Wykład I Wprowadzenie i równania stanu
|
|
- Joanna Baranowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Pdstawwe Definicje i Pjęcia Wyład I Wwadzenie i ównania stanu Uład wydębnina część zestzeni Otczenie ta część zestzeni, tóa nie jest uładem Osłna ganica (mateialna lub ncecyjna między uładem a tczeniem Płyn gaz lub ciecz Wwadzenie i ównania stanu Rdzaje uładów: Otwaty wymienia mateię i enegię z tczeniem Zamnięty nie wymienia ani mateii i enegii z tczeniem Półzamnięty - wymienia (tyl enegię z tczeniem (słna diatemiczna / adiabatyczna Paamety estensywne zależą d masy uładu (m, Paamety intensywne nie zależą d masy uładu (T,, x, c, Pzemiana temdynamiczna (ces... zbió lejnych aametów uładu d stanu czątweg d ńcweg Rdzaje zemian: Odwacalne gdy istnieje mżliwść wtu uładu i tczenia ze stanu ńcweg d czątweg Rzeczywiste niedwacalne Quasistatyczne ganiczny zyade zeczywistych: stany ównwagwe Ciąg stanów niesńczenie blisich stanwi ównwagi zy niesńczenie małej zmianie aametów uładu Wwadzenie i ównania stanu Wwadzenie i ównania stanu 4
2 Czynni temdynamiczny mateia wyełniająca uład będąca nśniiem zemian Równwaga temdynamiczna stan ustalający się samzutnie w czasie, w uładzie dizlwanym d bdźców zewnętznych RÓWNANIA STANU wg WALAS Phase equilibia in Chem. Engng F(,, T = 0 F(,, T, A = 0 P,, T aamety stanu A yteium eślające indyw. własnści ciał Wwadzenie i ównania stanu 5 Wwadzenie i ównania stanu 6 Wyes dla czystej substancji HISTORIA RÓWNAŃ STANU GAZÓW P ciecz nie Claeyna (gazów dsnałych nie van de Waalsa K ciecz-aa gaz T yt nie wiialne (ja eseymentalne Onnes nie Benedicta, Webba, Rubina (BWR nie Redlicha-Kwnga ( aam., uleszne van de Waalsa 955 wsółczynni acentyczny Pitzea Wwadzenie i ównania stanu 8
3 Równania sześcienne (cubic equatins - tzecieg stnia ze względu na Są t ównania liniwe ze względu na i tzecieg stnia ze względu na. Mżna je uważać za zwinięcie -nia van de Waalsa. a b RT a uwzględnia siły zyciągania; b - uwzględnia siły dychania (bjętść własna częsteczi Wwadzenie i ównania stanu 9 RT b 8 nieważ: b ; 7(RT a 64 t stać zeduwana ównania vdw jest: Uwaga: Równanie vdw ma iewiasti, z teg ujne T Wwadzenie i ównania stanu 0 Równaie Behelta: RT a = - -b T 9T 8T =RT + - Wwadzenie i ównania stanu 6T T D innych, najbadziej znanych ównań tej guy należą: -nie Redlicha Kwnga a b RT 0, 5 T ( b -nie Save a a(t, a ; ( T 0,5 RT b b 0,5 a(t, (0,48508,557 0,56 - wsółczynni acentyczny Pitzea Wwadzenie i ównania stanu
4 wsółczynni acentyczny Pitzea A lg( T 0, 7 n n n ( c, 0 ciśnienie ay nasycnej w T = 0,7 n A, K, Xe ----ln( n =- Wwadzenie i ównania stanu -nie Penga-Rbinsna RT a(t b b b a(t a(t (T a(t 0,4574R T 0,5 ( T 0,5 / (0,7464,54 0,699 Uważa się, że ównania Save a, Penga- Rbinsna i Redlicha-Kwnga są wygdniejsze, niż inne, w bliczeniach cesu etyfiacji. Wwadzenie i ównania stanu 4 Równania wiialne B C z... RT B C B ' C ' B (B dugi wsółczynni wiialny C (C - tzeci wsółczynni... Wsółczynni B (B - ddziaływania między jednawymi mleułami; C (C między tzema mleułami (wyższe ; D (D... Wsółczynnii wiialu zależą tyl d temeatuy Wwadzenie i ównania stanu 5 Pzeważnie używa się fm zeduwanych d - g lub -g wsółczynnia wiialneg (zy czym dładnść elacji maleje Dugi wsółczynni wiialny zyłady wzów Wzó Tsnuls a dla substancji nielanych RT B f (0 f ( f (0 0,0/ T 0, T 8 0,445 0, / T 0,85 / T Wwadzenie i ównania stanu 6 4
5 f ( 0, 67 0, / T 0, 4 / T 0, 008 / T Uwaga: są wzy na -ci wsółczynni dla dść dużej liczby substancji, a nawet 4-ty wsółczynni, ale tyl dla badz małej liczby substancji 8 Zaes stswalnści ównania wiialneg: dla ciśnienia zeduwaneg T 0,5 T (w zyadu zwinięcia z -gim wsółczynniiem. Wtedy zastswanie ównania wiialneg mże być nawet suteczniejsze d zastswania badziej złżnych zależnści. Wwadzenie i ównania stanu 7 Wwadzenie i ównania stanu 8 Uwagi: nie ma zszezeń na fazę ciełą, ównanie wiialne ma zastswanie w bliczeniach ztwów gazów, ze względu na teetycznie uzasadnine metdy bliczeń wsółczynniów. Równania bazujące na teii stanów dwiadających sbie Ogólna zależnść: f (T,, A, A zwyle eduuje się d : w szczególnści: zrt f (T,, A z f (T,,A,... 0 Wwadzenie i ównania stanu 9 Wwadzenie i ównania stanu 0 5
6 Uwaga: jest t ówncześnie definicja wsółczynnia ściśliwści z. Watść z mieści się w zaesie 0,-0, (watści dświadczalne. A - aamet eślający, jest miaą dchylenia funcji ddziaływań międzycząsteczwych dla gólneg zyadu, w ównaniu z stymi, sfeycznymi cząsteczami. Najbadziej zwszechniny jest wsółczynni acentyczny Pitzea. A lg( T 0, 7 n D niedawna w atyce inżyniesiej stswan: Lydesen 955, A z RT tablice Hugena 959 Wyes: uwaga: z f (T,,z 0,7 watść 0,7 b jest t śednia watść z Wwadzenie i ównania stanu Wwadzenie i ównania stanu eta dla z 0,7 z z D D D z A B 0,7 D A, D B, = f (T, D(z dla z 0,7 dla z 0,7 0,7 dczyt z tablic Wg Lydesena istnieje nastęująca elacja między z a : z 0,9 0, 080 Wg Edmiste a: Tnw T T nw lg[atm] T nw tem. wzenia dla atm Najczęściej stswane jest -nie Lee-Keslea gólnej staci: z z (0 z ( z (... Kelacja z w staci asymacji wielmianem zstała zanwana zez Pitzea. Wwadzenie i ównania stanu Wwadzenie i ównania stanu 4 6
7 Lee i Kesle zastswali ja stany dniesienia, sty łyn i łyn dniesienia. sty łyn t: metan, agn, ytn łyn dniesienia t: n-tan, najcięższy węglwdó stym łańcuchu, dla tóeg mżna znaleźć wiele danych. Wzó Lee-Keslea: z z z (0 (0 ( / 0,978(z z ( ( gdzie: (0 - t łyn sty ( - łyn dniesienia 0,978 t watść dla n-tanu Wyesy: z (0,z ( z (0 f (T, UWAGA: z (0 blisie liczbw watści z Wwadzenie i ównania stanu 5 Wwadzenie i ównania stanu 6 Zaes zastswania Zależnść z 0 d aametów zeduwanych Wwadzenie i ównania stanu 7 Wwadzenie i ównania stanu 8 7
8 Równania tyu Lee-Keslea uważane są atualnie za najbadziej dładne, ócz zastswań d substancji lanych, zy bliczaniu ównwag destylacyjnych i funcji temdynamicznych, w zaesie 0, T 4 i 0 0 Zależnść z d aametów zeduwanych 9 Wwadzenie i ównania stanu 0 Wwadzenie i ównania stanu Złżne -nia stanu n. ównania tyu BWR (Benedict, Webb, Rubin Są t ównania wielaametwe, tóe stały się badziej atacyjne waz z zastswaniem muteów. Stswanie ównań wielaametwych ma na celu zszezenie zaesu ich stswalnści, ta ze względu na, v, T ja i ilść substancji, dla tóych mżna wadzić Zwyle stswane są wtedy, gdy wymagana jest duża dładnść i gdy są dstęne watści aametów, czyli głównie dla węglwdów i gazów nieganicznych. Najbadziej znane jest ównanie BWR. Z lei ównanie BWR ma wiele mdyfiacji, w celu zwięszenia jeg gólnści i dładnści. bliczenia. Wwadzenie i ównania stanu Wwadzenie i ównania stanu 8
9 BWR RT (B RT A (brt a ct ( a 6 C ex( T mdyfiacja Stalinga ównanie BWRS RT ( B RT A D T ( a dt E T 4 6 ct C T ( brt a dt ( ex( Wsółczynnii są znane tyl dla ~50 substancji, głównie węglwdów (stan na niec XX wieu. Jeszcze gzej jest z zastswaniem dla ztwów. Niemniej, gdy znane są aamety i gdy złżnść bliczeń nie jest limitująca (n. w etyfiacji jest t ważne, ównania tyu BWR uważa się, b ównań Lee-Keslea, ja najdładniejsze d bliczeń funcji temdynamicznych. Wwadzenie i ównania stanu Wwadzenie i ównania stanu 4 Równania teetyczne wyniające z uwzględnienia sił ddziaływania międzycząsteczweg, dla gazów zeczywistych. Jest t nwy ieune zwju, na azie są dstęne (zez zau!!! gamy mutewe bliczeń dla gazów w etchemii i cesach igenicznych. Równania stanu dla cieczy Ze względu na t, że nie jest dtychczas gólnie zaacetwane ównanie stanu łynu, nie istnieje też gólna, dładna metda bliczania bjętści (gęstści cieczy ata na ównaniu stanu. Równania tyu Lee-Keslea, Penga- Rbinsna są zwyle niezbyt dładne d bliczeń gęstści cieczy. Wwadzenie i ównania stanu 5 Wwadzenie i ównania stanu 6 9
10 D nwcześniejszych należy ównanie Haninsna-Thmsna (979 dla cieczy nasycnych zy 0,5 < T < 0,95 s * ( R ( [ ] * - bjętść chaateystyczna dawana dla iluset substancji, lub też dla ewnych gu elwana z R ( R f(t, a,b,c,d Stałe nie zależą d dzaju substancji - wsółczynni acentyczny wg Lee-Keslea Pzy zeliczaniu na wyższe watści ciśnienia, stsuje się zależnści: ( R f ( T, e, f, g, h B Cln B c s i gdzie: C, B = f (stałe a, b, c, d, e, f, g, h, i, j,, Wwadzenie i ównania stanu 7 Wwadzenie i ównania stanu 8 s ln gdzie:, stałe zależne d dzaju substancji W atyce, ócz metd addytywnych, d bliczenia gęstści cieczy najczęściej stsuje się egułę Cailleteta-Mathiasa i metdę Watsna. Pza tym stsuje się secyficzne ównania dla secyficznych substancji ciełych. Są też óby stswania ównań tyu BWR dla ewnych cieczy. Wwadzenie i ównania stanu 9 0, 5 Reguła Cailleteta-Mathiasa C G ( a b T / a, b stałe dla substancji C i G gęstść, dwiedni cieczy wzącej i ay nasycnej suchej Wwadzenie i ównania stanu 40 0
11 Metda Watsna Watsn wwadził tzw. wsółczynni esansji = f (T, ta dbany, aby była sełnina zależnść dla danej cieczy: C C C C cnst cnst gdzie indesy, znaczają óżne wauni T, Uwaga: indesy NIE znaczają óżnych substancji Wwadzenie i ównania stanu 4 Wyesy = f (T, mają stać: =,0 0,04 unt ytyczny T dla T = = ; = 0,044 czyli: d bliczenia bjętści cieczy w danych waunach T, należy znać bjętść cieczy w innych waunach T, (n. ytycznych, nmalnej temeatuze wzenia. Wwadzenie i ównania stanu 4 Metda addytywna Le Basa Metda addytywna Le Basa d wyznaczania bjętści mlwej cieczy w nmalnej temeatuze wzenia bazująca na tablicy udziałów Le Basa. Wwadzenie i ównania stanu 4 Wwadzenie i ównania stanu 44
12 Wyes Yena i Alesanda Wzó Bensna Wwadzenie i ównania stanu 45 Wwadzenie i ównania stanu 46 Ogólne wsazówi wybu ównań stanu. D bliczania zależnści,, T dla gazów: ównania Save a i Penga-Rbinsna. Pzy dstęnści stałych taże BWRS.. D bliczania fugatywnści cieczy i ay: ównania Save a i Penga-Rbinsna.. Fugatywnść ay, taże ównanie wiialne z -gim ws. i elacją Tsnulusa Wwadzenie i ównania stanu 47 Wwadzenie i ównania stanu 48
13 D bliczeń ównwagi ciecz-aa, dla węglwdów z gazami nieganicznymi: ównania Save a i Penga-Rbinsna. 4 D bliczeń gęstści cieczy w szeim zaesie zmian T, : ównania Thmsna et al. i Haninsn-Thmsn. Stswać Penga- Rbinsna, gdy wymagana jest zgdść z właściwściami a (n. w destylacji. Wwadzenie i ównania stanu 49
Część 1. Podstawowe Definicje i Pojęcia. kolejnych parametrów układu od stanu początkowego do końcowego
Pdstawwe Definicje i Pjęcia emdynamia echniczna i Chemiczna Część Uład wydębnina część zestzeni Otczenie ta część zestzeni, tóa nie jest uładem Osłna ganica (mateialna lub ncecyjna między uładem a tczeniem
Pole elektryczne w próżni
Kuala Lumul, Malesia, ebuay 04 W- (Jaszewicz według Rutwskieg) 9 slajdów Ple elektyczne w óżni LKTROSTTYK zagadnienia związane z ddziaływaniem ładunków elektycznych w sczynku 3/9 L.R. Jaszewicz Pdstawwe
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zagadnienia 1. Mateatyczne pdstawy etd hdwlanych 2. Watść cechy ilściwej i definicje paaetów genetycznych 3. Metdy szacwania paaetów genetycznych 4. Watść hdwlana cechy
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-3 BADANIE SZTYWNOŚCI PROWADNIC HYDROSTATYCZNYCH
POLITECHNIK ŁÓDZK INSTYTUT OBBIEK I TECHNOLOGII BUDOWY MSZYN Ćwiczenie H- Temat: BDNIE SZTYWNOŚCI POWDNIC HYDOSTTYCZNYCH edacja i racwanie: dr inż. W. Frnci Zatwierdził: rf. dr ab. inż. F. Oryńsi Łódź,
Tłumik rezystancyjny o minimalnych stratach ( dopasowany dzielnik napięcia )
Tłumi ezystancyjny minimalnych statach ( daswany dzielni naięcia ) in I I e(t) U U Niesymetyczny in I / I e(t) U U / Symetyczny Dane jetwe: in [Ω], [Ω] Szuane: [Ω], [Ω], [db] Waune daswania eneetyczne
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne odstawy inżynieii ocesowej Wykład VI Różne metody wyznaczania ciśnienia nasycenia Wykesy temodynamiczne Równania stanu dla substancji zeczywistych Różne metody okeślania ężności ay nasyconej
DYNAMIKA WÓD PODZIEMNYCH
DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej
LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze
Oacwał: Adam Ustzycki Kateda Silników Salinwy i Tantu LABORATORIUM SILNIKÓW SPALINOWYCH Mateiały mcnicze Temat: Bilans cielny silnika Bilans cielny silnika jest t zestawienie zdziału cieła dwadzneg d silnika
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?
Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica
PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?
PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy
5b. Obliczanie grubości okrągłych den płaskich
5b. Obliczanie ubści ąłych den łaskich Śednice śednic, zaówn zewnętnych z jak i wewnętnych w, są znmalizwane i zdnie z nmą BN-64/01-01 wynszą: 0.19, 0.73, 0.34, 0.356, 0.406, 0.457 lub 0.508 [m]. w 0.6,
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
TERMODYNAMIKA PROCESOWA. Wykład V
ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki
Wykład 4: Termochemia
Wykład 4: Termchemia Układ i tczenie Energia wewnętrzna, praca bjętściwa i entalpia Praw Hessa Cykl kłwy Standardwe entalpie twrzenia i spalania Energie wiązań chemicznych Wydział Chemii UJ Pdstawy chemii
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszezny Listad 0 W ni niej szy sce a cie ce nia nia za dań twa tyc są e zen t wa ne zy kła d we aw ne d wie dzi. W te - g ty u za
ność Reakcje nieodwracalne całkowite przereagowanie po zainicjowaniu reakcji wymaga katalizatora układ otwarty, gazowy produkt opuszcza układ HCl (aq
6. Równwaga R chemiczna Reakcje niedwracalne i dwracalne Reguła a rzekry Prcesy samrzutne i niesamrzutne Entria i tencjał termdynamiczny Warunki samrzutnści Praw działania ania mas Stałe e równwagi r i
PODSTAWY FIZYKI DLA ELEKTRONIKÓW
WOJSKOWA AKADEMIA TECHNICZNA Antni Rgalski PODSTAWY FIZYKI DLA ELEKTRONIKÓW WARSZAWA 00 SPIS TREŚCI PRZEDMOWA 9 Rzdział. WPROWADZENIE 3.. Czym jest fizyka? 3.. Wstęp matematyczny 4... Pchdna funkcji 4...
ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE
ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE Wpwadzenie Ple magnetyczne występuje wkół magnesów twałych, pzewdników z pądem, uchmych ładunków elektycznych a także wkół
Nagrzewnica indukcyjna cylindryczna, wzory na parametr tłumienia i dobroć
di:0.599/48.05.07.9 Rman EROŃS AGH Aademia Gónicz-Hutnicza w awie, ateda Enegeletnii i Autmatyi Systemów Pzetwazania Enegii agzewnica inducyjna cylindyczna, wzy na paamet tłumienia i dbć Steszczenie. Wypwadzn
ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania
ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych
A. Kanicki: Systemy elektroenergetyczne KRYTERIA NAPIĘCIOWE WYZNACZANIA STABILNOŚCI LOKALNEJ
. Kanici: Systemy eletrenergetyczne 94 5. KRYTERI NPIĘCIOWE WYZNCZNI STILNOŚCI LOKLNEJ dp Kryterium załada, że dbiry są mdelwane stałą impedancją a nie rzeczywistymi dδ charaterystyami dbirów. Nie pazuje
Wymagania edukacyjne z matematyki w klasie VII
Wymagania edukacyjne z matematyki w klasie VII Ocenę niedstateczną tzymuje uczeń, któy: nie anwał mateiału gamweg na zimie wymagań kniecznych nie tafi wyknać stych leceń wymagających zastswania dstawwych
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Zadania z równowag chemicznych W.Chrzanowski Rozwiązania. Część 3.
Zadania z ównwag chemicznych W.Chzanwski 00. Rzwiązania. Część 3. 7. W temeatuze 600 stałe ównwagi eakcji wynszą: A: B B A 0 B: Cl Cl B 0 C: BCl B + Cl C 057 Oblicz: a) watść stałej ównwagi eakcji BCl
POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA
POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,
ILOCZYN ROZPUSZCZALNOŚCI
ILOCZYN ROZPUZCZALNOŚCI W nasycnym rztwrze trudn rzpuszczalneg elektrlitu występuje równwaga między fazą stałą i jnami elektrlitu w rztwrze znajdującym się nad sadem. Jest t stan równwagi dynamicznej,
INSTRUKCJA DO ĆWICZENIA NR 1
KATEDA EHANK STOSOWANEJ Wydział echaniczny POLTEHNKA LUBELSKA NSTUKJA DO ĆWZENA N PZEDOT TEAT OPAOWAŁ EHANKA UKŁADÓW EHANZNYH Badania analityczne układu mechaniczneg jednym stpniu swbdy D inż. afał usinek.
Przykłady sieci stwierdzeń przeznaczonych do wspomagania początkowej fazy procesu projektow ania układów napędowych
Rzdział 12 Przykłady sieci stwierdzeń przeznacznych d wspmagania pczątkwej fazy prcesu prjektw ania układów napędwych Sebastian RZYDZIK W rzdziale przedstawin zastswanie sieci stwierdzeń d wspmagania prjektwania
Wykład 2. Przemiany termodynamiczne
Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const
XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
PSO matematyka III gimnazjum. Szczegółowe wymagania edukacyjne na poszczególne oceny
PSO matematyka III gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOMY WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE pjęcie liczby naturalnej,
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Optymalne przydzielanie adresów IP. Ograniczenia adresowania IP z podziałem na klasy
Optymalne przydzielanie adresów IP Twórcy Internetu nie przewidzieli ppularnści, jaką medium t cieszyć się będzie becnie. Nie zdając sbie sprawy z długterminwych knsekwencji swich działań, przydzielili
PSO matematyka I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny
PSO matematyka I gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOM WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca spsób zakrąglania liczb klejnść wyknywania działań pjęcie liczb
TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej
ERMODYNAMIKA PROCESOWA Wykład VI Równania kubiczne i inne Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej Komunikat Wstęne terminy egzaminu z ermodynamiki rocesowej : I termin środa 15.06.016
Ocena jakości układu regulacji automatycznej
WOJSKOWA AKADEMIA TECHNICZNA im. Jaława Dąbwieg Ćwiczenie achunwe Ocena jaści uładu egulacji autmatycznej mg inż. Batz BRZOZOWSKI Wazawa 7 Cel ćwiczenia achunweg Pdcza ćwiczenia puzane będą natępujące
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM Telekmunikacji w transprcie wewnętrznym / drgwym INSTRUKCJA DO ĆWICZENIA
Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7
Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę
L=1cm Zaprojektować wstępnie przekroje prętów. Obliczyć zaznaczone przemieszczenia od obciążenia siłami. oraz
WYZNACZANIE PRZEMIEZCZEŃ katwnica ił zmian temeatu zemiezczenia dó i błęd mntażu- 0 OBLICZENIE PRZEMIEZCZEŃ W KRAOWNICY PŁAKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet katwnica jak na unku Lcm -0 C Wznaczć
KONSTRUOWANIE ENERGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULARNEGO
KONSTUOWANIE ENEGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULANEGO Dwa etay: "ozsądny model eneg otencalne dobó oczątowych watośc aametów Doasowane aametów w tace symulac Oddzaływana ótozasęgowe enega otencalna
Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Wykład 4: Termochemia
Wykład 4: Termchemia Układ i tczenie Energia wewnętrzna, praca bjęt tściwa i entalpia Praw Hessa Cykl kłwy wy Standardwe entalpie twrzenia i spalania Energie wiąza zań chemicznych Wydział Chemii UJ Pdstawy
( ) ( ) s = 5. s 2s. Krzysztof Oprzędkiewicz Kraków r. Podstawy Automatyki Zadania do części rachunkowej
Kzyztof Opzędiewicz Kaów 09 0 0. Zajęcia : (ba zadań-wpowadzenie) Zajęcia : (ba zadań wyłącznie część laboatoyjna) Podtawy Automatyi Zadania do części achunowej Zajęcia : Chaateytyi czaowe podtawowych
Kryteria przyznawania ocen z matematyki uczniom klas III Publicznego Gimnazjum nr 1 w Strzelcach Opolskich
Kryteria przyznawania cen z matematyki ucznim klas III Publiczneg Gimnazjum nr 1 w Strzelcach Oplskich Na cenę dpuszczającą uczeń: zna pjęcie ntacji wykładniczej zna spsób zakrąglania liczb rzumie ptrzebę
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl
Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)
Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Siły mezoskopowe Oddziaływania w układach biologicznych
Siły mezosopowe Oddziaływania w uładach biologicznych Van de Waalsa wiązania wodoowe oddziaływania eletostatyczne flutuacje oddziaływania hydodynamiczne Siły ohezyjne (spoistości) siły Van de Waalsa (dipole
Statystyka - wprowadzenie
Statystyka - wprwadzenie Obecnie pjęcia statystyka używamy aby mówić : zbirze danych liczbwych ukazujących kształtwanie się kreślneg zjawiska jak pewne charakterystyki liczbwe pwstałe ze badań nad zbirwścią
Czujnik Termoelektryczny
Czujnik Termelektryczny wielpunktwy, Typ TTP- Karta katalgwa TTP-, Edycja 0 Zastswanie Zakres pmiarwy: -0.. +00 C Mnitrwanie prfilu temperatury w dużych zbirnikach Przemysł energetyczny Przemysł petrchemiczny
Metody pracy na lekcji. Referat przedstawiony na spotkaniu zespołu matematyczno przyrodniczego
Szkła Pdstawwa im. Władysława Brniewskieg we Władysławwie Metdy pracy na lekcji Referat przedstawiny na sptkaniu zespłu matematyczn przyrdniczeg Wyraz metda ma swój pczątek w języku stargreckim i znacza
LINIA PRZESYŁOWA PRĄDU STAŁEGO
oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto
OFERTA JEDNOSTKI NAUKOWEJ. STAŻ PRACOWNIKA PRZEDSIĘBIORSTWA W JEDNOSTCE NAUKOWEJ w ramach projektu Stolica staży (UDA.POKL.08.02.
Biur Prjektu: Cnsulting Plus Sp. z.. ul. Wiejska 12, 00-490 Warszawa tel. 22 622 35 19, fax 22 622 35 20 biur@teklaplus.pl OFERTA JEDNOSTKI NAUKOWEJ STAŻ PRACOWNIKA PRZEDSIĘBIORSTWA W JEDNOSTCE NAUKOWEJ
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający trzymuje punkty tylk za pprawne rzwiązania, precyzyjnie dpwiadające plecenim zawartym w zadaniach. Odpwiedzi niezgdne z pleceniem (nie na temat)
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
Wykład 5. Kalorymetria i przejścia fazowe
Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW
Stanisław Jemioło, Marcin Gajewski Instytut Mechaniki Konstrukcji Inżynierskich
Stanisław Jemił, Marcin Gajewsi Instytut Mechanii Knstrucji Inżyniersich SYMULACJA MES OBRÓBKI CIEPLNEJ WYROBÓW STALOWYCH Z UWZGLĘDNIENIEM ZJAWISK TERMO-METALURGICZNYCH Część 1. Nieustalny przepływ ciepła
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
nie wyraŝa zgody na inne wykorzystywanie wprowadzenia niŝ podane w jego przeznaczeniu występujące wybranym punkcie przekroju normalnego do osi z
Wprwadzenie nr 4* d ćwiczeń z przedmitu Wytrzymałść materiałów przeznaczne dla studentów II rku studiów dziennych I stpnia w kierunku Energetyka na wydz. Energetyki i Paliw, w semestrze zimwym 0/03. Zakres
Znakowanie opakowań cukru białego i cukrów surowych
Znakwanie pakwań cukru białeg i cukrów surwych Łódź, 25-26 czerwca 2013 r. Marta Zawadka Związek Prducentów Cukru w Plsce Rzprządzenie 1169/2011 w sprawie przekazywania knsumentm infrmacji żywnści ważne
Badanie zależności temperatury wrzenia wody od ciśnienia
Ćwiczenie C2 Badanie zależności temperatury wrzenia wody od ciśnienia C2.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności temperatury wrzenia wody od ciśnienia (poniżej ciśnienia atmosferycznego),
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Termodynamika Część 2
Termodynamika Część 2 Równanie stanu Równanie stanu gazu doskonałego Równania stanu gazów rzeczywistych rozwinięcie wirialne równanie van der Waalsa hipoteza odpowiedniości stanów inne równania stanu Równanie
Podstawowe definicje
Wprowadzenie do równowag fazowych (1) Podstawowe definicje 1) Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrębie fazy niektóre intensywne
Parametry charakteryzujące pracę silnika turbinowego. Dr inż. Robert JAKUBOWSKI
Parametry charateryzujące racę silnia turbinweg Dr inż. Rbert JAKUBOWSKI Parametry charateryzujące racę silnia Parametry wewnętrzne (biegu silnia): Sręż całwity silnia (sręż sręzari): Temeratura gazów
TERMODYNAMIKA PROCESOWA I TECHNICZNA
ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład VIII Równania stanu tyu an der Waalsa Przyomnienie Na orzednim wykładzie omówiliśmy: 1. Równanie stanu gazu doskonałego.. Porawione RSGD za omocą wsółczynnika
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
CIEPŁA RAMKA, PSI ( Ψ ) I OKNA ENERGOOSZCZĘDNE
CIEPŁA RAMKA, PSI ( ) I OKNA ENERGOOSZCZĘDNE Ciepła ramka - mdne słw, słw klucz. Energszczędny wytrych twierający sprzedawcm drgę d prtfeli klientów. Czym jest ciepła ramka, d czeg służy i czy w góle jej
WYTYCZNE DO PISANIA PRAC DYPLOMOWYCH LICENCJACKICH I MAGISTERSKICH
WYTYCZNE DO PISANIA PRAC DYPLOMOWYCH LICENCJACKICH Wymgi regulaminwe I MAGISTERSKICH 1. Praca dyplmwa jest pracą, której temat jest związany ze specjalnścią i kierunkiem kształcenia studenta; jest pracą
LABORATORIUM: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Wprowadzenie
Utwozenie: PRz, 1, Żabińsi Tomasz Modyfiacja: PRz, 15, Michał Maiewicz LABORATORIUM: Steowanie zeczywistym sewomechanizmem z modułem zemieszczenia liniowego Wowadzenie Celem ćwiczenia jest identyfiacja
Informatyka Systemów Autonomicznych
Infrmatyka Systemów Autnmicznych Uczenie maszynwe: uczenie z nauczycielem i bez nauczyciela. Kamil Małysz Spis treści I. Wstęp...3 II. Pczątki uczenia maszynweg...3 III. Zastswania w praktyce...4 IV. Metdy
PLAN WYNIKOWY ROZKŁADU MATERIAŁU Z FIZYKI DLA KLASY III MODUŁ 4 Dział: X,XI - Fale elektromagnetyczne, optyka, elementy fizyki atomu i kosmologii.
Knteksty 1. Fale elektrmagnetyczne w telekmunikacji. 2.Światł i jeg właściwści. - c t jest fala elektrmagnetyczna - jakie są rdzaje fal - elektrmagnetycznych - jakie jest zastswanie fal elektrmagnetycznych
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
K raków 26 ma rca 2011 r.
K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z
UZUPEŁNIENIA DO WYKŁADÓW A-C
UZUPEŁNIENIA DO WYKŁADÓW A-C Objaśnienia: 1. Uzupełnienia sładają się z dwóch części właściwych uzupełnień do treści wyładowych, zwyle zawierających wyprowadzenia i nietóre definicje oraz Zadań i problemów.
CHARAKTERYSTYKI MECHANICZNE ELEKTRYCZNEGO UKŁADU ROZRUCHOWEGO SILNIKA SPALINOWEGO
Józef PSZCZÓŁKOWSKI CHARAKTERYSTYKI MECHANICZNE ELEKTRYCZNEGO UKŁADU ROZRUCHOWEGO SILNIKA SPALINOWEGO W atykule schaakteyzwan napędzanie wału kbweg pzez zusznik jak pces diagnstyczny. Omówin waunki pacy
TERMODYNAMIKA PROCESOWA
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA PROCESOWA 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego:2011/2012 4. Forma kształcenia: studia pierwszego stopnia
Rama płaska metoda elementów skończonych.
Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony
Pan z stny www.sqdia. KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszzny Listad 0 W ni nij szy sc a ci c nia nia za dań twa tyc są zn t wa n zy kła d w aw n d wi dzi. W t -
Paweł Janus WSTĘP. Słowa kluczowe: energia, pomiar energii, żywność, silnik elektryczny, maszyna robocza
SCIENTIARUM POLONORUMACTA Technlgia Alimentaria () 00, 03- METODA POMIARU ENERGII UŻYTECZNEJ W PROCESIE TECHNOLOGICZNYM PRZETWÓRSTWA ŻYWNOŚCI OPARTA NA STRATACH POSZCZEGÓLNYCH SILNIKA ELEKTRYCZNEGO I MASZYNY
powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki
Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:
W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna
W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej
chemia wykład 3 Przemiany fazowe
Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe
cz. 1. dr inż. Zbigniew Szklarski
Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek
01-08.1 10.05.PL Zawory LDM z napędami SPA Praha
0-08. 0.05.PL Zawry LDM z napędami SPA Praha -- Obliczenie współczynnika Kv Praktyczne bliczenia wyknuje się uwzględniając parametry bwdów regulacyjnych i warunki rbcze medium według wzrów przedstawinych
WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe
WYKŁAD 7 Diagramy fazowe Dwuskładnikowe układy doskonałe JS Reguła Gibssa. Układy dwuskładnikowe Reguła faz Gibbsa określa liczbę stopni swobody układu w równowadze termodynamicznej: układy dwuskładnikowe
Grupa LOTOS. Wodór. krwioobieg nowoczesnej rafinerii, a może paliwo przyszłości? Jan Biedroń. Szef Biura Innowacji 15 października 2015.
Wdór krwibieg nwczesnej rafinerii, a mże paliw przyszłści? Szef Biura Innwacji 15 października 2015 1 Czym jest wdór? Najlżejszy pierwiastek chemiczny Bezbarwny, bezwnny gaz, słab rzpuszczalny w wdzie
INSTRUKCJA MONTAŻU przewodu grzejnego PSB typu 07-5801-XXXX
Przewód grzejny PSB typ 07-5801-XXXX INSTRUKCJA MONTAŻU przewdu grzejneg PSB typu 07-5801-XXXX Spis treści 1. Zastswanie.. str. 1 2. Dane techniczne.... str. 1 3. Zasady bezpieczeństwa..... str. 2 4. Wytyczne
Równania Lagrange a II r.
Mechania Analityczna i Dgania Równania Lagange a II. pzyłay Równania Lagange a II. pzyłay mg inż. Sebastian Pauła Aaemia Góniczo-Hutnicza im. Stanisława Staszica w Kaowie Wyział Inżynieii Mechanicznej
Destylacja z parą wodną
Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
DEMODULACJA AM /wkładki DA091B, DDA2/
DEMODULACJA AM /wkładki DA09B, DDA/ WSTĘP Tematem ćwiczenia są zagadnienia związane z dbiem infmacji pzesyłanej na dległść za pmcą fali nśnej. Badany jest -- pd kątem zasad pacy i właściwści - układ demdulata
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
43/63 WPŁ YW GĘSTOŚCI MODELU POLISTYRENOWEGO NA EMISJĘ GAZÓW W PROCESIE PEŁNEJ FORMY. Istota zagadnienia
43/63 Slidificatin f Metais and Allys, Year 2000, Vlume 2, Bk. 43 Krzepnięcie Metali i Stpów, Rk 2000, Rcznik 2, r 43 PA- Katwice PL ISS 0208-9386 WPŁ YW GĘSTOŚCI MODELU POLISTYREOWEGO A EMISJĘ GAZÓW W
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut