹ odcinka i dwusieczn¹ k¹ta rozpoznaje wielok¹ty foremne i korzysta z ich podstawowych w³asnoœci V. Budowa i funkcjonowanie organizmu roœlinnego na przyk³adzie roœliny okrytozal¹ kowej. Uczeñ: 1) identyfikuje (np. na schemacie, fotografii, rysunku lub na podstawie opisu) i opisuje organy roœliny okrytonasiennej (korzeñ, pêd, ³odyga, liœæ, kwiat, owoc) oraz przedstawia ich funkcje 2. Kszta³cone kompetencji kompetencje matematyczne, porozumiewania siê w jêzyku ojczystym. 3. Cele zajêæ blokowych poznanie powszechnoœci wystêpowania z³otego podzia³u w otaczaj¹cym œwiecie, poznanie znaczenia liczb ci¹gu Fibonacciego. 4. Oczekiwane osi¹gniêcia ucznia strona 230 Uczeñ: ³¹czy wiedzê z ró nych przedmiotów, która jest niezbêdna do prawid³owego interpretowania zjawisk i opisu otaczaj¹cego œwiata, wyci¹ga wnioski z przeprowadzonych badañ, bada, pracuj¹c w grupie oraz indywidualnie.

2 5. Wykaz pomocy dydaktycznych Lp. Pomoc dydaktyczna do przeprowadzenia eksperymentu Iloœæ sztuk 1 kwiat stokrotki Jeden dla ucznia 2 ³odyga krwawnika Jedna dla ucznia 3 linijka Jedna na ucznia 4 cyrkiel Jeden na ucznia 6. Proponowany przebieg zajêæ z rozliczeniem czasowym Lp. Opis kolejnych dzia³añ Uwagi do realizacji dla nauczyciela (rysunki, schematy, fotografie, linki do WWW itp.) Czas trwania w min 1 Rozdanie kart pracy uczniom i krótkie objaœnienie przebiegu zajêæ. Ka dy uczeñ otrzymuje kartê. 5 2 Zapoznanie siê uczniów ze wstêpem do zadañ. Praca indywidualna ucznia. 3 3 Obliczenie liczb ci¹gu Fibonacciego. Praca indywidualna ucznia Obliczenie iloœci p³atków. Praca indywidualna ucznia. 5 5 Wyznaczenie z³otej proporcji w schemacie Partenonu. Opis zadania. 6 Sprawdzenie istnienia z³otego podzia³u w rozk³adzie kostek na palcu rêki. Praca indywidualna ucznia. 8 Praca indywidualna ucznia Podzia³ uczniów na grupy 2 osobowe. Mo e byæ zgodnie z tym, jak siedz¹ w ³awkach. 2 8 Sprawdzenie proporcji w profilu g³owy. Praca w grupach 2 osobowych Konstrukcja piêciok¹ta foremnego. Praca indywidualna ucznia Wyznaczenie stosunku d³ugoœci przek¹tnej piêciok¹ta foremnego do d³ugoœci jego boku. 11 Wyznaczenie stosunku, w jakim dziel¹ siê przek¹tne piêciok¹ta foremnego. Praca indywidualna ucznia. 3 Praca indywidualna ucznia Oddanie karty pracy nauczycielowi. Ka dy uczeñ oddaje swoj¹ kartê Wype³nienie przez uczniów ankiety ewaluacyjnej. Indywidualnie 3 14 Wype³nienie karty samooceny. 3 Ca³kowity czas trwania jednostki 90 strona 231

3 7. Obudowa do zajêæ blokowych Wszystkie potrzebne definicje, zdjêcia, opis konstrukcji piêciok¹ta foremnego znajduj¹ siê w karcie pracy ucznia oraz w kryterium oceniania dla nauczyciela. W Internecie znajduje siê bardzo du o informacji o ci¹gu Fibonacciego i z³otej proporcji. Proponowane rozwi¹zania Zadanie 1. Pierwszych piêtnaœcie licz ci¹gu Fibonacciego: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,144, 233, 377, 610 Poprawne podanie wszystkich liczb 1 pkt, Brak odpowiedzi lub b³êdna, (nawet jedna) odpowiedÿ 0 pkt. Zadanie 2. Stokrotki maj¹ zazwyczaj 34, 55 lub 89 p³atków, irysy i lilie 3 p³atki, niektóre odmiany astrów 21 p³atków. Obliczenie iloœci p³atków wraz z odniesieniem odpowiedzi do licz ci¹gu Fibonacciego 1 pkt. Zadanie 3. 5 miesi¹c 5 pêdów 4 miesi¹c 3 pêdy 3 miesi¹c 2 pêdy 2 miesi¹c 1 pêd 1 miesi¹c 1 pêd strona 232 1,2,3,4i5tokolejne miesi¹ce rozrostu krwawnika Narysowanie schematu badanej roœliny 1 pkt. Okreœlenie liczby pêdów, które wyrasta³y w kolejnych miesi¹cach 1 pkt.

4 Zadanie 4. Wykonanie schematycznego rysunku rêki z zaznaczonymi podzia³ami (kostki) 1 pkt. Sprawdzenie proporcji dla obu podzia³ów 0 2 pkt za ka dy po 1 pkt. Zadanie 5. Obliczenia potwierdzaj¹ce z³oty podzia³ w profilu kolegi (kole anki) 1 pkt. Zadanie 6. Za zauwa enie, e w z³otym podziale s¹ ze sob¹ boki prostok¹ta 1 pkt. Za potwierdzenie proporcji obliczeniami 1 pkt. Zadanie 7. Konstrukcja piêciok¹ta 1 pkt. Sprawdzenie stosunku d³ugoœci przek¹tnej do d³ugoœci boku piêciok¹ta potwierdzaj¹cego z³ot¹ proporcjê 1 pkt. Sprawdzenie stosunku, w jakim dziel¹ siê przek¹tne piêciok¹ta, podobnie potwierdzaj¹cego z³ot¹ proporcjê 1 pkt. a b 8. Literatura uzupe³niaj¹ca, zalecana podrêczniki i artyku³y 1. Szczepan Jeleñski, Œladami Pitagorasa strona 233

5 9. Karta pracy ucznia Z³ote ciêcie boska proporcja Matematyka, kosmologia, budowa œwiata roœlin i zwierz¹t, projekty architektoniczne, dzie³a sztuki (rzeÿba, malarstwo), budowa instrumentów muzycznych oraz kompozycje muzyczne we wszystkie tych dziedzinach odnaleÿæ mo emy pewien ci¹g, dziêki któremu wszystkie one nabieraj¹ szczególnych walorów artystycznych. Ci¹g ten nazywamy ci¹giem Fibonacciego. Wyrazy tego ci¹gu obliczamy pos³uguj¹c siê wzorem: F1 1 F2 1 n oznacza kolejne liczby naturalne Fn Fn 1 Fn 2 Z tego wzoru wynika, e pierwszy i drugi wyraz tego ci¹gu s¹ równe 1. Kolejne wyrazy s¹ sum¹ dwóch wyrazów poprzednich. Zgodnie z t¹ definicj¹ trzeci wyraz jest równy 2. Z ci¹giem Fibonacciego zwi¹zane jest boskie ciêcie w³aœnie tak nazwali staro ytni i œredniowieczny matematycy z³oty podzia³. Zgodnie z nim budowano budynki (Partenon grecki), powstawa³y najs³ynniejsze rzeÿby (Apollo Belwederski z II wieku) i co ciekawe, budowa cia³a ludzkiego (dok³adniej cia³a mê czyzn) podlega tak e prawom boskiego ciêcia. Zasadê z³otego ciêcia mo emy zastosowaæ do podzia³u odcinka na dwie czêœci. Stosunek z³otego podzia³u odcinka mo emy wyraziæ s³ownie: Ca³y odcinek tak siê ma do swojej wiêkszej czêœci, jak wiêksza czêœæ do mniejszej. a b a d³ugoœæ d³u szej czêœci odcinka po podziale b d³ugoœæ ca³ego odcinka Ten podzia³ mo emy przedstawiæ w postaci liczby: boska proporcja = 5 1 0, (mniejsza czêœæ do wiêkszej) lub 1, (wiêksza czêœæ do mniejszej) Stosunek kolejnej liczby ci¹gu Fibonacciego do poprzedniej jest w miarê wzrostu liczb ci¹gu, bli szy z³otemu podzia³owi. Zbadaj, powszechnoœæ liczb ci¹gu Fibonacciego oraz boskiej proporcji 1. Wypisz piêtnaœcie pierwszych liczb ci¹gu Fibonacciego: strona 234

6 2. Stokrotki, lilie, irysy i wiele ró nych kwiatów, maj¹ iloœæ p³atków równ¹ jednej z liczb ci¹gu Fibonacciego. Oblicz iloœæ p³atków Twojej stokrotki. Podaj iloœæ p³atków: 3. Zbadaj, czy pêdy krwawnika, roœliny maj¹cej w³aœciwoœci lecznicze, rozrastaj¹ siê w ka - dym miesi¹cu zgodnie z ci¹giem Fibonacciego. Narysuj poni ej schemat roœliny, któr¹ bada³eœ. Okreœl liczbê pêdów, które w Twojej roœlinie wyros³y w kolejnych miesi¹cach: 4. U³o enie kostek na palcu ludzkiej rêki jest zgodne ze z³otym podzia³em. SprawdŸ s³usznoœæ tej tezy w odniesieniu do wybranego palca Twojej rêki. Narysuj schematyczny rysunek. Punktami podzia³u palca bêd¹ charakterystyczne dwa jego zgiêcia. SprawdŸ proporcjê dla tych dwóch podzia³ów oddzielnie. Wykonaj potrzebne obliczenia. 5. Podzia³ ludzkiej g³owy z profilu daje wiele stosunków bliskich boskiej proporcji. SprawdŸ tê proporcjê w profilu Twojego kolegi lub kole anki. Punkt podzia³u umieœæ na wysokoœci nosa, ca³y odcinek to odleg³oœæ od brody do koñca czo³a, miejsca gdzie zaczynaj¹ siê w³osy. Przedstaw swoje obliczenia poni ej: strona 235

7 6. Partenon to œwi¹tynia w Antenach na Akropolu, której wymiary cechuje boska proporcja. ZnajdŸ z³oty podzia³ w poni szym schemacie Partenonu Zapisz swoje spostrze enia i obliczenia. 5 miesi¹c 5 pêdów 4 miesi¹c 3 pêdy 3 miesi¹c 2 pêdy 2 miesi¹c 1 pêd 1 miesi¹c 1 pêd 7. Wykonaj konstrukcje piêciok¹ta: a. Narysuj okr¹g o œrodku S. b. Narysuj œrednicê okrêgu (oznacz j¹ literami A, B) i prostopad³y do niej promieñ. Oznacz go CS. c. Podziel ten promieñ na dwie po³owy. Punkt podzia³u oznacz liter¹ D. d. Po³¹cz ze sob¹ punkty B i D. e. Narysuj dwusieczn¹ k¹ta BDS. f. Narysuj prost¹ prostopad³¹ do œrednicy przechodz¹c¹ przez punkt przeciêcia dwusiecznej ze œrednic¹ okrêgu. Punkt wspólny prostopad³ej i okrêgu oznacz liter¹ E. Odcinek BE jest d³ugoœci¹ boku piêciok¹ta. g. Narysuj piêciok¹t. SprawdŸ, czy: 1. Stosunek d³ugoœci przek¹tnej do d³ugoœci boku piêciok¹ta s¹ w z³otej proporcji. 2. Przek¹tne tego wielok¹ta przecinaj¹ siê w punkcie, który dzieli je w z³oty sposób. Lp. Pomoc dydaktyczna do przeprowadzenia eksperymentu Iloœæ sztuk Cena jednostkowa Cena ³¹czna strona Brak kosztów. Roœliny mog¹ przynieœæ uczniowie. Suma kosztów

8 10. Oszacowanie kosztów pracy Lp. Zadanie Czas wykonania (h) Liczba osób ¹cznie osobogodzin pracy Cena osobogodziny pracy (z³) Koszt 1 2 Suma: strona 237

9 11. Ankieta ewaluacyjna zajêæ Lp. Pytanie do ucznia Tak Raczej tak Trudno powiedzieæ Nie Zdecydowanie nie 1 Czy zajêcia by³y dla Ciebie ciekawe? 2 Czy s³ysza³eœ wczeœniej o z³otym podziale? 3 Czy zna³eœ wczeœniej liczby ci¹gu Fibonnaciego? 4 Czy temat powszechnoœci wystêpowania liczb tego ci¹gu w otaczaj¹cym nas œwiecie jest dla Ciebie ciekawy? 5 Czy lubisz pracowaæ w grupie? 6 Czy dyskusja w trakcie rozwi¹zywania zadañ jest wed³ug Ciebie kszta³c¹ca? 12. Karta samooceny ucznia 1. Samodzielnie obliczy³em(³am) liczby ci¹gu Fibonacciego: TAK NIE 2. Nie mia³em adnego problemu z obliczeniem przyrastaj¹cych w ka dym miesi¹cu pêdów krwawnika: TAK NIE 3. Nie znalaz³em z³otego podzia³u w schemacie Partenonu: TAK NIE 4. Samodzielnie znalaz³em bosk¹ proporcjê w u³o eniu kostek na moim palcu: TAK NIE 5. Nauczy³em(³am) siê konstruowaæ piêciok¹t foremny: TAK NIE 6. To by³a moja pierwsza w yciu prawdziwa konstrukcja: TAK NIE 7. Zdobyt¹ wiedzê wykorzystam do nauki wielu przedmiotów: TAK NIE strona 238

matematyczne i podstawowe kompetencje naukowo-techniczne, informatyczne, uczenia siê.

matematyczne i podstawowe kompetencje naukowo-techniczne, informatyczne, uczenia siê. 16. CO KRYJE TWIERDZENIE PITAGORASA? 1. Realizowane treœci podstawy programowej Przedmiot Realizowana treœæ podstawy programowej Matematyka 10. Figury p³askie. Uczeñ: oblicza pole ko³a, pierœcienia ko³owego,

Bardziej szczegółowo

CZY JEDNYM POSUNIÊCIEM DA SIÊ ROZWI ZAÆ WSZYSTKIE UK ADY DWÓCH RÓWNAÑ LINIOWYCH?

CZY JEDNYM POSUNIÊCIEM DA SIÊ ROZWI ZAÆ WSZYSTKIE UK ADY DWÓCH RÓWNAÑ LINIOWYCH? 47. CZY JEDNYM POSUNIÊCIEM DA SIÊ ROZI ZAÆ SZYSTKIE UK ADY DÓCH RÓNAÑ LINIOYCH? 1. Realizowane treœci podstawy programowej Przedmiot Matematyka Informatyka Realizowana treœæ podstawy programowej 7. Równania.

Bardziej szczegółowo

10. Figury p³askie. Uczeñ: 13) rozpoznaje wielok¹ty przystaj¹ce i podobne

10. Figury p³askie. Uczeñ: 13) rozpoznaje wielok¹ty przystaj¹ce i podobne 20. PROJEKTOWANIE PUZZLI. Realizowane treœci podstawy programowej Przedmiot Matematyka Realizowana treœæ podstawy programowej 0. Figury p³askie. Uczeñ: 3) rozpoznaje wielok¹ty przystaj¹ce i podobne Informatyka

Bardziej szczegółowo

TAJEMNICE UKRYTE W SKLEJONYM PASKU PAPIERU

TAJEMNICE UKRYTE W SKLEJONYM PASKU PAPIERU 9. TAJEMNICE UKRYTE W SKLEJONYM PASKU PAPIERU 1. Realizowane treœci podstawy programowej Przedmiot Realizowana treœæ podstawy programowej Matematyka 10. Figury p³askie. Uczeñ: korzysta z w³asnoœci k¹tów

Bardziej szczegółowo

DOŒWIADCZALNE SPRAWDZANIE JEDNORODNOŒCI BUDOWY RÓ NYCH MATERIA ÓW

DOŒWIADCZALNE SPRAWDZANIE JEDNORODNOŒCI BUDOWY RÓ NYCH MATERIA ÓW DOŒWIADCZALNE SPRAWDZANIE JEDNORODNOŒCI BUDOWY RÓ NYCH MATERIA ÓW 1. Realizowane treœci podstawy programowej Przedmiot Realizowana treœæ podstawy programowej Matematyka 8. Wykresy funkcji. Uczeñ: 1) zaznacza

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

1. kompetencje matematyczne i podstawowe kompetencje naukowo-techniczne, 2. kompetencje informatyczne, 3. umiejêtnoœæ uczenia siê.

1. kompetencje matematyczne i podstawowe kompetencje naukowo-techniczne, 2. kompetencje informatyczne, 3. umiejêtnoœæ uczenia siê. 43. PRAKTYCZNEZASTOSOWANIEZAPISUDWÓJKOWEGOLICZB. 1. Realizowane treœci podstawy programowej Przedmiot Matematyka Informatyka Realizowana treœæ podstawy programowej 1. Liczby wymierne dodatnie. Uczeñ: 1)

Bardziej szczegółowo

Matematyka na szóstke

Matematyka na szóstke Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy VI OPOLE Wydawnictwo NOWIK Sp.j. 013 Spis treœci Wstêp...5 1. Liczby ca³kowite... 7 1. Zadania ró ne... 7. U³amki zwyk³e...

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MMA-R1A1P-021 EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdaj¹cego POZIOM ROZSZERZONY Czas pracy 150 minut 1. Proszê

Bardziej szczegółowo

Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.

Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9. Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona

Bardziej szczegółowo

XXII Krajowa Konferencja SNM. Egzamin gimnazjalny- matematyka

XXII Krajowa Konferencja SNM. Egzamin gimnazjalny- matematyka 1 XXII Krajowa Konferencja SNM Egzamin gimnazjalny- matematyka Beata Bork-Krzywicka, lubuskie@pazdro.com.pl Przedstawiciel Regionalny oficyny Edukacyjnej* Krzysztof Pazdro Streszczenie. Od przedstawiciela

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJ CY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATUR MAJ 2012 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

Próbne zestawy egzaminacyjne

Próbne zestawy egzaminacyjne 66 40 Próbne zestawy egzaminacyjne Zestaw nr 7 Zadanie 1. (0 1) Piasek tworz¹cy sto ek o promieniu podstawy 0,5 m i wysokoœci równej 0,3 m przesypano do zbiornika w kszta³cie walca o œrednicy podstawy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Doœwiadczalne wyznaczenie wielkoœci (objêtoœci) kropli ró nych substancji, przy u yciu ró - nych zakraplaczy.

Doœwiadczalne wyznaczenie wielkoœci (objêtoœci) kropli ró nych substancji, przy u yciu ró - nych zakraplaczy. 26. OD JAKICH CZYNNIKÓW ZALE Y WIELKOŒÆ KROPLI? 1. Realizowane treœci podstawy programowej Przedmiot Matematyka Fizyka Chemia Realizowana treœæ podstawy programowej Uczeñ: 9.1 interpretuje dane przedstawione

Bardziej szczegółowo

Woda i roztwory wodne. kompetencje matematyczne i podstawowe kompetencje naukowo-techniczne,

Woda i roztwory wodne. kompetencje matematyczne i podstawowe kompetencje naukowo-techniczne, 10. Błona z mydlin Biuro Projektu INTERBLOK: ul. Stradomska 10, 31-058 Kraków, Tel: 12-422-26-08 Fax: 12-421-67-45 1. Realizowane treści podstawy programowej Przedmiot Fizyka Realizowana treść podstawy

Bardziej szczegółowo

Witold Bednarek. Konkurs matematyczny w gimnazjum Przygotuj siê sam!

Witold Bednarek. Konkurs matematyczny w gimnazjum Przygotuj siê sam! Witold Bednarek Konkurs matematyczny w gimnazjum Przygotuj siê sam! OPOLE Wydawnictwo NOWIK Sp.j. 2012 Spis treœci Od autora......................................... 4 Rozgrzewka.......................................

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Matematyka na szóstke

Matematyka na szóstke Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy V Opole Wydawnictwo NOWIK Sp.j. 2012 Wstêp...5 1. Liczby naturalne...7 Rachunek pamiêciowy...7 1. Dodawanie i odejmowanie...7

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa:

SCENARIUSZ LEKCJI. Podstawa programowa: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 90 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka z plusem.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

Konkurs matematyczny dla uczniów gimnazjum

Konkurs matematyczny dla uczniów gimnazjum Stanis³aw Zieleñ Konkurs matematyczny dla uczniów gimnazjum Zadania z Wojewódzkiego Konkursu Matematycznego dla uczniów gimnazjów województwa opolskiego z lat 2001 2011 OPOLE Wydawnictwo NOWIK Sp.j. 2012

Bardziej szczegółowo

MATERIA DIAGNOSTYCZNY Z MATEMATYKI

MATERIA DIAGNOSTYCZNY Z MATEMATYKI dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz

Bardziej szczegółowo

Matematyka na szóstke

Matematyka na szóstke Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy IV OPOLE Wydawnictwo NOWIK Sp.j. 2013 Wstêp...5 1. Liczby naturalne...7 Rachunek pamiêciowy...7 1. Liczby a cyfry...7

Bardziej szczegółowo

7.2opisuje korzyœci i niebezpieczeñstwa wynikaj¹ce z rozwoju informatyki i powszechnego dostêpu do informacji

7.2opisuje korzyœci i niebezpieczeñstwa wynikaj¹ce z rozwoju informatyki i powszechnego dostêpu do informacji 15. PORÓWNANIE GÊSTOŒCI KOŒCI PTAKA I SSAKA 1. Realizowane treœci podstawy programowej Przedmiot Matematyka Fizyka Biologia Informatyka Realizowana treœæ podstawy programowej Uczeñ: 1.7) stosuje obliczenia

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Konkurs matematyczny dla uczniów szko³y podstawowej

Konkurs matematyczny dla uczniów szko³y podstawowej Teresa Dziemidowicz Konkurs matematyczny dla uczniów szko³y podstawowej Zadania z Wojewódzkiego Konkursu Matematycznego dla uczniów szkó³ podstawowych województwa opolskiego z lat 2004 2014 OPOLE Wydawnictwo

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MIN-W1A1P-021 EGZAMIN MATURALNY Z INFORMATYKI Czas pracy 90 minut ARKUSZ I MAJ ROK 2002 Instrukcja dla zdaj¹cego 1.

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Przed matur¹ MAJ 2011 r. Czas pracy 170 minut Instrukcja dla pisz¹cego 1. SprawdŸ, czy arkusz zawiera

Bardziej szczegółowo

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. 2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania

Bardziej szczegółowo

Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat

Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat Autor: Danuta Szymczak Klasa II Edukacja: polonistyczna, przyrodnicza, plastyczna, matematyczna, zajęcia komputerowe i techniczne Cel/cele

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

Wymagania edukacyjne z przedmiotu zajęcia techniczne dla klasy 5 szkoły podstawowej

Wymagania edukacyjne z przedmiotu zajęcia techniczne dla klasy 5 szkoły podstawowej Wymagania edukacyjne z przedmiotu zajęcia techniczne dla klasy 5 szkoły podstawowej Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Bezpieczeństwo w szkole

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10)

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) 5.5. Wyznaczanie zer wielomianów 79 gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) gdzie stopieñ wielomianu p 1(x) jest mniejszy lub równy n, przy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 13 stron.

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Joanna Kwatera PO NITCE DO K ÊBKA. czyli jak æwiczyæ sprawnoœæ rachunkow¹ uczniów klas 4 6 szko³y podstawowej OPOLE

Joanna Kwatera PO NITCE DO K ÊBKA. czyli jak æwiczyæ sprawnoœæ rachunkow¹ uczniów klas 4 6 szko³y podstawowej OPOLE Joanna Kwatera PO NITCE DO K ÊBKA czyli jak æwiczyæ sprawnoœæ rachunkow¹ uczniów klas 4 6 szko³y podstawowej OPOLE Wydawnictwo NOWIK Sp.j. 2015 SK AD KOMPUTEROWY Barbara Kwaœnicka PROJEKT OK ADKI Daria

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych KONSPEKT LEKCJI MATEMATYKI Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum TEMAT: Działania łączne na liczbach wymiernych Cele lekcji: Cel ogólny: - utrwalenie wiadomościiumiejętności z działu

Bardziej szczegółowo

18. Jaki wpływ na proces palenia ma zjawisko konwekcji?

18. Jaki wpływ na proces palenia ma zjawisko konwekcji? 18. Jaki wpływ na proces palenia ma zjawisko konwekcji? 1. Realizowane treści podstawy programowej Przedmiot Fizyka Chemia Matematyka Realizowana treść podstawy programowej Energia Uczeń: - opisuje ruch

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.)

Bardziej szczegółowo

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne Wielokąty i okręgi zna twierdzenie Pitagorasa rozumie potrzebę stosowania twierdzenia Pitagorasa umie obliczyć

Bardziej szczegółowo

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MIN-W2A1P-021 EGZAMIN MATURALNY Z INFORMATYKI Instrukcja dla zdaj¹cego Czas pracy 120 minut 1. Proszê sprawdziæ, czy

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY

WOJEWÓDZKI KONKURS FIZYCZNY Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw

Bardziej szczegółowo

Kolorowe przytulanki

Kolorowe przytulanki Innowacja pedagogiczna. Kolorowe przytulanki Autorki : mgr Małgorzata Drozdek mgr Wioletta Szypowska Założenia ogólne: Każdy rodzaj kontaktu ze sztuką rozwija i kształtuje osobowość człowieka. Zajęcia

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014

Bardziej szczegółowo

29. TRZY W LINII CZYLI O POSZUKIWANIU ZWIĄZKÓW

29. TRZY W LINII CZYLI O POSZUKIWANIU ZWIĄZKÓW 129 Anna Pregler 29. TRZY W LINII CZYLI O POSZUKIWANIU ZWIĄZKÓW Cele ogólne w szkole podstawowej: myślenie matematyczne umiejętność korzystania z podstawowych narzędzi matematyki w życiu codziennym oraz

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZJ Y KO PESEL PRÓNY EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY PRZE MTUR MJ 01 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 3). Ewentualny brak zg³oœ przewodnicz¹cemu zespo³u

Bardziej szczegółowo

Raport z przeprowadzenia ankiety dotyczącej oceny pracy dziekanatu POLITECHNIKA CZĘSTOCHOWSKA. WYDZIAŁ INŻYNIERII MECHANICZNEJ i INFORMATYKI

Raport z przeprowadzenia ankiety dotyczącej oceny pracy dziekanatu POLITECHNIKA CZĘSTOCHOWSKA. WYDZIAŁ INŻYNIERII MECHANICZNEJ i INFORMATYKI POLITECHNIKA CZĘSTOCHOWSKA WYDZIAŁ INŻYNIERII MECHANICZNEJ i INFORMATYKI WEWNĘTRZNY SYSTEM ZAPEWNIENIA JAKOŚCI KSZTAŁCENIA Raport z przeprowadzenia ankiety dotyczącej oceny pracy dziekanatu CZĘSTOCHOWA

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ Autor: Urszula Zawada SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SZKOŁY PODSTAWOWEJ Tytuł cyklu: Matematyka wokół nas, Etap edukacyjny: drugi, Przedmiot: matematyka, Komentarz: Materiały do opracowania scenariusza

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

ZAŁĄCZNIK NR 1. Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii

ZAŁĄCZNIK NR 1. Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii ZAŁĄCZNIK NR 1 Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii I. Obszary umiejętności sprawdzane na kaŝdym etapie Konkursu 1. Wykorzystanie i tworzenie informacji. Uczeń: 1) interpretuje

Bardziej szczegółowo

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi

Bardziej szczegółowo

POMIAR STRUMIENIA PRZEP YWU METOD ZWÊ KOW - KRYZA.

POMIAR STRUMIENIA PRZEP YWU METOD ZWÊ KOW - KRYZA. POMIAR STRUMIENIA PRZEP YWU METOD ZWÊ KOW - KRYZA. Do pomiaru strumienia przep³ywu w rurach metod¹ zwê kow¹ u ywa siê trzech typów zwê ek pomiarowych. S¹ to kryzy, dysze oraz zwê ki Venturiego. (rysunek

Bardziej szczegółowo

31. CZY ATWO JEST STWORZYÆ WIARYGODN ANKIETÊ? Realizowana treœæ podstawy programowej. strona 48

31. CZY ATWO JEST STWORZYÆ WIARYGODN ANKIETÊ? Realizowana treœæ podstawy programowej. strona 48 31. CZY ATWO JEST STWORZYÆ WIARYGODN ANKIETÊ? 1. Realizowane treœci podstawy programowej strona 48 Przedmiot Matematyka Biologia Informatyka Realizowana treœæ podstawy programowej 8. Wykresy funkcji. Uczeñ:

Bardziej szczegółowo

,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz.

,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz. 1,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz. Wstęp Program zajęć wyrównawczych został napisany z myślą o uczniach klas

Bardziej szczegółowo

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody. Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie

Bardziej szczegółowo

Szkoła Podstawowa nr 1 w Sanoku. Raport z ewaluacji wewnętrznej

Szkoła Podstawowa nr 1 w Sanoku. Raport z ewaluacji wewnętrznej Szkoła Podstawowa nr 1 w Sanoku Raport z ewaluacji wewnętrznej Rok szkolny 2014/2015 Cel ewaluacji: 1. Analizowanie informacji o efektach działalności szkoły w wybranym obszarze. 2. Sformułowanie wniosków

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

REGULAMIN PRZYJMOWANIA UCZNIÓW DO LICEUM PLASTYCZNEGO W KOLE

REGULAMIN PRZYJMOWANIA UCZNIÓW DO LICEUM PLASTYCZNEGO W KOLE REGULAMIN PRZYJMOWANIA UCZNIÓW DO LICEUM PLASTYCZNEGO W KOLE Podstawa prawna: Rozporządzenie Ministra Kultury i Dziedzictwa Narodowego z dnia 16 czerwca 2011 r. w sprawie warunków i trybu przyjmowania

Bardziej szczegółowo

JAK WYKONAÆ MAPÊ HIPSOMETRYCZN?

JAK WYKONAÆ MAPÊ HIPSOMETRYCZN? 4. JAK WYKONAÆ MAPÊ HIPSOMETRYCZN? * oznaczone zosta³y treœci lekcji, które mo na pomin¹æ przy realizacji g³ównego tematu zajêæ. 1. Realizowane treœci podstawy programowej Geografia Przedmiot Realizowana

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki kl.i

Przedmiotowy system oceniania z matematyki kl.i I Matematyka klasa I - wymagania programowe DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej (K) rozumie rozszerzenie osi liczbowej na liczby ujemne (K) umie porównywać

Bardziej szczegółowo

Lp. Pomoce i narzêdzia Iloœæ sztuk. 1 foliowe worki na zakupy 6. 2 patyczki do szasz³yków 16. 3 taœma klej¹ca 1. 4 plastelina opakowanie 10 wa³eczków

Lp. Pomoce i narzêdzia Iloœæ sztuk. 1 foliowe worki na zakupy 6. 2 patyczki do szasz³yków 16. 3 taœma klej¹ca 1. 4 plastelina opakowanie 10 wa³eczków 8. ŒLIZGIEM BLI EJ 1. Wariant 1 wykonania prototypu Wzoruj¹c siê na adaptacjach organizmów, skonstruuj prototyp urz¹dzenia poruszaj¹cego siê lotem biernym, spe³niaj¹cy za³o enia: pokonuje odleg³oœæ w linii

Bardziej szczegółowo

Spis treœci Uwagi wstêpne L i c z b a n a t u r a l n a T e c h n i k a r a c h u n k o w a

Spis treœci Uwagi wstêpne L i c z b a n a t u r a l n a T e c h n i k a r a c h u n k o w a Spis n treœci Uwagi wstêpne...5 Liczba naturalna 1. Jak¹ jestem liczb¹?... 10 2. Jak¹ liczbê mam na myœli?...12 3. Kto dzwoni?....14 4. Porz¹dkujemy liczby...16 5. Zapisujemy liczby...18 6. Uzupe³nianki...20

Bardziej szczegółowo

Sposób demontażu starych,i montażu nowych zawiasów..

Sposób demontażu starych,i montażu nowych zawiasów.. Sposób demontażu starych,i montażu nowych zawiasów.. Na przestrzeni ostatniego ćwierćwiecza,w meblach produkowanych w Polsce,z dużym prawdopodobieństwem możemy spotkać się z którymś z przedstawionych na

Bardziej szczegółowo

Dane osobowe ucznia / słuchacza

Dane osobowe ucznia / słuchacza Załącznik nr 1 do Uchwały Nr XXXV /355 / 09 Rady Gminy Lubicz z dnia 6 lipca 2009 r. Wniosek do Wójta Gminy Lubicz o przyznanie stypendium szkolnego na okres od 01.09. 2011 r. do 30.06.2012 r. dla ucznia

Bardziej szczegółowo