Funkcje i Procedury. Wyrazenien
|
|
- Maksymilian Górecki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Funkcje i Procedury. Określanie Funkcji. Rozwiązanie skomplikowanych zagadnień czasami jest niemożliwe bez zastosowania własnej funkcji i procedur. Chcemy stworzyć dobre aplikacje? Trzeba umieć stworzyć kompaktowe i elastyczne procedury. f [ x _]: = Wyrazenie Określa funkcję.? f Daje informację o funkcji. Clear [ f ] Anuluje wcześniej określoną funkcję. Podkreślenie po x, po lewej stronie definicji, jest koniecznym i oznacza, że x_ jest formalnym argumentem. Jeśli funkcja była określona, wtedy ponowne określenie ignoruje poprzednie. Wyrażenie - to jest dowolne wyrażenie, które można zapisać w Mathematica i w wyrażeniu x występuje bez podkreślenia. Procedurę określa się następująco proc [ x _, y _,...]: = ( Wyrazenie1 ; Wyrazenie2;... Wyrazenien ) Tu proc jest nazwą procedury, a x_,y_,.. są formalnymi parametrami. Prawą stroną procedury może być dowolny ciąg wyrażeń zapisanych w okrągłych nawiasach i oddzielony między sobą średnikiem. Jeśli za ostatnim wyrażeniem nie ma średnika, wtedy wartością naszej procedury będzie wartość tego wyrażenia, w przeciwnym razie wartość procedury nie będzie określona. W Mathematica wszystkie nazwy standardowych procedur i funkcji zaczynają się dużą literą. Aby nazwa naszej procedury nie pokrywała się z nazwą standardowej, lepiej będzie, żeby pierwsza literka w nazwie naszej funkcji była mała. Bardzie szerokie możliwości daje procedura określona jako Module: nazwa@x_, y_,...d := Module@8a, b,...<, < Ciało procedury >D Tu Module jest słowem kluczowym; nazwa to dowolna nazwa, która zaczyna się małą literą; x_,y_,...formalne parametry a {a,b,...} to zmienne lokalne, ich znaczeń nie widać poza granicą procedury. Przy określaniu funkcji typu Module, aby uniknąć błędów, zaleca się od początku zapisać pusty moduł, jak poniżej: nazwa[x_,y_,..]:=module[{}, ] a potem uzupełnić ją. Ciało procedury zapisuje się między przecinkiem i prawym kwadratowym nawiasem. Funkcję warunkową określa się następująco: f [ x _]: = Wyrazenie/;warunek; 24
2 Wszystkie reguły po wyrażeniu zaczyna się od znaków /;. Efekt takiego określenia widać na poniższym przykładzie. In[38]:= := x^2 + 2x 4ê;x 2; g@x_d := 2x+ 8ê;2< x 4; g@x_d := x^2+ 12 x 32 ê;x> 4; a wykres tej funkcji wygląda następująco: In[43]:= Plot@g@xD, 8x, 2, 8<D Out[43]= Graphics Funkcję tą mogliśmy deklarować inaczej: g@x_d := If@x 2, x^2 + 2x 4, If@2 < x 4, 2x+ 8, x^2+ 12 x 32DD Jest oczywiste, że te dwie funkcje są identyczne, czyli w Mathematica zawsze istnieje kilka sposobów rozwiązywania problemów. W Mathematica można pisać funkcje z nieokreślonymi ilościami formalnych parametrów. W takich przypadkach, formalny parametr zapisuje się dwoma lub trzema podkreśleniami. x_ (jedno podkreślenie) wskazuje na to, że w tym miejscu może wystąpić jedno wyrażenia. x (Dwa podkreślenia) wskazuje na to, że w tym miejscu może wystąpić jedno lub więcej wyrażeń. x (trzy podkreślenia) wskazuje na to, że w tym miejscu może wystąpić zero lub więcej wyrażeń. Trzeba być bardzo ostrożnym przy zapisywaniu funkcji z nieokreślonymi ilościami formalnych parametrów. W poniższych przykładach pokazujemy, jak działa funkcja z nieokreślonymi parametrami w różnych przypadkach, czyli jak wynik zależy od postaci samej funkcji. 25
3 In[1]:= y D := x 2 + y In[2]:= f@ad Out[2]= a 2 In[3]:= f@a, bd Out[3]= a 2 + b In[4]:= f@a, b, cd Out[4]= a 2 + b+ c się. Tu określona jest prosta funkcja. po lewej stronie której y ma potrójne podkreślenie. Tu zamiast y domyślnie bierze się zero. Parametry, jeśli ich ilość jest większa niż dwa, sumują In[5]:= f@x_, y D := x 2 + 2y In[6]:= f@ad Out[6]= 2+ a 2 Tu zamiast y domyślnie bierze się jeden. In[7]:= f@ a, bd Out[7]= In[8]:= a 2 + 2b f@ a, b, cd Out[8]= a 2 + 2bc występują Parametry, jeśli ich liczba jest większa niż dwa, jako iloczyn. In[9]:= f@x_, y D := x 2 + y 3 In[10]:= f@ad Całkiem inny otrzymujemy wynik, gdy funkcja zmienia postać. Out[10]= 3 + a 2 In[11]:= f@a, bd Out[11]= a 2 + b 3 In[12]:= f@a, b, cd Out[12]= a 2 + b c3 Tu każdy następny parametr pojawia się w potędze. Domyślne parametry i opcje. Czasami trzeba określić funkcje w której pewne argumenty są domyślne i można je omijać. Szablon x _ : v oznacza, ze argument w tym miejscu można opuścić i za jego wartość przyjmuje się znaczenie ν, jak to pokazano na przykładzie: 26
4 In[1]:= n_: 3D := x^n + 1 In[2]:= f@ad Out[2]= 1+ a 3 In[3]:= f@a, 5D Out[3]= 1+ a 5 Również za pomocą opcji można określić domyślne argumenty, różnica jest w tym, że opcja nadaje nazwę argumentowi. Formalny parametr, który powinien być określony jako opcja, pisze się z potrójnym podkreśleniem. f[x_, opts ]:=<Ciało procedury> Aby zastąpić domyślną wartość argumentu bieżącym parametrem opts, w ciele procedury trzeba napisać: Opcja/.{opts}/Options[f] A domyślna wartość argumentu określa się stosując instrukcję Options. Options[f]={opcja wart} gdzie f to jest nazwą procedury, opcja nazwą domyślnego argumentu, który można pomijać a wart to domyślna wartość argumentu. Działanie tej instrukcji zobaczymy w następujących przykładach: a) Gdy instrukcja Options określa opcję poza ciałem procedury: Załóżmy, że chcemy określić funkcje g [ x] = x m + 1 i chcemy, by tam gdzie potęga jest ominięta domyślną wartością potęgi było 3. In[1]:= Options@gD = 8m 3< Out[1]= 8m 3< In[2]:= g@x_, opt D := Hx^m ê. 8opt<ê. Options@gDL + 1 In[4]:= g@xd Out[4]= 1+ x 3 In[5]:= g@x, m > 8D Out[5]= 1+ x 8 b) Gdy instrukcja Options jest określana wewnątrz procedury: Załóżmy chcemy określić funkcje SumaPotęgy@x, yd = xn + y m niech wtedy domyślnymi wartościami będą n=2, m=2. i gdy potęgi są ominięte, 27
5 In[6]:= y_, opt D := HOptions@SumaPotęgiD = 8n 2, m 2<; Hx^n ê. 8opt< ê. Options@SumaPotęgiDL + Hy^m ê.8opt<ê. Options@SumaPotęgiDLL In[7]:= SumaPotęgi@x, yd Out[7]= x 2 + y 2 In[8]:= SumaPotęgi@x, y, m 7, n 10D Out[8]= x 10 + y 7 Funkcje prymitywne można określić trzema sposobami: Function[x, ciało] funkcja prymitywna ma jeden argument x, który można zastąpić dowolnym wyrażeniem. Function[{x 1, x 2, }, ciało] Ciało& funkcja prymitywna ma wiele argumentów. funkcja prymitywna, w której argumenty są zdefiniowane jako # lub #1, #2 itp. #1 to będzie pierwszy parametr, #2- drugi itp. Na przykład, jeżeli chcemy określić funkcje s=sin(x) 3 +1, jako funkcję prymitywną piszmy In[1]:= s = Function@x, Sin@xD^3 + 1D Out[1]= Function@x, Sin@xD 3 + 1D a następnie x zamieniamy na ArcSin(a), otrzymujemy In[2]:= s@arcsin@add Out[2]= 1+ a 3 Jeżeli chcemy obliczyć sumę kwadratów pierwszych n naturalnych liczb, lepiej będzie skorzystać z funkcji prymitywnej następującej postaci In[4]:= f = H#2 2 + #1L &; a następnie wystarczy napisać In[5]:= n = 7; FoldList@f, 0, Range@nDD Out[5]= 80, 1, 5, 14, 30, 55, 91, 140 < 28
7. Pętle for. Przykłady
. Pętle for Przykłady.1. Bez użycia pętli while ani rekurencji, napisz program, który wypisze na ekran kolejne liczby naturalne od 0 do pewnego danego n. 5 int n; 6 cin >> n; 8 for (int i = 0; i
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
3. Instrukcje warunkowe
. Instrukcje warunkowe Przykłady.1. Napisz program, który pobierze od użytkownika liczbę i wypisze na ekran słowo ujemna lub nieujemna, w zależności od tego czy dana liczba jest ujemna czy nie. 1 #include
4. Funkcje. Przykłady
4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main.
Część XVI C++ Funkcje Jeśli nasz program rozrósł się już do kilkudziesięciu linijek, warto pomyśleć o jego podziale na mniejsze części. Poznajmy więc funkcje. Szybko się przekonamy, że funkcja to bardzo
Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie
Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których
Informatyka II. Laboratorium Aplikacja okienkowa
Informatyka II Laboratorium Aplikacja okienkowa Założenia Program będzie obliczał obwód oraz pole trójkąta na podstawie podanych zmiennych. Użytkownik będzie poproszony o podanie długości boków trójkąta.
Programowanie strukturalne i obiektowe. Funkcje
Funkcje Często w programach spotykamy się z sytuacją, kiedy chcemy wykonać określoną czynność kilka razy np. dodać dwie liczby w trzech miejscach w programie. Oczywiście moglibyśmy to zrobić pisząc trzy
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Programowanie w Logice
Programowanie w Logice Działanie Prologu Przemysław Kobylański na podstawie [CM2003] Składnia Programy Prologu składają się z termów. Term to stała, zmienna lub struktura (term złożony). Term zapisuje
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
1. Które składowe klasa posiada zawsze, niezależnie od tego czy je zdefiniujemy, czy nie?
1. Które składowe klasa posiada zawsze, niezależnie od tego czy je zdefiniujemy, czy nie? a) konstruktor b) referencje c) destruktor d) typy 2. Które z poniższych wyrażeń są poprawne dla klasy o nazwie
przedmiot kilka razy, wystarczy kliknąć przycisk Wyczaruj ostatni,
Baltie Zadanie 1. Budowanie W trybie Budowanie wybuduj domek jak na rysunku. Przedmioty do wybudowania domku weź z banku 0. Zadanie 2. Czarowanie sterowanie i powtarzanie W trybie Czarowanie z pomocą czarodzieja
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
OLIMPIADA MATEMATYCZNA
OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
1 Nierówność Minkowskiego i Hoeldera
1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami
Programowanie w języku Python. Grażyna Koba
Programowanie w języku Python Grażyna Koba Kilka definicji Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i
Jak zawsze wyjdziemy od terminologii. While oznacza dopóki, podczas gdy. Pętla while jest
Pętle Pętla to pewien fragment kodu, który jest wykonywany wielokrotnie. Wyobraź sobie taką sytuację. Piszesz program do szyfrowania danych. Dane są szyfrowane kolejno bajt po bajcie. Załóżmy, że plik
Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Programowanie w Baltie klasa VII
Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.
Języki i paradygmaty programowania
Języki i paradygmaty programowania Instytut Teleinformatyki ITI PK Kraków marzec 2012 Spis rzeczy 1 Operatory w C/C++ Operatory Operatory w C/C++ operator - rodzaj funkcji wbudowanej w język; różnica notacja
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
W przeciwnym wypadku wykonaj instrukcję z bloku drugiego. Ćwiczenie 1 utworzyć program dzielący przez siebie dwie liczby
Część XI C++ W folderze nazwisko36 program za każdym razem sprawdza oba warunki co niepotrzebnie obciąża procesor. Ten problem można rozwiązać stosując instrukcje if...else Instrukcja if wykonuje polecenie
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
PRZELICZANIE JEDNOSTEK MIAR
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Systemy operacyjne. Laboratorium 9. Perl wyrażenia regularne. Jarosław Rudy Politechnika Wrocławska 28 lutego 2017
Systemy operacyjne Laboratorium 9 Perl wyrażenia regularne Jarosław Rudy Politechnika Wrocławska 28 lutego 2017 Temat obejmuje wykorzystanie wyrażeń regularnych w perlu. Wyrażenia same w sobie są w zasadzie
Funkcja pierwotna, całka oznaczona na podstawie funkcji pierwotnej
MATLAB - całkowanie Funkcja pierwotna, całka oznaczona na podstawie funkcji pierwotnej Do uzyskania funkcji pierwotnej służy polecenie int. Jest wiele możliwości jego użycia. Zobaczmy, kiedy wykonuje się
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Wykład 8: klasy cz. 4
Programowanie obiektowe Wykład 8: klasy cz. 4 Dynamiczne tworzenie obiektów klas Składniki statyczne klas Konstruktor i destruktory c.d. 1 dr Artur Bartoszewski - Programowanie obiektowe, sem. 1I- WYKŁAD
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Przekształcanie wykresów.
Sławomir Jemielity Przekształcanie wykresów. Pokażemy tu, jak zmiana we wzorze funkcji wpływa na wygląd jej wykresu. A. Mamy wykres funkcji f(). Jak będzie wyglądał wykres f ( ) + a, a stała? ( ) f ( )
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Języki programowania C i C++ Wykład: Typy zmiennych c.d. Operatory Funkcje. dr Artur Bartoszewski - Języki C i C++, sem.
Języki programowania C i C++ Wykład: Typy zmiennych c.d. Operatory Funkcje 1 dr Artur Bartoszewski - Języki C i C++, sem. 1I- WYKŁAD programowania w C++ Typy c.d. 2 Typy zmiennych Instrukcja typedef -
FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Jarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Maciej Grzesiak. Wielomiany
Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
Funkcje. Deklaracja funkcji. Definicja funkcji. Wykorzystanie funkcji w programie.
Funkcje Deklaracja funkcji typ funkcji identyfikator_funkcji(lista parametrów formalnych); Typ funkcji określa typ wartości zwracanej przez funkcję (typ zdefiniowany pierwotnie jak int, typ zdefiniowany
Zakład Systemów Rozproszonych
Zakład Systemów Rozproszonych Politechnika Rzeszowska Moduł 5: Wybrane programy użytkowe Edytor Vi Edytor Vi uruchamiany jest w oknie terminala. Przy jego pomocy możemy dokonywać następujących operacji:
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Programowanie w języku C++ Grażyna Koba
Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad
Przykład 1: Funkcja jest obiektem, przypisanie funkcji o nazwie function() do zmiennej o nazwie funkcja1
Rachunek Prawdopodobieństwa i Statystyka lab 3. Kaja Gutowska (Kaja.Gutowska@cs.put.poznan.pl) 1. Funkcje: - Funkcje nie powinny korzystać ze zmiennych globalnych. - Funkcje powinny być możliwie krótkie.
Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?
Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Aby przejść do edycji w tym module należy wybrać zakładkę "Dla Pracowników" -> "Sprawdziany".
Sprawdziany Sprawdziany Moduł "Sprawdziany" oferuje osobom prowadzącym zajęcia wygodny sposób informowania studentów o wynikach/ocenach jakie uzyskali (np. z kartkówek, różnego rodzaju zadań, ogólne jakie
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000
SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości
operator zmiany znaku operatory mnożenia, dzielenia, dzielenia modulo operatory dodawania, odejmowania
http://torus.uck.pk.edu.pl/~fialko Operatory, wyrażenia, instrukcja przypisania Operatory arytmetyczne * / + - % operator zmiany znaku operatory mnożenia, dzielenia, dzielenia modulo operatory dodawania,
Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.
Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
MATLAB tworzenie własnych funkcji
MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
Weźmy wyrażenie. Pochodna tej funkcji wyniesie:. Teraz spróbujmy wrócić.
Po co nam całki? Autor Dariusz Kulma Całka, co to takiego? Nie jest łatwo w kilku słowach zdefiniować całkę. Najprościej można powiedzieć, że jest to pojęcie odwrotne do liczenia pochodnych, Mówimy czasami
Programowanie - wykład 4
Programowanie - wykład 4 Filip Sośnicki Wydział Fizyki Uniwersytet Warszawski 20.03.2019 Przypomnienie Prosty program liczący i wyświeltający wartość silni dla wprowadzonej z klawiatury liczby: 1 # include
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie.
Część XXII C++ w Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie. Ćwiczenie 1 1. Utwórz nowy projekt w Dev C++ i zapisz go na
2. Zmienne i stałe. Przykłady Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117).
2. Zmienne i stałe Przykłady 2.1. Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117). 5 int a = 281; int b = 117; 7 8 cout
Skrypt 7. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Rachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
Numeryczne rozwiązywanie równań i układów równań
Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:
Systemy operacyjne. Laboratorium 8. Perl find
Systemy operacyjne Laboratorium 8 Perl find Temat obejmuje przeszukiwanie drzew katalogowych z użyciem perla oraz podstawowe zdolności w używaniu referencji, tablic asocjacyjnych i mechanizmów typu stat.
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Rozwiązaniem jest zbiór (, ] (5, )
FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz
Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
KONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Granice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech