Rysunek 1. Piramida obrazów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rysunek 1. Piramida obrazów"

Transkrypt

1 ZASTOSOWANIE PIRAMIDY OBRAZÓW DO ODSZUMIANIA MGR IN. G. SARWAS 1. Wst p Otaczaj cy nas ±wiat ma struktur wieloskalow. To co widzimy zale»y od tego w jakim powi kszeniu oraz rozdzielczo±ci ogl damy dany obraz. Aby komputer mógª dokona analizy obrazu cyfrowego, musi dokona pewnej dekompozycji, która zachodzi tak»e w mózgu czªowieka, podczas analizy zarejestrowanego obrazu. Czªowiek, analizuj c dany obraz, zaczyna od rozpoznania rzeczy jak najbardziej ogólnych, a ko«czy na szczegóªach. Najpierw analizuje tªo, okre±la ilo± przedmiotów, a nast pnie przechodzi do analizy ksztaªtów, kolorów i faktur. Dla komputera obraz cyfrowy to nic innego jak macierz punków. Aby mógª go podzieli na pewne obszary musi tak»e zacz od zbiorów jednorodnych (tªa), by nast pnie doª czy wszystkie elementy znajduj ce si w pa±mie wysokich cz stotliwo±ci (szumy, tekstury). Taki sposób post powania staª si inspiracj do stworzenia piramidy obrazów, która dokonywaªaby wst pnej dekompozycji obrazu poprzez zmian jego rozdzielczo±ci i wydobycie z niego elementów jak najbardziej ogólnych, by nast pnie mo»na byªo zaj si analiz bardziej szczegóªow. 2. Zastosowanie piramidy obrazów do odszumiania Piramida obrazu jest zbiorem obrazów w ró»nej rozdzielczo±ci. Poprzez redukcj rozdzielczo±ci w obrazie wej±ciowym, otrzymuje si struktur hierarchiczn, w której jasno± ka»dego piksela znajduj cego si na danym poziomie piramidy jest funkcj pewnej liczby punktów z poziomu ni»szego. Rysunek 1. Piramida obrazów Ilo± poziomów piramidy ograniczona jest przede wszystkim poprzez rozmiar obrazu wej±ciowego. Kolejne poziomy mog by uzyskiwane, a» do otrzymania poziomu skªadaj cego si z jednego piksela. Nie ma jednak potrzeby tworzenia, a» tak wysokiej piramidy, poniewa» obraz skªadaj cy si z jednego piksela nie daje»adnej mo»liwo±ci analizy, dlatego te» ilo± poziomów okre±lana jest wcze±niej i zale»y od zastosowania konstrukcji piramidalnej. Date: Luty 17,

2 2 MGR IN. G. SARWAS Jak wida na rysunku 1 na samym dole piramidy znajduje si obraz oryginalny o najwi kszej rozdzielczo±ci. Obraz ten zawiera elementy zarówno o niskiej, jak i o wysokiej cz stotliwo±ci. Wyra¹nie widoczne s tekstury, wszelkie detale oraz szum. Podczas tworzenia kolejnych poziomów piramidy, oprócz redukcji liczby pikseli, cz sto stosuje si tak»e rozmaite ltry. W wyniku przeksztaªce«piramidalnych usuwa si informacje o szczegóªach obrazu. Ka»dy nast pny poziom piramidy b dzie wi c zawieraª elementy bardziej ogólne, znajduj ce si w pa±mie niskich cz stotliwo±ci. B d to jednorodne, rozmazane obszary Rodzaje piramidy obrazów. Poszczególne piramidy ró»ni mi dzy sob sposób otrzymywania kolejnego poziomu. Ze wzgl du na rodzaj przeksztaªcenia, daj cy obraz o ni»szej rozdzielczo±ci, mo»na wyró»ni piramidy liniowe i nieliniowe. Najcz ±ciej stosowanymi piramidami niefalkowymi s : (1) Liniowe: (a) Piramida u±redniaj ca (b) Piramida Gaussa (2) Nieliniowe: (a) Piramida oparta na metodzie najbli»szego s siada (ang. nearest neighbour) (b) Piramida medianowa (c) Piramida morfologiczna Rysunek 2. Schemat dekompozycji i rekonstrukcji piramidalnej 2.2. Dekompozycja piramidalna obrazu. Dowoln dekompozycj piramidaln obrazu f mo»na opisa za pomoc algorytmu [1]: (1) Niech g k = f dla k = 0. (2) Poddanie obrazu g k P rzeksztaªceniu P iramidalnemu w celu uzyskania nast pnego poziomu piramidy g k+1 : g k+1 = REDUKCJA(g k ) (3) Interpolacja obraz g k+1 w celu powrotu do rozmiaru obrazu z poziomu ni»szego: g k = INT ERP OLACJA(g k+1 ) (4) Wyliczenie macierzy wspóªczynników, zdeniowanej jako: ε k = g k g k

3 PIRAMIDA OBRAZÓW 3 (5) Niech k = k + 1. Je±li k < S, gdzie S - ilo± poziomów piramidy, id¹ do kroku 2. Macierz wspóªczynników jest ró»nic pomi dzy obrazem z ni»szego poziomu piramidy, a obrazem z poziomu wy»szego, zinterpolowanym do rozmiarów obrazu wej±ciowego. Macierz ta nie mo»e by jednak nazwana obrazem, poniewa» obrazem nazywamy macierz dwuwymiarow o wspóªczynnikach wi kszych b d¹ równych zero. W przypadku dekompozycji piramidalnej nie ma mo»liwo±ci okre±lenia, czy macierz wspóªczynników b dzie obrazem. Wi kszo± przeksztaªce«piramidalnych nie jest bowiem antyekstensywna. Sposobem na otrzymanie obrazu ró»nicowego z macierzy wspóªczynników jest policzenia jej warto±ci bezwzgl dnej O ró»nicowy = ε k 1. Obraz taki znakomicie przedstawia wszystkie elementy, które zostaªy usuni te z obrazu w procesie powstawania piramidy. Ró»nice te nie wynikaj jednak tylko z transformaty piramidalnej ale s tak»e zale»ne od rodzaju interpolacji obrazu, która dopasowuj cej jego rozmiar do wykonania operacji odejmowania. Obraz taki pozwala znale¹ sposoby zastosowa«ró»nych przeksztaªce«piramidalnych. Nale»y jednak pami ta,»e wykonanie rekonstrukcji przy pomocy obrazu ró»nicowego mo»e doprowadzi do powstania artefaktów Rekonstrukcja obrazu. Jak wida na rysunku 2 wystarczaj c wiedz do rekonstrukcji obrazu g S, znajduj cego si na S-owym poziomie piramidy, do obrazu oryginalnego, jest dany obraz oraz macierze wspóªczynników ε k, gdzie k {0,..., S 1}. Rekonstrukcj obrazu mo»na przedstawi za pomoc algorytmu [1]: (1) Niech g k = g S, dla k = S (2) Interpolacja obrazu z poziomu g k do wielko±ci obrazu na poziomie k 1 : g k 1 = INT ERP OLACJA(g k ) (3) Wyliczenie obrazu na poziomie piramidy k 1 : g k 1 = g k 1 + ε k 1 (4) Niech k = k 1. Je±li k > 0 id¹ do kroku 2. Aby mo»liwy byª powrót z dowolnego poziomu piramidy, do obrazu oryginalnego nale»y w procesie restauracji u»y takiego samego algorytmu interpolacji, jak ten który zostaª u»yty w procesie dekompozycji Zmodykowany algorytm dekompozycji. Inn metod znalezienia obrazu ró»nicowego jest niewielka modykacja algorytmu dekompozycji i podziaª przeksztaªcenia piramidalnego na dwie operacje. Pierwasz operacj jest przeltrowanie obrazu ltrem zale»nym od rodzaju piramidy. W wyniku otrzymuje si obraz b d cy obrazem przeltrowanym lecz o rozmiarze równym rozmiarowi obrazu wej±ciowego. Nast pnie posiadaj c dwa obrazy tych samych rozmiarów mo»na dokona odejmowania otrzymuj c macierz wspóªczynników. Przej±cie do nast pnego poziomu piramidy wi»e si z u»yciem piramidy opartej na metodzie najbli»szego s siada, czyli wybraniu co drugiego piksela w wierszu i kolumnie. W przypadku zmodykowanego algorytmu dekompozycji, macierz wspóªczynników jest obrazem ró»nicowym pod warunkiem,»e ltr u»yty w tym procesie byª antyekstensywny. Filtrem takim jest ltr otwarcia u»ywany w piramidzie morfologicznej. Podstawow wad zastosowania zmodykowanego algorytmu dekompozycji jest niedokªadno± rekonstrukcji, wynikaj ca z faktu, i» macierz wspóªczynników nie uwzgl dnia bª du wprowadzonego poprzez interpolacj obrazu.

4 4 MGR IN. G. SARWAS 2.5. Algorytm odszumiania. Dziaªanie algorytmu odszumiaj cego opiera si o podwójne progowanie macierzy wspóªczynników. Poprzez odpowiednie dobranie operacji REDU KCJI i IN T ERP OLACJI, w procesie dekompozycji piramidalnej, otrzymuje si macierze wspóªczynników zawieraj ce informacje o detalach obrazu oraz szum, który jest tak»e skªadnikiem wysokocz stotliwo±ciowym. Zaszumione piksele obrazu ró»nicowego odznaczaj si wysok luminancj. Poprzez u»ycie mi kkiego progowania mo»na z macierzy wspóªczynników wyeliminowa informacj o szumie, dzi ki czemu w procesie rekonstrukcji obrazu zostan przywrócone jego detale Algorytm progowania macierzy wspóªczynników. p ε k (i, j) p ε k (i, j) = p ε k (i, j) p ε k (i, j) w innym przypadku, gdzie p-próg W przypadku odszumiania obrazu wystarczy wykona dekompozycj piramidaln o wysoko±ci 3. Wy»sze poziomy nie zawieraj informacji o szumie. Dziaªanie algorytmu mo»na poprawi poprzez zró»nicowane progowanie. Im macierz wspóªczynników jest na wy»szym poziomie tym próg mo»e by wi kszy Filtr piramidalny. Bardzo dobre wªasno±ci ltrowania obrazu posiada ltr w dekompozycji którego zostaªa zastosowana piramida medianowa i interpolacja biliniowa Algorytm dekompozycji z zastosowaniem piramidy medianowej. (1) Niech g k = f, gdzie k = 0, f - obraz wej±ciowy. (2) Wyliczenie nast pnego poziomu: g k+1 (i, j) = med(g k (2i + m, 2j + n), s), gdzie 0 < i C k+1, 0 < j R k+1, a funkcja med(f(i, j), s) zdeniowana jest jako mediana otoczenia piksela o wspóªrz dnych i, j z j drem o wymiarach (2s + 1) (2s + 1) (3) g k = INT ERP OLACJA(g k+1 ) (4) Wyliczenie macierzy wspóªczynników: ε k = g k g k (5) k = k + 1. Je±li k < S, gdzie S - ilo± poziomów piramidy, to id¹ do kroku Zmodykowany algorytm dekompozycji. Algorytm ten opiera si o ltr medianowy i piramid opart na metodzie najbli»szego s siada. Na ka»dym poziomie piramidy nale»y napierw wykona ltracj obrazu za pomoc ltru medianowego. Nast pnie na przeltrowanym obrazie wykonuje si opracj REDU KCJI za pomoc algorytmu najbli»szego s siada: (1) Niech g k = f, gdzie k = 0, f - obraz wej±ciowy. (2) Filtracja obrazu g k na k-tym poziomie piramidy (3) Wyliczenie nast pnego poziomu: g k = med(g k ) g k+1 = dec(g k), gdzie dec jest operacj polegaj c na zast pieniu wszystkich czwórek pikseli, jednym z nich. (4) g k = INT ERP OLACJA(g k+1 ) (5) Wyliczenie macierzy wspóªczynników: ε k = g k g k

5 PIRAMIDA OBRAZÓW 5 (6) k = k + 1. Je±li k < S, gdzie S - ilo± poziomów piramidy, to id¹ do kroku Interpolacja dwuliniowa. Interpolacja dwuliniowa jest podstawow, liniow metod interpolacji obrazów. Nowy piksel wyliczany jest na podstawie czterech s siaduj cych ze sob pikseli [2]. Rysunek 3. Siatka interpolacji dwuliniowej Aby wyliczy warto± piksela f(p ) w punkcie P = (x, y), najpierw trzeba wykona interpolacj wzdªu» osi x, w efekcie której otrzymuje si warto±ci obrazu w punktach R 1 i R 2. Warto± tych punktów wylicza si ze wzoru: (1) f(r 1 ) x 2 x f(q 11 ) + x x 1 f(q 21 ), gdzie R 1 = (x, y 1 ), (2) f(r 2 ) x 2 x f(q 12 ) + x x 1 f(q 22 ), gdzie R 2 = (x, y 2 ). Nast pnie dokonuje si interpolacji wzdªu» osi y: (3) f(p ) y 2 y y 2 y 1 f(r 1 ) + y y 1 y 2 y 1 f(r 2 ). (4) Ostatecznie podstawiaj c wzory na f(r 1 ) i f(r 2 ) otrzymujemy: f(q 11) f(x, y) (x (x 2 x 1)(y 2 y 1) 2 x)(y 2 y) f(q + 21) (x (x x 2 x 1)(y 2 y 1) 1)(y 2 y) f(q + 12) (x (x 2 x 1)(y 2 y 1) 2 x)(y y 1 ) f(q + 22) (x (x x 2 x 1)(y 2 y 1) 1)(y y 1 ). Interpolacja dwuliniowa jest najmniej zªo»on obliczeniowo interpolacj. U±redniaj c piksele s siednie powoduje ona rozmycie obrazu. Interpolacji obrazu zawieraj cego szum o rozkªadzie Gaussa spowoduje jego usuni cie Opis algorytmu. (1) Wykonanie piramidy medianowej z interpolacj dwuliniow (3 poziomy) (2) Wykonanie progowania mecierzy wspóªczynników (3) Rekonstrukcja obrazu

6 6 MGR IN. G. SARWAS 3. wiczenie laboratoryjne Celem wiczenia jest napisanie algorytmu dekompozycji i rekonstrukcji piramidalnej w oparciu o piramid medianow i interpolacj dwuliniow. Nast pn cz ±ci wiczenia jest zastosowanie algorytmu ltracji piramidalnej do usuwania szumu impulsowego oraz szumu o rozkªadzie Gaussa. Wyniki dziaªania ltru nale»y porówna z wynikami otrzymanymi przy zastosowaniu ltra Gaussa oraz medianowego Plan wiczenia. (1) Napisanie algorytmu interpolacji biliniowej. (2) Napisanie algorytmu REDU KCJI w oparciu o metod najbli»szego s - siada. (3) Stworzenie algorytmu dekompozycji piramidalnej opartej o piramid medianow i interpolacj dwuliniow. (4) Stworzenie algorytmu rekonstrukcji piramidalnej. (5) Wy±wietlenie obrazów ró»nicowych. (6) Wykonanie algorytmu progowania macierzy wspóªczynników. (7) Przetestowanie dziaªania algorytmu odszumiaj cego w przypadku szumu impulsowego oraz o rozkªadzie Gaussa dla ró»nych progów. (8) Porównanie dziaªania ltru piramidalnego z ltrem medianowym i u±redniaj cym. (9) Sprawozdanie z wiczenia (Do wykonania w domu). Literatura [1] J.-L. Starck, F. Murtagh, A. Bijaoui: Image Processing and Data Analysis: The Multiscale Approach, Cambridge University Press, (1998). [2] M. Jiang from School of Mathematical Sciences: Digital Image Processing, Peking University, ( ). [3] M. Kraus, M. Strengert: Pyramid Filters Based On Bilinear Interpolation. [4] J.M. Ogden, E.H. Adelson, J R. Bergen, P.J. Burt Pyramid-based computer graphics, RCA Engineer, (Nov 1985). [5] K.G. Derpanis: The Gaussian Pyramid, Version 1.0, (5 Feb 2005). [6] G. Sarwas: Zastosowania piramidy niefalkowej w przetwarzaniu obrazów, Praca Magisterska broniona w Zakªadzie Sterowania PW, (Sep 2007). address, G. Sarwas: sarwasg@isep.pw.edu.pl URL:

Przetwarzanie sygnaªów

Przetwarzanie sygnaªów Przetwarzanie sygnaªów Wykªad 8 - Wst p do obrazów 2D Marcin Wo¹niak, Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 27 Plan wykªadu 1 Informacje wstepne 2 Przetwarzanie obrazu 3 Wizja komputerowa

Bardziej szczegółowo

Dyskretyzacja i kwantyzacja obrazów

Dyskretyzacja i kwantyzacja obrazów Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Dyskretyzacja i kwantyzacja obrazów 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z procesami dyskretyzacji i kwantyzacji, oraz ze zjawiskami

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Lokalne transformacje obrazów

Lokalne transformacje obrazów Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Lokalne transformacje obrazów 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami lokalnych transformacji obrazu i ich wykorzystaniem

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

Lekcja 3 Banki i nowe przedmioty

Lekcja 3 Banki i nowe przedmioty Lekcja 3 Banki i nowe przedmioty Akademia im. Jana Dªugosza w Cz stochowie Banki przedmiotów Co ju» wiemy? co to s banki przedmiotów w Baltie potramy korzysta z banków przedmiotów mo»emy tworzy nowe przedmioty

Bardziej szczegółowo

Przeksztaªcenia punktowe i geometryczne

Przeksztaªcenia punktowe i geometryczne Przeksztaªcenia punktowe i geometryczne 1 Przeksztaªcenia punktowe Przeksztaªcenia punktowe (bezkontekstowe) s to przeksztaªcenia dotycz ce stopnia szaro±ci lub nasycenia barwy dla ka»dego punktu oddzielnie,

Bardziej szczegółowo

Zasilacz stabilizowany 12V

Zasilacz stabilizowany 12V Zasilacz stabilizowany 12V Marcin Polkowski marcin@polkowski.eu 3 grudnia 2007 Spis tre±ci 1 Wprowadzenie 2 2 Wykonane pomiary 2 2.1 Charakterystyka napi ciowa....................................... 2

Bardziej szczegółowo

Proste metody segmentacji

Proste metody segmentacji Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Proste metody segmentacji 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z prostymi metodami segmentacji: progowaniem, wykrywaniem i aproksymacj

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3

Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3 Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3 Michaª Litwicki, Michalina Grubecka, Ewelina Obrzud, Tomasz Dziaªa, Maciej Winiarski, Dajana Olech 27 sierpnia 2012 Prowadz cy:

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Lekcja 3 - BANKI I NOWE PRZEDMIOTY

Lekcja 3 - BANKI I NOWE PRZEDMIOTY Lekcja 3 - BANKI I NOWE PRZEDMIOTY Wiemy ju» co to s banki przedmiotów i potramy z nich korzysta. Dowiedzieli±my si te»,»e mo»emy tworzy nowe przedmioty, a nawet caªe banki przedmiotów. Na tej lekcji zajmiemy

Bardziej szczegółowo

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI Kierunek: Specjalno± : Automatyka i Robotyka (AIR) Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Podatny manipulator planarny - budowa i sterowanie Vulnerable planar

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast

Bardziej szczegółowo

1. Odcienie szaro±ci. Materiaªy na wiczenia z Wprowadzenia do graki maszynowej dla kierunku Informatyka, rok III, sem. 5, rok akadem.

1. Odcienie szaro±ci. Materiaªy na wiczenia z Wprowadzenia do graki maszynowej dla kierunku Informatyka, rok III, sem. 5, rok akadem. Materiaªy na wiczenia z Wprowadzenia do graki maszynowej dla kierunku Informatyka, rok III, sem. 5, rok akadem. 2018/2019 1. Odcienie szaro±ci Model RGB jest modelem barw opartym na wªa±ciwo±ciach odbiorczych

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie

Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie Cz ± II Podziaª pracy 1 Tablica sortuj ca Kolejka priorytetowa to struktura danych udost pniaj ca operacje wstawienia warto±ci i pobrania warto±ci minimalnej. Z kolejki liczb caªkowitych, za po±rednictwem

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

stopie szaro ci piksela ( x, y)

stopie szaro ci piksela ( x, y) I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.

Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23

Bardziej szczegółowo

Wska¹niki, tablice dynamiczne wielowymiarowe

Wska¹niki, tablice dynamiczne wielowymiarowe Rozdziaª 11 Wska¹niki, tablice dynamiczne wielowymiarowe 11.1 Wst p Identycznie, jak w przypadku tablic statycznych, tablica dynamiczna mo»e by tablic jedno-, dwu-, trójitd. wymiarow. Tablica dynamiczna

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

4.3. Struktura bazy noclegowej oraz jej wykorzystanie w Bieszczadach

4.3. Struktura bazy noclegowej oraz jej wykorzystanie w Bieszczadach 4.3. Struktura bazy noclegowej oraz jej wykorzystanie w Bieszczadach Baza noclegowa stanowi podstawową bazę turystyczną, warunkującą w zasadzie ruch turystyczny. Dlatego projektując nowy szlak należy ją

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Konstruowanie Baz Danych Wprowadzenie do projektowania. Normalizacja

Konstruowanie Baz Danych Wprowadzenie do projektowania. Normalizacja Studia podyplomowe In»ynieria oprogramowania wspóªnansowane przez Uni Europejsk w ramach Europejskiego Funduszu Spoªecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarz dzania

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Przetwarzanie sygnaªów

Przetwarzanie sygnaªów Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Arytmetyka zmiennopozycyjna

Arytmetyka zmiennopozycyjna Rozdziaª 4 Arytmetyka zmiennopozycyjna Wszystkie obliczenia w octavie s wykonywane w arytmetyce zmiennopozycyjnej (inaczej - arytmetyce ) podwójnej precyzji (double) - cho w najnowszych wersjach octave'a

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG Cechy formatu JPEG Schemat blokowy kompresora Transformacja koloru Obniżenie rozdzielczości chrominancji Podział na bloki

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

ALGORYTMY SORTOWANIA DANYCH

ALGORYTMY SORTOWANIA DANYCH ALGORYTMY SORTOWANIA DANYCH W zagadnieniu sortowania danych rozpatrywa b dziemy n liczb caªkowitych, b d cych pierwotnie w losowej kolejno±ci, które nale»y uporz dkowa nierosn co. Oczywi±cie sortowa mo»emy

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku skupiaj ce rozpraszaj ce Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 skupiaj ce rozpraszaj ce Spis tre±ci 1 Wprowadzenie 2 Ciekawostki 3 skupiaj ce Konstrukcja

Bardziej szczegółowo

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania

Bardziej szczegółowo

Podstawy modelowania w j zyku UML

Podstawy modelowania w j zyku UML Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 2 Zwi zki mi dzy klasami Asocjacja (ang. Associations) Uogólnienie, dziedziczenie (ang.

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

1 Przeksztaªcenia morfologiczne

1 Przeksztaªcenia morfologiczne Przeksztaªcenia morfologiczne II i operacje na obrazach logicznych 1 Przeksztaªcenia morfologiczne 1.1 cienianie i Pogrubianie Pogrubianie i ±cienianie: Operacje te polegaj na naªo»eniu lub ±ci gni ciu

Bardziej szczegółowo

Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie

Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Plan prezentacji Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Wst p Motto W teorii nie ma ró»nicy mi dzy praktyk a teori. W praktyce jest. Rezystory Najwa»niejsze parametry rezystorów Rezystancja

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy.

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy. 1 Klasy. Klasa to inaczej mówi c typ który podobnie jak struktura skªada si z ró»nych typów danych. Tworz c klas programista tworzy nowy typ danych, który mo»e by modelem rzeczywistego obiektu. 1.1 Denicja

Bardziej szczegółowo

Interpolacja Lagrange'a, bazy wielomianów

Interpolacja Lagrange'a, bazy wielomianów Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Rozdziaª 13. Przykªadowe projekty zaliczeniowe

Rozdziaª 13. Przykªadowe projekty zaliczeniowe Rozdziaª 13 Przykªadowe projekty zaliczeniowe W tej cz ±ci skryptu przedstawimy przykªady projektów na zaliczenia zaj z laboratorium komputerowego z matematyki obliczeniowej. Projekty mo»na potraktowa

Bardziej szczegółowo

Filtracja w domenie przestrzeni

Filtracja w domenie przestrzeni Filtracja w domenie przestrzeni 1 Filtracja Filtracja liniowa jest procesem splotu (konwolucji) obrazu z mask (ltrem). Dla dwuwymiarowej i dyskretnej funkcji ltracja dana jest wzorem: L2(m, n) = (w L1)(m,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wstawianie gotowych rysunków w texu - informacje podstawowe.

Wstawianie gotowych rysunków w texu - informacje podstawowe. Wstawianie gotowych rysunków w texu - informacje podstawowe. By móc wstawi rysunek musimy w preambule pliku dopisa odpowiedni pakiet komend : \usepackage. W przypadku graki doª czamy pakiet:graphicx, (nieco

Bardziej szczegółowo

System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy

System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy modelowaniem, a pewien dobrze zdefiniowany sposób jego

Bardziej szczegółowo

REGULAMIN X GMINNEGO KONKURSU INFORMATYCZNEGO

REGULAMIN X GMINNEGO KONKURSU INFORMATYCZNEGO REGULAMIN X GMINNEGO KONKURSU INFORMATYCZNEGO 1. Postanowienia ogólne 1. Organizatorem konkursu jest Zespół Szkół w Podolu-Górowej. 2. Konkurs przeznaczony jest dla uczniów szkół podstawowych i gimnazjów

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Programowanie wspóªbie»ne wiczenia 2 semafory cz. 1 Zadanie 1: Producent i konsument z buforem cyklicznym type porcja; void produkuj(porcja &p); void konsumuj(porcja p); porcja bufor[n]; / bufor cykliczny

Bardziej szczegółowo

Operacje morfologiczne

Operacje morfologiczne Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Operacje morfologiczne 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami prostych operacji morfologicznych: zw»ania/erozji

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Programowanie i struktury danych

Programowanie i struktury danych Programowanie i struktury danych Wykªad 3 1 / 37 tekstowe binarne Wyró»niamy dwa rodzaje plików: pliki binarne pliki tekstowe 2 / 37 binarne tekstowe binarne Plik binarny to ci g bajtów zapami tanych w

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

SVN - wprowadzenie. 1 Wprowadzenie do SVN. 2 U»ywanie SVN. Adam Krechowicz. 16 lutego Podstawowe funkcje. 2.1 Windows

SVN - wprowadzenie. 1 Wprowadzenie do SVN. 2 U»ywanie SVN. Adam Krechowicz. 16 lutego Podstawowe funkcje. 2.1 Windows SVN - wprowadzenie Adam Krechowicz 16 lutego 2013 1 Wprowadzenie do SVN SVN SubVersion jest systemem kontroli wersji pozwalaj cym wielu u»ytkownikom na swobodne wspóªdzielenie tych samych plików. Pozwala

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny

Wojewódzki Konkurs Matematyczny Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY 16 listopada 2012 Czas 90 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych. 2. Obok

Bardziej szczegółowo

Stacjonarne szeregi czasowe

Stacjonarne szeregi czasowe e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Aleksandra Ki±lak-Malinowska akis@uwm.edu.pl http://wmii.uwm.edu.pl/ akis/ Czym zajmuje si statystyka? Statystyka zajmuje si opisywaniem i analiz zjawisk masowych otaczaj cej czªowieka

Bardziej szczegółowo

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZ DO WIADCZALNA Za zadanie do±wiadczalne mo»na otrzyma maksymalnie 40 punktów. Zadanie D. Rozgrzane wolframowe wªókno»arówki o temperaturze bezwzgl dnej T emituje

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo