Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec
|
|
- Zuzanna Stankiewicz
- 5 lat temu
- Przeglądów:
Transkrypt
1 Systemy agentowe Sieci neuronowe Jędrzej Potoniec
2 Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
3 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku ŷ = step(w T x) ŷ = step(x w)
4 Perceptron step(z) = { 1 z 0 0 w przeciwnym przypadku ŷ = step(x w)
5 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku ŷ = step(w T x) ŷ = step(x w)
6 Perceptron z wieloma wyjściami A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
7 Uczenie perceptronu w (ε+1) i,j = w (ε) i,j + η(y j ŷ j )x i w i,j waga połączenia między wejściem i, a wyjściem j ε krok η prędkość uczenia
8 AND x x 1 Jakie wagi musi mieć perceptron, żeby rozwiązać taki problem?
9 XOR x x 1 Jakie wagi musi mieć perceptron, żeby rozwiązać taki problem?
10 Perceptron wielowarstwowy (MLP multilayer perceptron) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
11 Jak to uczyć: backpropagation (Rumelhart et al. 1986) 1 Oblicz wyjścia sieci 2 Oblicz błąd popełniony przez sieć 3 Korzystając z gradientu delikatnie zmodyfikuj wagi
12 Jak to uczyć: backpropagation (Rumelhart et al. 1986) 1 Oblicz wyjścia sieci 2 Oblicz błąd popełniony przez sieć 3 Korzystając z gradientu delikatnie zmodyfikuj wagi Wszystko proste, jasne i oczywiste?
13 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)?
14 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)? Popularne funkcje aktywacji: logistyczna σ(z) = e z
15 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)? Popularne funkcje aktywacji: logistyczna σ(z) = e z tangens hiperboliczny tgh(z) = 2σ(2z) 1
16 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)? Popularne funkcje aktywacji: logistyczna σ(z) = e z tangens hiperboliczny tgh(z) = 2σ(2z) 1 ReLU (rectified linear unit) ReLU(z) = max{z, 0}
17 Funkcje aktywacji i ich pochodne A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
18 Graf obliczeń A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
19 Reverse-mode autodiff A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
20 Współczesna sieć neuronowa do klasyfikacji A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
21 Eksplodujący i znikający gradient A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
22 ReLU Czy ReLU jest odporne na problemy ze znikającym gradientem? ReLU(z) = max{0, z}
23 Leaky ReLU LRelu(z) = max{αz, z} A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
24 ELU ELU(z) = { α(e z 1) z < 0 z z 0 A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
25 Strategia inicjalizacji wag Obserwacja (Xavier Glorot, Yoshua Bengio 2010) Wariancja wejść warstwy powinna być z grubsza równa wariancji wyjść warstwy, a wariancja gradientów przed warstwą wariancji gradientów za warstwą.
26 Strategia inicjalizacji wag Obserwacja (Xavier Glorot, Yoshua Bengio 2010) Wariancja wejść warstwy powinna być z grubsza równa wariancji wyjść warstwy, a wariancja gradientów przed warstwą wariancji gradientów za warstwą. Xavier initialization funkcja aktywacji rozkład jednostajny rozkład [ r, r] N(0, σ) logistyczna r = 6 n in +n out σ = tanh r = 4 6 n in +n out σ = 4 ReLU/LReLU/ELU r = 2 6 n in +n out σ = 2 normalny 2 n in +n out 2 n in +n out 2 n in +n out
27 Batch normalization (Ioffe Szegedy 2015) Z = X w
28 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1
29 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1
30 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1 Ẑ i = Z i m B s 2 B + ε
31 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1 Ẑ i = Z i m B s 2 B + ε Z i = γ Ẑ i + β
32 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1 Ẑ i = Z i m B s 2 B + ε Z i = γ Ẑ i + β Y i = f ( Z i )
33 Reużywanie NN A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017
Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec
Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn
Bardziej szczegółowoSystemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec
Systemy agentowe Uczenie ze wzmocnieniem Jędrzej Potoniec Uczenie ze wzmocnieniem (ang. Reinforcement learning) dane Środowisko, w którym można wykonywać pewne akcje, które są nagradzane lub karane, ale
Bardziej szczegółowoWrocław University of Technology. Uczenie głębokie. Maciej Zięba
Wrocław University of Technology Uczenie głębokie Maciej Zięba UCZENIE GŁĘBOKIE (ang. deep learning) = klasa metod uczenia maszynowego, gdzie model ma strukturę hierarchiczną złożoną z wielu nieliniowych
Bardziej szczegółowoWprowadzenie do sieci neuronowych i zagadnień deep learning
Wprowadzenie do sieci neuronowych i zagadnień deep learning Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Deep learning Anna Sztyber 1 / 28 Deep learning
Bardziej szczegółowoSztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Bardziej szczegółowoSystemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa Zasady oceniania
Bardziej szczegółowoSystemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
Bardziej szczegółowoZastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Bardziej szczegółowoSieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
Bardziej szczegółowoElementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Bardziej szczegółowoWstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Bardziej szczegółowoPolitechnika Warszawska
Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych
Bardziej szczegółowoRozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Bardziej szczegółowoZastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
Bardziej szczegółowoSieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING UCZENIE GŁĘBOKIE I GŁĘBOKIE SIECI NEURONOWE DEEP LEARNING AND DEEP NEURAL NETWORKS Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki,
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Bardziej szczegółowoSID Wykład 8 Sieci neuronowe
SID Wykład 8 Sieci neuronowe Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Sztuczna inteligencja - uczenie Uczenie się jest procesem nastawionym na osiaganie rezultatów opartych o
Bardziej szczegółowoUczenie maszynowe w zastosowaniu do fizyki cząstek
Uczenie maszynowe w zastosowaniu do fizyki cząstek Wykorzystanie uczenia maszynowego i głębokich sieci neuronowych do ćwiczenia 3. M. Kaczmarczyk, P. Górski, P. Olejniczak, O. Kosobutskyi Instytut Fizyki
Bardziej szczegółowoUczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
Bardziej szczegółowoLiteratura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Bardziej szczegółowoProjekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Bardziej szczegółowosynaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Bardziej szczegółowoBIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
Bardziej szczegółowoUczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Bardziej szczegółowoMATLAB Neural Network Toolbox uczenie sieci (dogłębnie)
MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) WYKŁAD Piotr Ciskowski Neural Network Toolbox: NEURAL NETWORK TOOLBOX NOTACJA Neural Network Toolbox - notacja: pojedynczy neuron: z jednym wejściem
Bardziej szczegółowoALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Bardziej szczegółowoSieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Bardziej szczegółowoPodstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Bardziej szczegółowo6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
Bardziej szczegółowoDefinicja perceptronu wielowarstwowego
1 Sieci neuronowe - wprowadzenie 2 Definicja perceptronu wielowarstwowego 3 Interpretacja znaczenia parametrów sieci 4 Wpływ wag perceptronu na jakość aproksymacji 4.1 Twierdzenie o uniwersalnych właściwościach
Bardziej szczegółowoZrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
Bardziej szczegółowoWstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN
Wstęp do głębokich sieci neuronowych Paweł Morawiecki IPI PAN Liczba projektów z głębokim uczeniem rośnie bardzo szybko liczba projektów w firmie Google 4000 3000 2000 1000 2012 2013 2014 2015 2016 2017
Bardziej szczegółowoMATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
Bardziej szczegółowoMetody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017
Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x
Bardziej szczegółowowiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Bardziej szczegółowoZastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Bardziej szczegółowoZastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2013/2014
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2013/2014 Sieci neuronowe Sieci neuronowe W XIX wieku sformułowano teorię opisującą podstawowe
Bardziej szczegółowoZagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Bardziej szczegółowoAlgorytmy wstecznej propagacji sieci neuronowych
Algorytmy wstecznej propagacji sieci neuronowych Mateusz Nowicki, Krzysztof Jabłoński 1 Wydział Inżynierii Mechanicznej i Informatyki Politechnika Częstochowska Kierunek Informatyka, Rok III 1 krzysztof.jablonski@hotmail.com
Bardziej szczegółowoTechniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Bardziej szczegółowoSTRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 96 Nr kol. 1963 Wiktor WALENTYNOWICZ wiktorwalentynowicz@hotmail.com Ireneusz J. JÓŹWIAK Politechnika Wrocławska Wydział Informatyki
Bardziej szczegółowoSPOTKANIE 4: Klasyfikacja: Regresja logistyczna
Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład
Bardziej szczegółowoUCZENIE WIELOWARSTWOWYCH SZEROKICH SIECI NEURONOWYCH Z FUNKCJAMI AKTYWACJI TYPU RELU W ZADANIACH KLASYFIKACJI
POZNAN UNIVERSITY OF TECHNOOGY ACADEMIC JOURNAS No 96 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.96.0004 Stanisław PŁACZEK *, Aleksander PŁACZEK ** UCZENIE WIEOWARSTWOWYCH SZEROKICH SIECI
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()
Bardziej szczegółowoAlgorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Bardziej szczegółowoUczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Bardziej szczegółowoSztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Bardziej szczegółowo1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Bardziej szczegółowo1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Bardziej szczegółowoWstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber
Bardziej szczegółowoPrognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.
Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu
Bardziej szczegółowoMachine learning Lecture 6
Machine learning Lecture 6 Marcin Wolter IFJ PAN 11 maja 2017 Deep learning Convolution network Zastosowanie do poszukiwań bozonu Higgsa 1 Deep learning Poszczególne warstwy ukryte uczą się rozpoznawania
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
Bardziej szczegółowoSztuczne Sieci Neuronowe
Sztuczne Sieci Neuronowe Wykład 4 1. Zdolności uogólniania sieci, weryfikacja procesu uczenia (przypomnienie) 2. Siec wielowarstwowa perceptronowa 3. Algorytmy uczenia sieci metodami propagacji wstecznej
Bardziej szczegółowox 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Bardziej szczegółowoOptymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
Bardziej szczegółowo8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Bardziej szczegółowoStosowana Analiza Regresji
Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych
Bardziej szczegółowoSieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Bardziej szczegółowoZastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
Bardziej szczegółowoMOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI
MOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI Monika Paluch-Puk, Instytut Inżynierii Środowiska, Uniwersytet Przyrodniczy we Wrocławiu W każdej oczyszczalni
Bardziej szczegółowosieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski
sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym
Bardziej szczegółowoUczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Bardziej szczegółowoAlgorytmy przeszukiwania w zastosowaniu do perceptrona wielowarstwowego
Algorytmy przeszukiwania w zastosowaniu do perceptrona wielowarstwowego Mirosław Kordos Autoreferat rozprawy doktorskiej promotor: prof. dr hab. Włodzisław Duch Politechnika Śląska Wydział Automatyki,
Bardziej szczegółowoSieci Rekurencyjne 1 / 33. Sieci Rekurencyjne. Nguyen Hung Son
Sieci Rekurencyjne 1 / 33 Sieci Rekurencyjne Nguyen Hung Son Outline Sieci Rekurencyjne 2 / 33 1 Sztuczne sieci neuronowe 2 Inne modele i zastosowania 3 Sieci rekurencyjne 4 Modele samoorganizacji Na poprzednim
Bardziej szczegółowoMetody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Bardziej szczegółowoPROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2
PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 Celem opracowania algorytmu obliczeń jest umożliwienie doboru zestawu maszyn do robót
Bardziej szczegółowoMetody klasyfikacji danych - część 2 p.1/55
Metody klasyfikacji danych - część 2 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 2 p.1/55 Plan wykładu - AdaBoost - Klasyfikacja metoda wektorów wspierajacych (SVM)
Bardziej szczegółowoSztuczna inteligencja
Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury
Bardziej szczegółowo5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
Bardziej szczegółowoSIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji
Bardziej szczegółowoZastosowanie sztucznych sieci neuronowych do modelowania procesów azotowania próżniowego stali narzędziowych
Zastosowanie sztucznych sieci neuronowych do modelowania procesów azotowania próżniowego stali narzędziowych Emilia Wołowiec-Korecka Politechnika Łódzka Zastosowania statystyki i data mining w badaniach
Bardziej szczegółowoSpis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Bardziej szczegółowoInteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Bardziej szczegółowoPODSTAWY BAZ DANYCH I SZTUCZNEJ INTELIGENCJI. Adrian Horzyk. Akademia Górniczo-Hutnicza
PODSTAWY BAZ DANYCH I SZTUCZNEJ INTELIGENCJI Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej
Bardziej szczegółowoSztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
Bardziej szczegółowoInteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Bardziej szczegółowoTemat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Bardziej szczegółowoPROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Bardziej szczegółowoOCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:
METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.
Bardziej szczegółowoTemat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Bardziej szczegółowoWYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Bardziej szczegółowo2.4. Algorytmy uczenia sieci neuronowych
2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.
Bardziej szczegółowoWidzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Bardziej szczegółowoDariusz Brzeziński Instytut Informatyki, Politechnika Poznańska
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie
Bardziej szczegółowoZastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr.
Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Warszawa, 10 Marca 2016 Plan prezentacji. Definicja funkcji jądrowej. Plan prezentacji. Definicja funkcji jądrowej. Opis problemu
Bardziej szczegółowo