Przykładowe zadania zaliczeniowe z Mechaniki Płynów
|
|
- Sabina Kubiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Pykładoe adania alicenioe Mechaniki Płynó kieunek: Inżynieia Biomedycna 1. Wynacyć atość oa kieunek całkoitego napou hydostatycnego, jaki yiea ciec o ciężae łaściym γ = 9810 [N/m 3 ], na ścianę ABCD bionika. Cęść ABC stanoi pobocnicę połoy alca o pomieniu R = 1 [m], cęść CD jest płaska, a seokość bionika ynosi B = 10 [m]. 2. Zbionik łożony cęści paaboloidalnej i cylindycnej, o pomieniu R = 25 [cm] napełniono ciecą do ysokości R 2 =1 [m]. Z nacynia ciec ypłya pe mały otó o śednicy d = 5 [mm] i spółcynniku ydatku µ = 0,8. Oblicyć cas, po któym nacyniu poostanie tylko 1/3 pieotnej objętości ciecy. 3. Z otatego bionika, pe uę o sumaycnej długości L = 10 [m] i śednicy d = 10 [cm], ypłya oda o kinematycnym spółcynniku lepkości ν= 1cSt [ ]. Beymiaoe spółcynniki stat ynosą: =? na locie ξ na kolanach ξ k = 0,25, ξ ξ k na aoe ξ = 5. h = 1 [m] Jaka poinna być ysokość poiomu ciecy bioniku aby ydatek pepłyającej ody ynosił 40 [l/s]? ξ k ξ ξk
2 4. Wynacyć atość oa kieunek całkoitego napou hydostatycnego, jaki yiea ciec o ciężae łaściym γ = 9810 [N/m 3 ], na ścianę ABCDE bionika. Cęść BCD stanoi pobocnicę połoy alca o pomieniu R = 1 [m], cęści AB i DE są płaskie, natomiast seokość bionika ynosi B = 10 [m]. 5. Zbionik kstałcie paaboloidy obotoej o pomieniu R = 25 [cm] i ysokości = 1 [m], napełniono całkoicie ciecą. Oblicyć cas, po któym bioniku poostanie ¾ pieotnej objętości ciecy, jeżeli śednica otou d =5 [mm], a spółcynnik ydatku µ = 0,8. 6. Z otatego bionika, pe uę o sumaycnej długości L = 10 [m] i śednicy d = 10 [cm], ypłya oda o kinematycnym spółcynniku lepkości ν= 1cSt [ ]. Beymiaoe spółcynniki stat ynosą: na locie ξ na kolanach ξ k = 0,25, na aoe ξ = 5. Jaka poinna być ysokość poiomu ciecy bioniku aby pędkość pepłyu ody ue ynosiła 1 [m/s], jeżeli h = 1 m?
3 7. Wynacyć atość oa kieunek całkoitego napou hydostatycnego, jaki yiea oda o ciężae łaściym γ = 9810 [N/m 3 ], na ścianę ABCDE bionika. Cęść BCD stanoi pobocnicę połoy alca o pomieniu R = 1 [m], cęści AB i DE są płaskie, natomiast seokość bionika ynosi B = 10 [m]. 8. Zbionik kstałcie alca kołoego o pomieniu R = 25 cm i ysokości = 1 m, akońconego paaboloidą obotoą o ysokości 2 R napełniono całkoicie odą o gęstości ρ = 1 g/cm 3. Oblicyć cas, po któym bioniku poostanie ¾ pieotnej objętości ody, jeżeli śednica otou pe któy e bionika ypłya oda ynosi d =5 [mm], a spółcynnik ydatku µ = 0,8. R 2 µ, d 9. Z otatego bionika, pe uę o śednicy d = 10 cm, ypłya oda o dynamicnym spółcynniku lepkości η = 1 cp i gęstości ρ = 1 g/cm 3. Beymiaoe spółcynniki stat ynosą: na locie ξ na aoe ξ = 6. Jaka poinna być ysokość poiomu ciecy bioniku aby ydatek pepłyającej ody ynosił 40 l/s, jeżeli l = 5 m? ξ ξ
4 10. Wynacyć atość i kieunek całkoitego napou hydostatycnego, jaki yiea oda na ścianę ABC bionika. Cęść AB stanoi pobocnicę połoy alca, cęść BC jest płaska, jeżeli: R = 2 [m], natomiast seokość bionika ynosi B = 10 m, gęstość ody ynosi ρ = 1 g/cm Zbioniki A B kstałcie paaboloidy obotoej napełniono całkoicie ciecą o ciężae łaściym γ. Oblicyć stosunek casó t A i t B ypłyu ciecy e bionikó A i B t A =? t A B B 12. Ciec o kinematycnym spółcynniku lepkości ν = 1 [cst] i gęstości ρ = 1 [g/cm 3 ] pepłya ue o pekoju kołoym. Wynacyć śednicę uy jeżeli iadomo, że Re = 10 4 oa mieony jednostkoy spadek ciśnienia ynosi p = 1582 [Pa/m].
5 13. Zapoa kstałcie ycinka alca kołoego o pomieniu R = 4 [m] i długości L = 10 [m] amyka ejście do śluy jak na ysunku. Wynacyć atość i kieunek całkoitego napou hydostatycnego, jaki yiea oda na apoę jeżeli gęstość ody ρ = 1 g/cm Nacynie kstałcie stożka kołoego o ysokości = 1 [m] i śednicy D = 20 [cm] ypełnione jest całkoicie odą. Oblicyć cas ypłyu 1/8 pieotnej objętości ody nacynia, pe mały otó o śednicy d = 5 [mm] i spółcynniku ydatku µ = 0.8. d,µ D 15. Z otatego bionika ypłya do atmosfey ciec pe peód o śednicach: d 1 = 100[mm] i d 2 =60[mm]. Pomijając staty ciśnienia yołane taciem, oblicyć natężenie pepłyu ciecy Q peodie, dla stałej ysokości = 3[m]. Współcynniki stat miejscoych: lotu: ξ 1 = 0,5, ξ 1 ξ2 ξ 3 gałtone ężenie: ξ 2 = 0,28, aou:ξ 3 = 5. d1 d2
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
Powłoki osiowosymetryczne
yymałść maeiałów i knsukcji ykład 1 Pwłki siwsymeycne Pykłady D inż. Pi Maek Zad.1. Zbinik łżny cęści sżkwej, walcwej i kulisej, day na ieścieniu, wyełniny jes ciecą d imu łącenia walca kulą. Pwyżej ciecy
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
.Wproadzenie. Wyznaczanie profilu prędkości płynu rurociągu o przekroju kołoym Dla ustalonego, jednokierunkoego i uarstionego przepłyu przez rurę o przekroju kołoym rónanie aviera-stokesa upraszcza się
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
9. 1. KOŁO. Odcinki w okręgu i kole
9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień
Laboratorium z Badania Maszyn
Politechnika Wocłaska Instytut Techniki Cielnej i Mechaniki Płynó Zakła Mienicta i Eksloatacji Maszyn i Uzązeń Enegetycznych Laboatoiu z Baania Maszyn Ćiczenie n 5. Poia bilansoy ukłau ciełoniczego Poazący:
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Podstawy Konstrukcji Maszyn
Podstay Konstukcji Maszyn Wykład 8 Pzekładnie zębate część D inŝ. Jacek zanigoski Klasyfikacja pzekładni zębatych. Ze zględu na miejsce zazębienia O zazębieniu zenętznym O zazębieniu enętznym Klasyfikacja
#$%&"!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$
M NM O *+ 62-3B6 8 -C 6-B7 6 * *+5 2 B9 A: 6:!"#$% '!"#$%' ()* +,-. $/0(1()*$ +,!' + -.+ -/ (* +,!' + - / +,!'0!" $(1 234.56789: $(1 ;. *; ' +,!' 1 $% )# ?@ABCDE!6 9: $(1 FGH IJ!" $/0(1 IJKL
MECHANIKA PŁYNÓW I,WYDZIAŁ MEIL, ZADANIA DOMOWE, SERIA 1, ZESTAW NR 1
MECANIKA PŁYNÓW I,WYDZIAŁ MEIL, ZADANIA DOMOWE, SEIA 1, ZESTAW N Mieszadełko aboratoryjne o promieniu naczynia = 0.0 m i ysokości = 0.1 m ypełnione jest płynem, który bezrucu sięga na ysokość = 0.09 m.
Własności płynów - zadania
Zadanie 1 Naczynie o objętości V = 0,1 m³ jest wypełnione cieczą o masie m = 85 kg. Oblicz gęstość cieczy oraz jej ciężar właściwy. Gęstość cieczy: ciężar właściwy cieczy: ρ = m V = 85 = 850 kg/m³ 0,1
PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego
PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa
1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1)
nikanie_ciepla Wnikanie ciepła 1. Wnikanie ciepła podcas renia pęcherykoego na enętrnej poierchni rur Zależność Rohsenoa q 1/ g c pt W r (1.1) n C rr s m n = 1,0 dla ody n = 1,7 dla innych ciecy 3 Współcynnik
Optyka wiązek - Wiązka Gaussowska
Optyka wiąek - iąka Gaussowska iąka Gaussowska Rokład espolonego pola optycnego } exp{ ik U jest espolonym okładem pola któy musi być owiąaniem ównania Helmholt a: Gdie k jest licbą alową chaakteyującą
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 18 MARCA 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Styczna do wykresu funkcji
NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM
NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM Pionowe napręŝenie pierwotne σ zρ jest to pionowy nacisk jednostkowy gruntów zalegających w podłoŝu gruntowym ponad poziomem z. σ zρ = ρ. g. h = γ. h [N/m 2 ] [1]
8. Hydrostatyka i hydrodynamika
8 Hydrostatyka i hydrodynamika Hydrostatyka Ciśnienie hydrostatyczne Jest to ciśnienie yołane ciężarem cieczy Ciśnienie hydrostatyczne zależy tylko od ysokości słupa cieczy, tj od głębokości, na której
! "#$% &'!& & ( )*)* +,&, -! &./ * * -!"#$%&' 0 0!"#$% &' 1 (% )*+,'-./01 ) 2340,5 ( 67 1* 89:; 9?FG HIJK LMHIJK1NO K LME O K L M < = > P Q
! "#$% &'!& & ( )*)* +,&, -! &./ * * -!"#$%&' 0 0!"#$% &' 1 (% )*+,'-./01 ) 2340,5 ( 67 1* 89:; ?@ABCDE 9?FG HIJK LMHIJK1NO K LME O K L M < = > P Q A BR S T. U V W? @ XY=> E 9 Z [\] ^ _`a`@bc 9 M
Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu
Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 5. Sześcian o krawędzi 10 przecięto płaszczyzną zawierającą przekątną dolnej
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Zadanie 1. Zadanie 2.
Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie
Modele matematyczne procesów, podobieństwo i zmiana skali
Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
J. Szantyr - Wykład 3: wirniki i uklady kierownic maszyn wirnikowych. Viktor Kaplan
J. Szantyr - Wykład 3: irniki i uklady kieronic maszyn irnikoych Viktor Kalan 1876-1934 Poma odśrodkoa Schemat rzełyu rzez omę odśrodkoą u rzut rędkości bezzględnej na kierunek rędkości unoszenia, rędkość
Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20
STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
10. Ruch płaski ciała sztywnego
0. Ruch płaski ciała sztywnego. Pędkość w uchu płaskim Metody wyznaczania pędkości w uchu płaskim y x / chwiowy śodek pędkości. naitycznie Dane:, Szukane: s / /. Na podstawie położenia chwiowego śodka
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator
MOTROL, 26, 8, 118 124 WBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATCZNEGO CIĄGNIKA ROLNICZEGO Bonisław Kolato Kateda Eksploatacji Pojadów i Masyn, Uniwesytet Wamińsko-Mauski w Olstynie Stescenie.
ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
!"#$%'%$ '$%%$ '!$% *+,-./0 * +,-./0 * 23!"#$%' *+,-./0$/0 2345679$:;?@ABC -4E FGHIJKLMNOJH 9$?@PQAB4ER PQ4E ST$UV+PWXY*$/0 #9$#-./ /045XZ$J452[\ 456 /0 # 79:; ' < ; /*0/0! " "#$ 222 3 4.5! 65!!!"#$%'%$
Henryk Bieszk. Odstojnik. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Gdańsk H. Bieszk, Odstojnik; projekt 1
Henryk Bieszk Odstojnik Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2007 H. Bieszk, Odstojnik; projekt 1 PRZEDMIOT: APARATURA CHEMICZNA TEMAT ZADANIA PROJEKTOWEGO ODSTOJNIK
Wysokość opłat i ceny biletów za przejazdy lokalnym transportem zbiorowym od 1 sierpnia 2019 r.
Wysokość opłat i ceny biletów za przejazdy lokalnym transportem zbiorowym od 1 sierpnia 2019 r. Tabela 1. Opłaty za przejazdy przy użyciu tportmonetki na karcie PEKA Lp. Liczba przejechanych przystanków
! " # $ %& '&.!"#$%&' ()*+,-./! "## $ %& ' ()*+,-./ !7"##7$7%&7' 7 89 (:;4 )* <= ()*+,-./ AB6 8 CDE ( # &"!(
.!"#$%' ()*+,-./! "## $ % ' ()*+,-./01.1234.5677 777!7"##7$7%7'789 (:;4)*?@+.6218AB68 CDE(#"!()*+",-.. 01!"#$%'()*+,-./ *+,-234. 5 6(789:; ?@AB
Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
1. Zebranie obciążeń na konstrukcję Oddziaływania wiatru. wg PN-EN Dane podstawowe:
1. Zebranie obciążeń na konstrukcję. 1.1. Oddziaływania wiatru. wg PN-EN 1991-1-4 1.1.1. Dane podstawowe: Miejscowość: wg numeru zadanego tematu Wysokość nad poziomem morza: podać średnią wysokość miejscowości
DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.
DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
Stereo. (a miejscami nawet surround) 30 stycznia 2014
Stereo (a miejscami nawet surround) 30 stycznia 2014 To kółko wiele zawdzięcza niezrównanym artykułom Michała Kiezy z Kącika Przestrzennego Delty. Oprócz tego zadania pochodzą z OMów oraz prezentacji Adama
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie
Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową
PRÓBNY EGZAMIN GIMNAZJALNY
RÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW RZYGOTOWANY RZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2018 CZAS RACY: 90 MINUT 1 ZADANIE 1 (1 KT) Wykres przedstawia zależność objętości wody w zbiorniku deszczowym
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania
# % " ( %) %%* %+%,-. # #! " # # $ % & ' " # (') *+,-./01!" : ; 6 #$%. <=> &' E > 4 < FG HIJ. KLMN *O F N' *O PQRSTUV NWX Y?*O,- D
# % "(%) %%*%+%,-. ##! " # # $ % & ' " # (') *+,-./01!" 23456 78: ;6 #$%. &'$%!"?@ABCD E>4
ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego
34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0
A4.06 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.06 Instrukcja wykonania ćwiczenia Lepkościowo średnia masa cząsteczkowa polimeru Zakres zagadnień obowiązujących do ćwiczenia 1. Związki wielkocząsteczkowe
Matematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
!"#$ % &'# $& &# # && () *+(+ + (!"#$%&!"#$%&' ()*+,!"#$%&' *+, () *+,-./01 (( ' -./ :;, -./ < "! $ "! 9 $ "! F $
!"#$ % &'# $& &# # && () *+(+ + (!"#$%&!"#$%&' ()*+,!"#$%&' *+, () *+,-./01 (( ' -./01 2345067289:;, -./01-0-- 0 < = >? @0ABCDE @$ "! $ "! 9 $ "! F $ "! 0 < = G H 9 I J KLMNO < PQRC - / 1 / /$!9 /$! 0
Zadanie 2. Zadanie 4: Zadanie 5:
Zadanie 2 W stanie naturalnym grunt o objętości V = 0.25 m 3 waży W = 4800 N. Po wysuszeniu jego ciężar spada do wartości W s = 4000 N. Wiedząc, że ciężar właściwy gruntu wynosi γ s = 27.1 kn/m 3 określić:
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ...
MATEMATYKA Przed próbną maturą Sprawdzian. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 6 Imię i nazwisko... Liczba punktów Procent Przed próbną maturą. Sprawdzian. Zadanie 1. (0
Obciążenia środowiskowe: śnieg i wiatr wg PN-EN i PN-EN
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Obciążenia środowiskowe: śnieg i wg PN-EN 1991-1-3 i PN-EN 1991-1-4 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Obciążenie śniegiem Obciążenie
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel
Egzamin z MGIF, I termin, 2006 Imię i nazwisko
1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3
Pomiar siły parcie na powierzchnie płaską
Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
Zasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW
Zasady dynamiki Newtona. I. Jeżeli na ciało nie działają siły, lub działające siły równoważą się, to ciało jest w spoczynku lub porusza się ruchem jednostajnym. II. Jeżeli siły się nie równoważą, to ciało
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Lepkościowo średnia masa cząsteczkowa polimeru. opiekun ćwiczenia: dr A.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Lepkościowo średnia masa cząsteczkowa polimeru ćwiczenie nr 21 opiekun ćwiczenia: dr A. Kacperska Zakres zagadnień obowiązujących do ćwiczenia 1. Związki
! " # $% % & ' ( & ) * & ' )(&
) 64 7.D.,. 0 6 64 5 8 C!) )!"#$!"#$%&' )( %& 234567 89:; * (+,-. * ),-. /?*,/ 0 @AB7CD E6 1 AB7C*,/ 0/1 FGHI%JKL MN O PQR SKT*, UVWXY 0 1 *,/ 0 ZS[X AB7C PQR\PQO8]^ _`abca 0 1 Q E ]^ * B7C P QR [ E
Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja o zajęć laboratoryjnych z przemiotu: FIZYKA Ko przemiotu: KS07; KN07; LS07; LN07 Ćiczenie Nr Wyznaczanie gęstości cieczy i ciał stałych
41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)
Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Przykład obliczeniowy
Przykład obliczeniowy α= 35 0 h d = 290 350 H b =1350 H = 300 3H= 900 b= 1700 a b = 1000 h p = 100 a = 1100 Lokalizacja Gdańsk Morena, A = 100 m.n.p.m. 2015-05-30 1 SNIEG Gdańsk 3 strefa Obciążenie śniegiem
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 8 KWIETNIA 2017 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Ola odwiedziła koleżankę, a następnie wracała
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 24 MARCA 2018 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 2 6+ 5+2 6
Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4
Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dawid Trawiński Wojciech Sochalski Wydział: BMiZ Kierunek: MiBM Semestr: V Rok: 2015/2016 Prowadzący: dr hab. inż. Tomasz
1. Zebranie obciążeń na konstrukcję Oddziaływania wiatru. Wg PN-EN Dane podstawowe:
1. Zebranie obciążeń na konstrukcję. 1.1. Oddziaływania wiatru. Wg PN-EN 1991-1-4 1.1.1. Dane podstawowe: Miejscowość: wg numeru zadanego tematu Wysokość nad poziomem morza: Strefa obciążenia wiatrem:
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli
Przykład zbierania obciążeń dla dachu stromego wg PN-EN i PN-EN
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykład zbierania obciążeń dla dachu stromego wg PN-EN 1991-1-3 i PN-EN 1991-1-4 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) 20. Obciążenia dachu
Opracowała : Beata Adamczyk. 1 S t r o n a
Opracowała : Beata Adamczyk 1 S t r o n a Do rozwiązania poniższych zadań niezbędna jest znajomość wzoru na gęstość: d = Potrzebne są również wzory na masę (m) i objętość (V), które możemy otrzymać po
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca
Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].
WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one
2. Statyka. Równowaga hydrostatyczna
. Statyka Statyka płynó ajuje się agadnieniai rónoagi i statecności płynó, nierucoyc ględe pryjętego układu odniesienia, a także siłai yieranyi pre płyny na ścianki biornikó lub ścianki ciał stałyc anuronyc
Opracowanie: Emilia Inczewska 1
Wyznaczyć zbrojenie przekroju pokazanego na rysunku z uwagi na przekrój podporowy i przęsłowy. Rozwiązanie: 1. Dane materiałowe Beton C25/30 - charakterystyczna wytrzymałość walcowa na ściskanie betonu
5 ; / ;, /1 E #5 5!"#$%& ( :; )*+ 5.,-+ ( J KL /,01 1 / MNO )*+ 5 PCQRSTUV C KL,-+ QWXY )*+ C ZT[ \]^
5 ;/ 8+49 +0 +4 ;,/1 E#5 5!"#$%& ( 23456789:;?@AB?CDE )*+ 5.,-+ ( FGH@AIB,-+.)*+ JKL /,011/ MNO )*+ 5PCQRSTUV CKL,-+ QWXY )*+ CZT[ \]^. + 12 _`Oa )*+ Mbc,-+ CJ2C %V3BA,-+.)*+ 5C MaCVC BA3,-+ 3 3-2C@
() () *+, )# -"#),." ) / ()0)1,+0. ),." "./+0" ("0+ 0"/ 1. * )1,+0.) "0."1",0"#! "# $% &' $ && # %!"#$%&' ' ' ()* +,-./ :; 5 <9:; = $A$
() () *+, )# -"#),." ) / ()0)1,+0. ),." "./+0" ("0+ 0"/ 1. * )1,+0.) "0."1",0"#! "# $% &'$ && # %!"#$%&' ' '()* +,-./01 23456789:; 5 ?2@ $A$BCDE FG H IJ>#KLMN=OPQRS:;TU: ; TUV -. %.#! " #! $% &'
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,