Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE"

Transkrypt

1 Parametry sygnału sinusoidalnego Sygnały sinusoidalne zwane również harmonicznymi są opisane w dziedzinie czasu następującym wzorem (w opisie przyjęto oznaczenie sygnału napięciowego) : Wielkości występujące w opisie mają następujące nazwy i oznaczenia: - wartośd chwilowa napięcia - wartośd maksymalna napięcia zwana również amplitudą - faza początkowa napięcia odpowiadająca chwili t=0 - kąt fazowy napięcia w chwili t - częstotliwośd mierzona w hercach (Hz) - okres przebiegu sinusoidalnego - pulsacja mierzona w radianach na sekundę. Wartości chwilowe sygnałów oznaczad będziemy małą literą a wartości maksymalne, skuteczne i wielkości operatorowe dużą. Rysunek na slajdzie przedstawia przebieg sygnału sinusoidalnego napięcia z oznaczeniami poszczególnych jego parametrów. Oś odciętych ma podwójne oznaczenie: czasu oraz fazy (aktualny kąt fazowy). Przebiegi zmienne w czasie dobrze charakteryzuje wartośd skuteczna. Dla przebiegu okresowego o okresie jest ona definiowana w postaci Łatwo udowodnid, że wartośd skuteczna przebiegu okresowego nie zależy od wyboru fazy początkowej. W przypadku przebiegu sinusoidalnego napięcia jest równa a w przypadku prądu sinusoidalnego przy założeniu Dla sygnału sinusoidalnego wartośd skuteczna jest więc razy mniejsza niż jego wartośd maksymalna. Należy zauważyd, że napięcie stałe jest szczególnym przypadkiem sygnału sinusoidalnego, dla którego częstotliwośd jest równa zeru a wartośd chwilowa jest stała i równa. Jest to ważna właściwośd, gdyż dzięki temu metody analizy obwodów o wymuszeniu sinusoidalnym mogą mied zastosowanie również do wymuszeo stałych. Dla sygnału stałego wartośd maksymalna i skuteczna są sobie równe i równają się danej wartości stałej Metoda symboliczna liczb zespolonych analizy obwodów RLC w stanie ustalonym Analiza obwodów zawierających elementy RLC przy wymuszeniu sinusoidalnym napotyka na pewne trudności związane z wystąpieniem w opisie cewki i kondensatora równao różniczkowych. Trudności te łatwo jest pokonad wstanie ustalonym. Stanem ustalonym obwodu nazywad będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią na wymuszenie sinusoidalne jest odpowiedź również sinusoidalna o tej samej częstotliwości chod o różnej amplitudzie i fazie początkowej. Dla stanu ustalonego obwodu wprowadzona zostanie metoda liczb zespolonych, zwana również metodą symboliczną, sprowadzająca wszystkie operacje różniczkowe i całkowe do działao algebraicznych na liczbach zespolonych. 1/8

2 Dla wprowadzenia tej metody przyjmijmy, że rozważany jest obwód szeregowy RLC zasilany ze źródła napięcia sinusoidalnego Z prawa napięciowego Kirchhoffa wynika następujący związek między napięciami elementów tego obwodu Biorąc pod uwagę podstawowe zależności definicyjne dla rezystora, cewki i kondensatora Otrzymuje się Ostatni wzór przedstawia sobą równanie różniczkowo-całkowe opisujące zależności między wartościami chwilowymi prądu i napięcia wymuszającego w obwodzie. Pełne rozwiązanie tego równania sprowadza się do wyznaczenia dwu składowych prądu, stanowiących odpowiedź obwodu w stanie ustalonym i stanie przejściowym: 1. składowej ustalonej, której charakter zmian w czasie jest taki sam jak sygnału wymuszającego (przy sinusoidalnym wymuszeniu odpowiedź również sinusoidalna o tej samej częstotliwości); jest to stan który zostanie osiągnięty przez obwód po czasie teoretycznie dążącym do nieskooczoności. 2. składowej przejściowej odpowiadającej różnicy między rozwiązaniem rzeczywistym równania różniczkowego a składową ustaloną. Składowa przejściowa zanika zwykle szybko w czasie i pozostaje jedynie składowa ustalona. Stan po zaniknięciu składowej przejściowej nazywamy stanem ustalonym obwodu. Składową ustaloną prądu w obwodzie można otrzymad nie rozwiązując równania różniczkowego opisującego ten obwód a korzystając jedynie z metody liczb zespolonych (metody symbolicznej). Istotnym elementem tej metody jest zastąpienie przebiegów czasowych ich reprezentacją zespoloną. Przyjmijmy, że prąd oraz napięcie zastąpione zostały przez wektory wirujące w czasie, odpowiednio oraz określone w postaci Po zastąpieniu wartości czasowych prądu i napięcia poprzez ich reprezentację w postaci wektorów wirujących otrzymuje się 2/8

