Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec"

Transkrypt

1 Systemy agentowe Sieci neuronowe Jędrzej Potoniec

2 Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

3 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku ŷ = step(w T x) ŷ = step(x w)

4 Perceptron step(z) = { 1 z 0 0 w przeciwnym przypadku ŷ = step(x w)

5 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku ŷ = step(w T x) ŷ = step(x w)

6 Perceptron z wieloma wyjściami A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

7 Uczenie perceptronu w (ε+1) i,j = w (ε) i,j + η(y j ŷ j )x i w i,j waga połączenia między wejściem i, a wyjściem j ε krok η prędkość uczenia

8 AND x x 1 Jakie wagi musi mieć perceptron, żeby rozwiązać taki problem?

9 XOR x x 1 Jakie wagi musi mieć perceptron, żeby rozwiązać taki problem?

10 Perceptron wielowarstwowy (MLP multilayer perceptron) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

11 Jak to uczyć: backpropagation (Rumelhart et al. 1986) 1 Oblicz wyjścia sieci 2 Oblicz błąd popełniony przez sieć 3 Korzystając z gradientu delikatnie zmodyfikuj wagi

12 Jak to uczyć: backpropagation (Rumelhart et al. 1986) 1 Oblicz wyjścia sieci 2 Oblicz błąd popełniony przez sieć 3 Korzystając z gradientu delikatnie zmodyfikuj wagi Wszystko proste, jasne i oczywiste?

13 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)?

14 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)? Popularne funkcje aktywacji: logistyczna σ(z) = e z

15 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)? Popularne funkcje aktywacji: logistyczna σ(z) = e z tangens hiperboliczny tgh(z) = 2σ(2z) 1

16 Funkcja aktywacji Ile wynosi pochodna funkcji step(z)? Popularne funkcje aktywacji: logistyczna σ(z) = e z tangens hiperboliczny tgh(z) = 2σ(2z) 1 ReLU (rectified linear unit) ReLU(z) = max{z, 0}

17 Funkcje aktywacji i ich pochodne A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

18 Graf obliczeń A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

19 Reverse-mode autodiff A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

20 Współczesna sieć neuronowa do klasyfikacji A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

21 Eksplodujący i znikający gradient A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

22 ReLU Czy ReLU jest odporne na problemy ze znikającym gradientem? ReLU(z) = max{0, z}

23 Leaky ReLU LRelu(z) = max{αz, z} A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

24 ELU ELU(z) = { α(e z 1) z < 0 z z 0 A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

25 Strategia inicjalizacji wag Obserwacja (Xavier Glorot, Yoshua Bengio 2010) Wariancja wejść warstwy powinna być z grubsza równa wariancji wyjść warstwy, a wariancja gradientów przed warstwą wariancji gradientów za warstwą.

26 Strategia inicjalizacji wag Obserwacja (Xavier Glorot, Yoshua Bengio 2010) Wariancja wejść warstwy powinna być z grubsza równa wariancji wyjść warstwy, a wariancja gradientów przed warstwą wariancji gradientów za warstwą. Xavier initialization funkcja aktywacji rozkład jednostajny rozkład [ r, r] N(0, σ) logistyczna r = 6 n in +n out σ = tanh r = 4 6 n in +n out σ = 4 ReLU/LReLU/ELU r = 2 6 n in +n out σ = 2 normalny 2 n in +n out 2 n in +n out 2 n in +n out

27 Batch normalization (Ioffe Szegedy 2015) Z = X w

28 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1

29 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1

30 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1 Ẑ i = Z i m B s 2 B + ε

31 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1 Ẑ i = Z i m B s 2 B + ε Z i = γ Ẑ i + β

32 Batch normalization (Ioffe Szegedy 2015) Z = X w m B = 1 n Z i n i=1 s 2 B = 1 n (Z i m B ) 2 n i=1 Ẑ i = Z i m B s 2 B + ε Z i = γ Ẑ i + β Y i = f ( Z i )

33 Reużywanie NN A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn

Bardziej szczegółowo

Systemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec

Systemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec Systemy agentowe Uczenie ze wzmocnieniem Jędrzej Potoniec Uczenie ze wzmocnieniem (ang. Reinforcement learning) dane Środowisko, w którym można wykonywać pewne akcje, które są nagradzane lub karane, ale

Bardziej szczegółowo

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba Wrocław University of Technology Uczenie głębokie Maciej Zięba UCZENIE GŁĘBOKIE (ang. deep learning) = klasa metod uczenia maszynowego, gdzie model ma strukturę hierarchiczną złożoną z wielu nieliniowych

Bardziej szczegółowo

Wprowadzenie do sieci neuronowych i zagadnień deep learning

Wprowadzenie do sieci neuronowych i zagadnień deep learning Wprowadzenie do sieci neuronowych i zagadnień deep learning Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Deep learning Anna Sztyber 1 / 28 Deep learning

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa Zasady oceniania

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING UCZENIE GŁĘBOKIE I GŁĘBOKIE SIECI NEURONOWE DEEP LEARNING AND DEEP NEURAL NETWORKS Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki,

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

SID Wykład 8 Sieci neuronowe

SID Wykład 8 Sieci neuronowe SID Wykład 8 Sieci neuronowe Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Sztuczna inteligencja - uczenie Uczenie się jest procesem nastawionym na osiaganie rezultatów opartych o

Bardziej szczegółowo

Uczenie maszynowe w zastosowaniu do fizyki cząstek

Uczenie maszynowe w zastosowaniu do fizyki cząstek Uczenie maszynowe w zastosowaniu do fizyki cząstek Wykorzystanie uczenia maszynowego i głębokich sieci neuronowych do ćwiczenia 3. M. Kaczmarczyk, P. Górski, P. Olejniczak, O. Kosobutskyi Instytut Fizyki

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr

Bardziej szczegółowo

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie)

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) WYKŁAD Piotr Ciskowski Neural Network Toolbox: NEURAL NETWORK TOOLBOX NOTACJA Neural Network Toolbox - notacja: pojedynczy neuron: z jednym wejściem

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

6. Perceptron Rosenblatta

6. Perceptron Rosenblatta 6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:

Bardziej szczegółowo

Definicja perceptronu wielowarstwowego

Definicja perceptronu wielowarstwowego 1 Sieci neuronowe - wprowadzenie 2 Definicja perceptronu wielowarstwowego 3 Interpretacja znaczenia parametrów sieci 4 Wpływ wag perceptronu na jakość aproksymacji 4.1 Twierdzenie o uniwersalnych właściwościach

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN

Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN Wstęp do głębokich sieci neuronowych Paweł Morawiecki IPI PAN Liczba projektów z głębokim uczeniem rośnie bardzo szybko liczba projektów w firmie Google 4000 3000 2000 1000 2012 2013 2014 2015 2016 2017

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2013/2014

Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2013/2014 Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2013/2014 Sieci neuronowe Sieci neuronowe W XIX wieku sformułowano teorię opisującą podstawowe

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Algorytmy wstecznej propagacji sieci neuronowych

Algorytmy wstecznej propagacji sieci neuronowych Algorytmy wstecznej propagacji sieci neuronowych Mateusz Nowicki, Krzysztof Jabłoński 1 Wydział Inżynierii Mechanicznej i Informatyki Politechnika Częstochowska Kierunek Informatyka, Rok III 1 krzysztof.jablonski@hotmail.com

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA

STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 96 Nr kol. 1963 Wiktor WALENTYNOWICZ wiktorwalentynowicz@hotmail.com Ireneusz J. JÓŹWIAK Politechnika Wrocławska Wydział Informatyki

Bardziej szczegółowo

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład

Bardziej szczegółowo

UCZENIE WIELOWARSTWOWYCH SZEROKICH SIECI NEURONOWYCH Z FUNKCJAMI AKTYWACJI TYPU RELU W ZADANIACH KLASYFIKACJI

UCZENIE WIELOWARSTWOWYCH SZEROKICH SIECI NEURONOWYCH Z FUNKCJAMI AKTYWACJI TYPU RELU W ZADANIACH KLASYFIKACJI POZNAN UNIVERSITY OF TECHNOOGY ACADEMIC JOURNAS No 96 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.96.0004 Stanisław PŁACZEK *, Aleksander PŁACZEK ** UCZENIE WIEOWARSTWOWYCH SZEROKICH SIECI

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Uczenie sieci radialnych (RBF)

Uczenie sieci radialnych (RBF) Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Machine learning Lecture 6

Machine learning Lecture 6 Machine learning Lecture 6 Marcin Wolter IFJ PAN 11 maja 2017 Deep learning Convolution network Zastosowanie do poszukiwań bozonu Higgsa 1 Deep learning Poszczególne warstwy ukryte uczą się rozpoznawania

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Sztuczne Sieci Neuronowe

Sztuczne Sieci Neuronowe Sztuczne Sieci Neuronowe Wykład 4 1. Zdolności uogólniania sieci, weryfikacja procesu uczenia (przypomnienie) 2. Siec wielowarstwowa perceptronowa 3. Algorytmy uczenia sieci metodami propagacji wstecznej

Bardziej szczegółowo

x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A

x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo

MOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI

MOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI MOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI Monika Paluch-Puk, Instytut Inżynierii Środowiska, Uniwersytet Przyrodniczy we Wrocławiu W każdej oczyszczalni

Bardziej szczegółowo

sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski

sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Algorytmy przeszukiwania w zastosowaniu do perceptrona wielowarstwowego

Algorytmy przeszukiwania w zastosowaniu do perceptrona wielowarstwowego Algorytmy przeszukiwania w zastosowaniu do perceptrona wielowarstwowego Mirosław Kordos Autoreferat rozprawy doktorskiej promotor: prof. dr hab. Włodzisław Duch Politechnika Śląska Wydział Automatyki,

Bardziej szczegółowo

Sieci Rekurencyjne 1 / 33. Sieci Rekurencyjne. Nguyen Hung Son

Sieci Rekurencyjne 1 / 33. Sieci Rekurencyjne. Nguyen Hung Son Sieci Rekurencyjne 1 / 33 Sieci Rekurencyjne Nguyen Hung Son Outline Sieci Rekurencyjne 2 / 33 1 Sztuczne sieci neuronowe 2 Inne modele i zastosowania 3 Sieci rekurencyjne 4 Modele samoorganizacji Na poprzednim

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2

PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 Celem opracowania algorytmu obliczeń jest umożliwienie doboru zestawu maszyn do robót

Bardziej szczegółowo

Metody klasyfikacji danych - część 2 p.1/55

Metody klasyfikacji danych - część 2 p.1/55 Metody klasyfikacji danych - część 2 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 2 p.1/55 Plan wykładu - AdaBoost - Klasyfikacja metoda wektorów wspierajacych (SVM)

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)

SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych do modelowania procesów azotowania próżniowego stali narzędziowych

Zastosowanie sztucznych sieci neuronowych do modelowania procesów azotowania próżniowego stali narzędziowych Zastosowanie sztucznych sieci neuronowych do modelowania procesów azotowania próżniowego stali narzędziowych Emilia Wołowiec-Korecka Politechnika Łódzka Zastosowania statystyki i data mining w badaniach

Bardziej szczegółowo

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

PODSTAWY BAZ DANYCH I SZTUCZNEJ INTELIGENCJI. Adrian Horzyk. Akademia Górniczo-Hutnicza

PODSTAWY BAZ DANYCH I SZTUCZNEJ INTELIGENCJI. Adrian Horzyk. Akademia Górniczo-Hutnicza PODSTAWY BAZ DANYCH I SZTUCZNEJ INTELIGENCJI Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**

PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię

Bardziej szczegółowo

OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:

OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA: METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.

Bardziej szczegółowo

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe

Bardziej szczegółowo

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie

Bardziej szczegółowo

2.4. Algorytmy uczenia sieci neuronowych

2.4. Algorytmy uczenia sieci neuronowych 2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.

Bardziej szczegółowo

Widzenie komputerowe

Widzenie komputerowe Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie

Bardziej szczegółowo

Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska

Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie

Bardziej szczegółowo

Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr.

Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Warszawa, 10 Marca 2016 Plan prezentacji. Definicja funkcji jądrowej. Plan prezentacji. Definicja funkcji jądrowej. Opis problemu

Bardziej szczegółowo