3 Po wykonaniu operacji różniczkowania i całkowania równanie powyższe przyjmuje postad Oznaczmy przez wartośd skuteczną zespoloną napięcia, a przez wartośd skuteczną zespoloną prądu. Wtedy równanie można zapisad w następującej postaci obowiązującej dla wartości skutecznych zespolonych Wielkośd odpowiada napięciu skutecznemu zespolonemu na rezystorze, reprezentuje wartośd skuteczną zespoloną napięcia na cewce, odpowiada wartości skutecznej zespolonej napięcia na kondensatorze. Wszystkie napięcia i prąd w obwodzie są wartościami zespolonymi. Można zauważyd prostą analogię do równania opisującego obwód rezystancyjny. W tym celu wprowadzimy uogólnienie rezystancji w postaci pojęcia impedancji zespolonej wiążącej wartości skuteczne prądu i napięcia na elementach R, L, C w stanie ustalonym przy wymuszeniu sinusoidalnym. Z ostatnich równao na podstawie prawa Ohma można napisad następujące przyporządkowania: Dla rezystora rezystora) Dla cewki (impedancja jest równa rezystancji tego (impedancja zależną liniowo od częstotliwości) Dla kondensatora jest liczbą zespoloną (urojoną) (impedancja jest także zespolona i odwrotnie proporcjonalna do częstotliwości) nosi nazwę reaktancji indukcyjnej, powyższym można napisad. a reaktancji pojemnościowej. W związku z 3/8

4 Wprowadzając oznaczenie wypadkowej impedancji obwodu przez, gdzie zależnośd prądowo-napięciową w obwodzie szeregowym RLC można zapisad w postaci, znanej jako prawo Ohma dla wartości symbolicznych lub gdzie moduł prądu i kąt fazowy prądu dane są wzorami Faza początkowa wektora napięcia wymuszającego jest tu oznaczona przez, a faza początkowa wektora prądu przez Różnica faz nazywana jest przesunięciem fazowym prądu względem napięcia i oznaczana literą, przy czym Kąt ten jest uważany za dodatni dla obwodów o charakterze indukcyjnym a za ujemny dla obwodów o charakterze pojemnościowym. Zauważmy, że wartościom skutecznym zespolonym prądu oraz napięcia można przyporządkowad funkcję czasu. Biorąc pod uwagę, że przejście z przebiegu czasowego na opis zespolony (symboliczny) odbywa się według schematu powrót z wartości zespolonej do postaci czasowej polega na pomnożeniu modułu wartości skutecznej przez i uzupełnieniu wyniku przez dopisanie funkcji Stąd przykładowo, jeśli wynik zespolony prądu dany jest w postaci, to odpowiadający mu przebieg czasowy ma postad Istnieje również ścisła analogia między konduktancją (odwrotnośd rezystancji) a odwrotnością impedancji. Analogicznie do pojęcia konduktancji w obwodzie rezystancyjnym wprowadza się pojęcie admitancji zespolonej dla obwodu RLC. Admitancja jest definiowana jako odwrotnośd impedancji. Oznaczana jest najczęściej literą, przy czym. Admitancja kondensatora jest równa, cewki natomiast admitancja rezystora jest równa jego konduktancji. wartości skutecznych zespolonych Przy zastąpieniu wartości rzeczywistych przez wartości zespolone równania różniczkowe zostały zastąpione przez równania algebraiczne. Nastąpiła zatem algebraizacja równao opisujących obwód. Wszystkie elementy RLC traktowane są w podobny sposób i reprezentowane przez swoje impedancje symboliczne w postaci zespolonej. Impedancje zespolone mogą byd interpretowane jako uogólnienie rezystancji. Dla obwodu reprezentowanego w postaci symbolicznej obowiązują prawa Kirchhoffa, które mają identyczną postad jak dla obwodu rzeczywistego, z tą różnicą, że zamiast wielkości chwilowych używa się wielkości zespolonych. Prawo prądowe Kirchhoffa Suma algebraiczna prądów zespolonych w dowolnym węźle obwodu elektrycznego jest równa zeru, co zapiszemy w postaci. W równaniu tym wszystkie prądy dane są w postaci zespolonej. Prawo napięciowe Kirchhoffa Suma algebraiczna napięd zespolonych w każdym oczku obwodu elektrycznego jest równa zeru, co zapiszemy w postaci W równaniu tym symbolem oznaczono wszystkie napięcia w postaci zespolonej, zarówno na gałęziach pasywnych jak i źródłowych obwodu. Sposób sumowania (znak plus lub minus) zarówno prądów jak i napięd jest taki sam jak w przypadku operowania wartościami rzeczywistymi. 4/8

5 Podsumowując, na metodę symboliczną analizy obwodu składa się Przejście z przebiegu czasowego na opis zespolony (symboliczny) dla źródeł prądu i napięcia Reprezentacja elementów poprzez ich impedancje zespolone Zastosowanie praw Kirchoffa dla wartości symbolicznych Rozwiązanie układu równao w postaci skutecznej zespolonej Ewentualnie (w miarę potrzeb) przedstawienie rozwiązania w postaci czasowej (odwrotna operacja) do wykonanej w punkcie pierwszym). Impedancje obwodu RLC: Wartości chwilowe prądów i napięcia otrzymuje się przechodząc z wartości zespolonych na postad rzeczywista opisaną funkcją sinusoidalną według schematu przedstawionego na slajdzie 13. 5/8

6 Wykresy wektorowe obwodu W przypadku analizy obwodów RLC w stanie ustalonym ważnym pojęciem jest wykres wektorowy, zwany również wykresem wskazowym, przedstawiający w sposób orientacyjny zależności między poszczególnymi wektorami prądu i napięcia w obwodzie. Jak wiadomo każdej liczbie zespolonej można przyporządkowad reprezentację geometryczną w postaci odpowiedniej zależności wektorowej przedstawionej na płaszczyźnie, w której oś pozioma odpowiada części rzeczywistej a oś pionowa części urojonej liczby zespolonej. Konstruując wykres należy pamiętad, że pomnożenie wektora przez operator równoważne jego obrotowi o kąt 90 stopni przeciwnie do ruchu wskazówek zegara gdyż operator j jest równy Podobnie pomnożenie wektora przez operator jest równoważne jego obrotowi o kąt 90 stopni zgodnie z ruchem wskazówek zegara gdyż operator -j jest równy Pomnożenie wektora przez liczbę rzeczywistą nie zmienia pozycji wektora w przestrzeni o ile jest to liczba dodatnia lub zmienia zwrot wektora o jeśli liczba ta jest ujemna. Z zależności prądowo-napięciowych dla rezystora jest oczywiste, że, co wobec rzeczywistych, dodatnich wartości R oznacza, że napięcie na rezystorze jest w fazie z prądem tego rezystora. Przedstawione powyżej zasady konstruowania przesunięd kątowych między wektorami prądu i napięcia umożliwiają podanie ogólnych zasad postępowania przy konstruowaniu wykresu wektorowego dla dowolnego obwodu RLC. Dla cewki obowiązuje co oznacza, że napięcie na cewce wyprzedza prąd o kąt. Podobnie napięcie na kondensatorze opóźnia się względem swojego prądu o kąt, gdyż 6/8

7 Wykres wektorowy z definicji uwzględnia przede wszystkim przesunięcia kątowe między poszczególnymi wektorami. Relacje ilościowe (długości) poszczególnych wektorów są mniej istotne i zwykle uwzględniane w sposób jedynie przybliżony. Wykres rozpoczyna się zwykle od kooca obwodu (gałęzi najdalej położonej od źródła). Jeśli gałąź jest połączeniem szeregowym elementów rozpoczynamy od prądu tej gałęzi, a w przypadku połączenia równoległego od napięcia. Następnie rysuje się na wykresie na przemian napięcia i prądy kolejnych gałęzi, dochodząc w ten sposób do źródła. Budowę wykresu kooczy się w momencie dojścia do prądu i napięcia źródłowego obwodu. Relacja wektora prądu źródłowego względem napięcia decyduje o charakterze obwodu. Jeśli napięcie wypadkowe (źródłowe) wyprzedza prąd wypadkowy lub inaczej mówiąc prąd opóźnia się względem napięcia - obwód ma charakter indukcyjny. Jeśli natomiast napięcie opóźnia się względem prądu lub prąd wyprzedza napięcie - mówimy o charakterze pojemnościowym obwodu. Jeśli nie istnieje przesunięcie fazowe prądu wypadkowego względem napięcia (kąt fazowy równy zeru) mówimy o tzw. stanie rezonansu obwodu lub po prostu char. rezyst. danego obwodu. Charakter rezystancyjny obwodu może powstad nawet przy istnieniu w obwodzie indukcyjności i pojemności w przypadku gdy następuje kompensacja odpowiednich składowych indukcyjnej i pojemnościowej wektorów. Sposób postępowania przy sporządzaniu wykresów wektorowych przedstawimy na przykładzie konkretnego obwodu. Kolejny przykład ilustruje sposób konstrukcji wykresu wektorowego prądów i napięd dla obwodu RLC o strukturze przedstawionej na rysunku: Konstrukcja wykresu wektorowego Na rysunku obok i animacji poniżej przedstawiono wykres wektorowy prądów i napięd w obwodzie RLC z z porzedniego slajdu Sporządzanie wykresu rozpoczyna się od prądu dobudowując kolejno wektory napięd i prądów gałęzi przesuwając się w stronę źródła:. Jak widad obwód ma charakter pojemnościowy, gdyż napięcie wypadkowe opóźnia się względem odpowiadającego mu prądu 7/8

8 Zadania sprawdzające Zadanie 2.1: Wyznaczyd prądy i napięcia w obwodzie przedstawionym na rysunku. Przyjąd następujące wartości elementów:. Rozwiązanie Wartości symboliczne elementów obwodu: Impedancje obwodu: Prądy i napięcia w obwodzie: Zadanie 2.2 Sporządzid wykres wektorowy prądów i napięd w obwodzie przedstawionym na rysunku Rozwiązanie Wykres rozpoczyna się od prądu, dodając kolejno napięcia na i, napięcie, prąd, prąd oraz napięcie. Etapy tworzenia pełnego wykresu wektorowego przedstawiono na rysunku. Kąt fazowy przesunięcia prądu względem napięcia zasilającego jest równy. Biorąc pod uwagę, że napięcie wyprzedza prąd obwód ma charakter indukcyjny. 8/8

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem: Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek: Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 5. Badanie rezonansu napięć w obwodach szeregowych RLC. Rzeszów 206/207 Imię i nazwisko Grupa Rok studiów Data wykonania

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA,

LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA, Wykład VIII LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA, ROZWIĄZYWANIA UKŁADÓW ROZGAŁĘZIONYCH PRĄDU PRZEMIENNEGO POSTACI LICZB ZESPOLONYCH Wskazy prądu i napięcia:

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Przyjmuje się umowę, że:

Przyjmuje się umowę, że: MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

2. REZONANS W OBWODACH ELEKTRYCZNYCH

2. REZONANS W OBWODACH ELEKTRYCZNYCH 2. EZONANS W OBWODAH EEKTYZNYH 2.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód elektryczny,

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 9 OBWODY RC: 9.1. Reaktancja pojemnościowa 9.2.

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej NWERSYTET RZESZOWSK Pracownia Technik nforatycznych w nżynierii Elektrycznej Ćw. 4 Badanie obwodów szeregowych R Rzeszów 016/017 ię i nazwisko Grupa Rok studiów Data wykonania Podpis Ocena Badanie obwodów

Bardziej szczegółowo

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

Metody analizy obwodów w stanie ustalonym

Metody analizy obwodów w stanie ustalonym Metody analizy obwodów w stanie ustalonym Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego. 1 DWICZENIE 2 PRZENOSZENIE IMPULSÓW PRZEZ CZWÓRNIKI LINIOWE 2.1. Cel dwiczenia Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska pokój: 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 10.00-10.45 Thursday: 10.30-11.15 Literatura podstawowa: 1. Podstawy

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy

Bardziej szczegółowo

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA Sprawdzanie prawa OHMA i praw KHHOFFA -0 Dr inŝ. Tadeusz Mączka. Sprawdzanie prawa OHMA i praw KHHOFFA. Wstęp: kłady elektryczne, moŝna traktować jako zbiory obwodów elektrycznych, przez które przepływają

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Lekcja 14. Obliczanie rozpływu prądów w obwodzie

Lekcja 14. Obliczanie rozpływu prądów w obwodzie Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL 8. ELEMENTY ZECZYWISTE W OBWODACH PĄDU ZMIENNEO Poznane przez nas idealne elementy obwodów elektrycznych są wyidealizowanymi, uproszczonymi odwzorowaniami obiektów rzeczywistych. Prostota ich matematycznego

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Przygotowanie do gzaminu Potwierdzającego Kwalifikacje Zawodowe Powtórzenie materiału Opracował: mgr inż. Marcin Wieczorek Obwód elektryczny zespół połączonych ze sobą elementów, umożliwiający zamknięty

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 10 OBWODY RC: 10.1. Impedancja i kąt fazowy w

Bardziej szczegółowo

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym 1. Definicja sprzężenia zwrotnego Sprzężenie zwrotne w układach elektronicznych polega na doprowadzeniu części sygnału wyjściowego z powrotem do wejścia. Częśd sygnału wyjściowego, zwana sygnałem zwrotnym,

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny POTEHNKA WOŁAWSKA, WYDZAŁ PPT - ABOATOM Z PODSTAW EEKTOTEHNK EEKTONK Ćwiczenie nr. Dwójniki, rezonans elektryczny el ćwiczenia: Podstawowym celem ćwiczenia jest zapoznanie studentów właściwościami elementów

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

5. POMIARY POJEMNOŚCI I INDUKCYJNOŚCI ZA POMOCĄ WOLTOMIERZY, AMPEROMIERZY I WATOMIERZY

5. POMIARY POJEMNOŚCI I INDUKCYJNOŚCI ZA POMOCĄ WOLTOMIERZY, AMPEROMIERZY I WATOMIERZY 5. POMY POJEMNOŚC NDKCYJNOŚC POMOCĄ WOLTOMEY, MPEOMEY WTOMEY Opracował:. Czajkowski Na format elektroniczny przetworzył:. Wollek Niniejszy rozdział stanowi część skryptu: Materiały pomocnicze do laboratorium

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ELEKTROTECHNIKA 2. Kod przedmiotu: Eef 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka

Bardziej szczegółowo

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO mgr inż. Grzegorz Strzeszewski ZespółSzkółnrwWyszkowie 01 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd. 10-1 dodruk (PWN). Warszawa, 2017 Spis treści Przedmowa 13 1. Wiadomości wstępne 15 1.1. Wielkości i jednostki używane w elektrotechnice 15 1.2.

Bardziej szczegółowo

Ćwiczenie 5 Badanie wpływu asymetrii napięcia zasilającego na pracę sieci

Ćwiczenie 5 Badanie wpływu asymetrii napięcia zasilającego na pracę sieci Ćwiczenie 5 - Badanie wpływu asymetrii napięcia zasilającego na pracę sieci Strona 1/9 Ćwiczenie 5 Badanie wpływu asymetrii napięcia zasilającego na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo