Parametry charakteryzujące pracę silnika turbinowego. Dr inż. Robert JAKUBOWSKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Parametry charakteryzujące pracę silnika turbinowego. Dr inż. Robert JAKUBOWSKI"

Transkrypt

1 Parametry charateryzujące racę silnia turbinweg Dr inż. Rbert JAKUBOWSKI

2 Parametry charateryzujące racę silnia Parametry wewnętrzne (biegu silnia): Sręż całwity silnia (sręż sręzari): Temeratura gazów rzed turbiną (stień dgrzania): Maswe natężenie rzeływu: Stień dwurzeływwści: π s 8 silnii dwurzeływwe ( π ) π T m µ m m T 3 [K] 400 c s 3 ( ) an _ z an _ w silnii jedn i wielwirniwe 800 T 3max max T 3max min 4 srężari rmieniwe R rducji R rducji

3 Parametry charateryzujące racę silnia Parametry użytwe: BEZWZGLĘDNE JEDNOSTKOWE Ciąg Ciąg jednstwy: j K m K Jednstwe zużycie aliwa: cj m al K Zużycie aliwa m al Masa jednstwa silnia: M M K j sil Jednstwe zużycie aliwa Ciąg jednstwy c j g/nh silnii jednrzeływwe j Ns/g silnii jednrzeływwe z dalaczem silnii dwurzeływwe z dalaczem silnii dwurzeływwe silnii jednrzeływwe silnii dwurzeływwe R rducji R rducji

4 Parametry charateryzujące racę silnia Energetyczne m m c V q W e q m m al d _ t u str _ wewn. + + dr Srawnść cielna: lb m c V m al ηc Wu qd m m Srawnść naędwa: V j m c V η V j lb m Srawnść gólna: V j m al η V j Wu qd m Dla V0 (c 0) srawnści naędwa i gólna bez względu na dsnałść rcesów energetycznych w silniu są równe 0.

5 Charaterystyi wewnętrzne silnia jednrzeływweg dla stałej wartści stnia dgrzania w silniu Ciąg jednstwy i raca biegu dla silnia stałym stniu dgrzania siągają masimum rzy tej samej wartści srężu całwiteg silnia. Natmiast gdy rędść ltu jest więsza d zera, t srawnść naędwa dla tej watrsci srężu jest najmniejsza. Sręż ten nazywa się srężem tymalnym silnia. Jednstwe zużycie aliwa siąga minimum rzy srężu więszym d srężu tymalneg. Gdy rędść ltu jest więsza d zera, t dla tej wartści srężu sarawnść cielna siąga wartści masymalne. Sręż ten nazywa się srężem enmicznym silnia. π σ π π c wl dyn s

6 Wartść srężu tymalneg, gdy w isie silnia uwzględnia się srawnści litrwe srężania i rzrężania π T ηη η 3 m s _ l T _ l c_ t T ( σwlσksσdysz ) Przedstawina zależnść wsazuje, że zwięszenie stnia dgrzania silnia będzie wdwał wzrst srężu tymalneg. Prawa srawnści turbiny i srężari będzie taże się rzyczyniać d wzrstu srężu tymalneg, ale dnszenie wartści wsaźniów strat ciśnienia w zesłach silnia, będzie wdwał, że masymalne wartści ciągu będą siągane rzy niższych wartściach srężu srężari.

7 Charaterystyi wewnętrzne silnia jednrzeływweg dla stałej wartści srężu całwiteg Ciąg jednstwy dla silnia stałym srężu całwitym rśnie ze wzrstem stnia dgrzania. Tym samym gdy rędść ltu jest więsza d zera srawnść naędwa ze wzrstem stnia dgrzania maleje. Jednstwe zużycie aliwa dla silnia stałym srężu ze wzrstem stnia dgrzania szyb maleje siągając wartść najmniejszą rzy stniu dgrzania nieznacznie więszym d minimalneg (enmiczny stień dgrzania, enmiczna temeratura rzed turbiną), a nastęnie wzrasta. Srawnść gólna zachwuje się dbnie, z tym że dla enmiczneg stnia dgrzania siąga wartść najwięszą W ratyce analizy dla stałej wartści srężu silnia się nie rwadzi. Natmiast szuuje się srężu dla reślnej wartści stnia dgrzania, bwiem masymalna temeratura w silniu najczęściej jest limitwana graniczeniami materiałwymi nstrucji

8 Wływ wzrstu stnia dgrzania w silniu na wartści tymalneg i enmiczneg srężu silnia Ze wzrstem stnia dgrzania silnia: wzrasta ciąg masymalny silnia, tóry jest siągany rzy więszych wartściach srężu tymalneg bniża się wartść minimalneg jednstweg zużycia aliwa, tóre jest siągane rzy więszych wartściach sreżu enmiczneg rzszerza się zares sręży, rzy tórych raca biegu jest ddatnia. zwięsza się rzbieżnść między wartściami srężu tymalneg i enmiczneg Charaterystya ta tłumaczy dlaczeg wzrstwi masymalnej temeratury w silniu musi twarzyszyć wzrst srężu silnia

9 Silni drzutwy niezuełny rzręż salin w dyszy wyltwej Zjawis wystęuje w: Silniach zańcznych dyszą zbieżną rzy nadrytycznym stsunu ciśnień między całwitym ciśnieniem salin w rzerju wyltwym dyszy i ciśnieniem tczenia Silniach zańcznych nieregulwaną dyszą zbieżn-rzbieżną w zabliczeniwych stanach racy q d_t. m al i i V c A WL c c A WL.. m m WL e str_wewn. i i Ciąg silnia: A( ) ( ) K mc mv mc mv+ A Srawnści silnia: gdzie: c c + m η m c V m c al u ( τ W ) m c η V j m V η V j ( τ alwu )

10 Waruni racy zbieżnej dyszy wyltwej silnia r r β + c A T m. r β Ma T T Ma c Ma RT c T m Ac RT + (rzręż zuełny w dyszy) Jeżeli: r r β > > Jeżeli: (rzręż rytyczny w dyszy) r β T T + c RT + m A c T +

Zespoły silnika lotniczego. Dr inż. Robert Jakubowski

Zespoły silnika lotniczego. Dr inż. Robert Jakubowski Zesoły silnika lotniczego Dr inż. Robert Jakubowski DYSZA WYLOTOWA TURBINA KOMORA SPALANIA SPRĘŻARKA WLOT Procesy wewnętrzne w silniku Obieg silnika z uwzględnieniem strat i 3 π c = = idem H qdo = T3 i3

Bardziej szczegółowo

Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI

Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI Dwurzeływowe silniki odrzutowe dr inż. Robert JAKUBOWSK Silnik z oddzielnymi dyszami wylotowymi kanałów V 2500 (Airbus A320, D90) Ciąg 98 147 kn Stoień dwurzeływowości 4,5 5,4 Pierwsze konstrukcje dwurzeływowe

Bardziej szczegółowo

Analiza konstrukcji i cyklu pracy silnika turbinowego. Dr inż. Robert Jakubowski

Analiza konstrukcji i cyklu pracy silnika turbinowego. Dr inż. Robert Jakubowski Analiza konstrukcji i cyklu racy silnika turbinowego Dr inż. Robert Jakubowski CO TO JEST CIĄG? Równanie ciągu: K m(c V) 5 Jak silnik wytwarza ciąg? Silnik śmigłowy silnik odrzutowy Silnik służy do wytworzenia

Bardziej szczegółowo

Zespoły silnika lotniczego. Dr inż. Robert Jakubowski

Zespoły silnika lotniczego. Dr inż. Robert Jakubowski Zesoły silnika lotniczego Dr inż. Robert Jakubowski DYSZA WYLOTOWA TURBINA KOMORA SPALANIA SPRĘŻARKA WLOT WLOT Wlot Zadaniem wlotu jest dostarczenie do silnika owietrza w wymaganej ilości z zaewnieniem

Bardziej szczegółowo

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz. ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury

Bardziej szczegółowo

Turbinowy silnik odrzutowy. Dr inŝ. Robert JAKUBOWSKI

Turbinowy silnik odrzutowy. Dr inŝ. Robert JAKUBOWSKI Turbinowy silnik odrzutowy Dr inŝ. Robert JAKUBOWSKI Turbinowy silnik jednorzeływowy Jest to najbardziej ierwotne rozwiązanie silnika odrzutowego turbinowego, które ojawiło się na oczątku lat trzydziestych

Bardziej szczegółowo

Komory spalania turbiny i dysze. Dr inż. Robert JAKUBOWSKI

Komory spalania turbiny i dysze. Dr inż. Robert JAKUBOWSKI Komory salania turbiny i dysze wylotowe Dr inż. Robert JAKUBOWSKI KOMORY SPALNAIA TURBINOWYCH SILNIKÓW LOTNICZYCH BUDOWA KOMORY SPALANIA ORGANIZACJA PROCESU WEWNĄTRZKOMOROWEGO BUDOWA KOMORY SPALANIA ORGANIZACJA

Bardziej szczegółowo

ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO

ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO Wykład nr Napęd stosowany we współczesnym lotnictwie cywilnym Siła ciągu Zasada działania silnika odrzutowego pb > p 0 Akcja Reakcja F Strumień gazu

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-3 BADANIE SZTYWNOŚCI PROWADNIC HYDROSTATYCZNYCH

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-3 BADANIE SZTYWNOŚCI PROWADNIC HYDROSTATYCZNYCH POLITECHNIK ŁÓDZK INSTYTUT OBBIEK I TECHNOLOGII BUDOWY MSZYN Ćwiczenie H- Temat: BDNIE SZTYWNOŚCI POWDNIC HYDOSTTYCZNYCH edacja i racwanie: dr inż. W. Frnci Zatwierdził: rf. dr ab. inż. F. Oryńsi Łódź,

Bardziej szczegółowo

Komory spalania, turbiny i dysze wylotowe. Dr inż. Robert JAKUBOWSKI

Komory spalania, turbiny i dysze wylotowe. Dr inż. Robert JAKUBOWSKI Komory salania, turbiny i dysze wylotowe Dr inż. Robert JAKUBOWSKI KOMORY SPALNAIA TURBINOWYCH SILNIKÓW LOTNICZYCH BUDOWA KOMORY SPALANIA BUDOWA KOMORY SPALANIA ORGANIZACJA PROCESU WEWNĄTRZKOMOROWEGO 1

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

ność Reakcje nieodwracalne całkowite przereagowanie po zainicjowaniu reakcji wymaga katalizatora układ otwarty, gazowy produkt opuszcza układ HCl (aq

ność Reakcje nieodwracalne całkowite przereagowanie po zainicjowaniu reakcji wymaga katalizatora układ otwarty, gazowy produkt opuszcza układ HCl (aq 6. Równwaga R chemiczna Reakcje niedwracalne i dwracalne Reguła a rzekry Prcesy samrzutne i niesamrzutne Entria i tencjał termdynamiczny Warunki samrzutnści Praw działania ania mas Stałe e równwagi r i

Bardziej szczegółowo

A. Kanicki: Systemy elektroenergetyczne KRYTERIA NAPIĘCIOWE WYZNACZANIA STABILNOŚCI LOKALNEJ

A. Kanicki: Systemy elektroenergetyczne KRYTERIA NAPIĘCIOWE WYZNACZANIA STABILNOŚCI LOKALNEJ . Kanici: Systemy eletrenergetyczne 94 5. KRYTERI NPIĘCIOWE WYZNCZNI STILNOŚCI LOKLNEJ dp Kryterium załada, że dbiry są mdelwane stałą impedancją a nie rzeczywistymi dδ charaterystyami dbirów. Nie pazuje

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnictwa PRz Pok. 5 bud L 33 E-mail robert.jakubowski@prz.edu.pl WWW www.jakubowskirobert.sd.prz.edu.pl

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna? Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO SILNIK URBINOWY ANALIZA ERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnitwa PRz Po. L 34 a E-mail robersi@rz.edu.l WWW www.jaubowsirobert.sd.rz.edu.l

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

5. Jednowymiarowy przepływ gazu przez dysze.

5. Jednowymiarowy przepływ gazu przez dysze. CZĘŚĆ II DYNAMIKA GAZÓW 9 rzeływ gazu rzez dysze. 5. Jednowymiarowy rzeływ gazu rzez dysze. Parametry krytyczne. 5.. Dysza zbieżna. T = c E - back ressure T c to exhauster Rys.5.. Dysza zbieżna. Równanie

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania Efektywność energetyczna systemu ciełowniczego z ersektywy otymalizacji rocesu omowania Prof. zw. dr hab. Inż. Andrzej J. Osiadacz Prof. ndz. dr hab. inż. Maciej Chaczykowski Dr inż. Małgorzata Kwestarz

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu

Bardziej szczegółowo

DOBÓR ZESTAWU HYDROFOROWEGO

DOBÓR ZESTAWU HYDROFOROWEGO DOBÓR ZESTAWU YDROFOROWEGO Pierwszym etaem doboru Z jest wyznaczenie obliczeniowego unktu racy urządzenia: 1. Wymaganego ciśnienia odnoszenia zestawu = + min min ss 2. Obliczeniowej wydajności Q o Q 0

Bardziej szczegółowo

9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia

9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia 114 9.1 Wstę Analiza konstrukcji om i srężarek odśrodkowych ozwala stwierdzić, że: Stosunek ciśnień w srężarkach wynosi zwykle: (3-5):1 0, 3 10, ρuz Ciśnienie (wysokość) odnoszenia om wynosi zwykle ( )

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Badania wpływu struktury elektrowni gazowo-parowych na charakterystyki sprawności

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Badania wpływu struktury elektrowni gazowo-parowych na charakterystyki sprawności ISSN 1733-8670 ZESZT NAUOWE NR 10(82) AADEMII MORSIEJ W SZCZECINIE IV MIĘDZNARODOWA ONFERENCJA NAUOWO-TECHNICZNA EXPLO-SHIP 2006 Janusz otowicz, Tadeusz Chmielniak Badania wływu struktury elektrowni gazowo-arowych

Bardziej szczegółowo

II zasada termodynamiki

II zasada termodynamiki TERMODYNAMIKA: DRUGA ZAADA TERMODYNAMIKI ą rocesy zgodne z zasadą zachowania energii, tóre nigdy nie wystęują w rzyrodzie. Przyład: długois leżący na stole Druga zasada termodynamii odowiada na ytanie,

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe

M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe M. Corowski Podstawy Kriogeniki, wykład 4. 3. Metody uzyskiwania niskic temeratur - ciąg dalszy 3.. Dławienie izentalowe Jeżeli gaz rozręża się adiabatycznie w układzie otwartym, bez wykonania racy zewnętrznej

Bardziej szczegółowo

PRACA DYPLOMOWA STUDIA WYŻSZE. Temat: Model przepływowy turbinowego silnika odrzutowego D-18

PRACA DYPLOMOWA STUDIA WYŻSZE. Temat: Model przepływowy turbinowego silnika odrzutowego D-18 W O J S K O W A AK A D E M I A E C H N I C Z N A im. Jarosława Dąbrowsiego PRACA DYPLOMOWA SUDIA WYŻSZE emat: Model przepływowy turbinowego silnia odrzutowego D-8 ppor. Radosław PRZYSOWA stopień, imię

Bardziej szczegółowo

BADANIA PARAMETRÓW WSPÓŁPRACY OPONY Z GLEBĄ Z UWZGLĘDNIENIEM ZMIAN CIŚNIENIA POWIETRZA W OPONIE

BADANIA PARAMETRÓW WSPÓŁPRACY OPONY Z GLEBĄ Z UWZGLĘDNIENIEM ZMIAN CIŚNIENIA POWIETRZA W OPONIE Badania parametrów współpracy... Lech Jalińsi Instytut Inżynierii Mechanicznej Plitechnia Warszawsa w Płcu BADANIA PARAMETRÓW WSPÓŁPRACY OPONY Z GLEBĄ Z UWZGLĘDNIENIEM ZMIAN CIŚNIENIA POWIETRZA W OPONIE

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI Silniki tłokowe Dr inż. Robert JAKUBOWSKI Literatura rzedmiotu: Dzierżanowski P. i.in: Silniki Tłokowe z serii Naędy lotnicze, WKŁ. Warszawa 98 Borodzik F.: Budowa silnika z serii Aeroklub olski szkolenie

Bardziej szczegółowo

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI Silniki tłokowe Dr inż. Robert JAKUBOWSKI Literatura rzedmiotu: Dzierżanowski P. i.in: Silniki Tłokowe z serii Naędy lotnicze, WKŁ. Warszawa 98 Borodzik F.: Budowa silnika z serii Aeroklub olski szkolenie

Bardziej szczegółowo

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0, Dobór zestawu hydroforowego PN-9/B-176 Wyznaczenie obliczeniowego unktu racy urzdzenia: 1. Wydajnoci / strumienia rzeływu wody Q O Obl ( ) 45 3 3, 68 14; dm s, m h Q = q =, Σ q, ( ), 1 3 3 Q = q = 1, 7

Bardziej szczegółowo

ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę

Bardziej szczegółowo

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

METODA OBLICZEŃ TRWAŁOŚCI ZMĘCZENIOWEJ ELEMENTÓW KONSTRUKCYJNYCH Z ZASTOSOWANIEM DWUPARAMETRYCZNYCH CHARAKTERYSTYK ZMĘCZENIOWYCH

METODA OBLICZEŃ TRWAŁOŚCI ZMĘCZENIOWEJ ELEMENTÓW KONSTRUKCYJNYCH Z ZASTOSOWANIEM DWUPARAMETRYCZNYCH CHARAKTERYSTYK ZMĘCZENIOWYCH METODA OBLICZEŃ TRWAŁOŚCI ZMĘCZENIOWEJ ELEMENTÓW KONSTRUKCYJNYCH Z ZASTOSOWANIEM DWUPARAMETRYCZNYCH CHARAKTERYSTYK ZMĘCZENIOWYCH Bogdan LIGAJ *, Grzegorz SZALA * * Katedra Podstaw Konstrucji Maszyn, Wydział

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny

Bardziej szczegółowo

ZAWÓR REDUKCYJNY G3/8 - G1/2 - G3/4

ZAWÓR REDUKCYJNY G3/8 - G1/2 - G3/4 SP Ó Ł KA AKCY JN A ul. Waiennikowa 90, -0 KIELCE, tel. 04 6-9-4, fax. 0-4 6-9-08 www.rema.l e-mail: rema@rema.l ZAWÓR REDUKCYJNY G/8 - G/ - G/4 V ZASTOSOWANIE Zawory redukcyjne służą do nastawiania i

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

Test 2. Mierzone wielkości fizyczne wysokość masa. masa walizki. temperatura powietrza. Użyte przyrządy waga taśma miernicza

Test 2. Mierzone wielkości fizyczne wysokość masa. masa walizki. temperatura powietrza. Użyte przyrządy waga taśma miernicza Test 2 1. (3 p.) W tabeli zamieszczn przykłady spsbów przekazywania ciepła w życiu cdziennym i nazwy prcesów przekazywania ciepła. Dpasuj d wymieninych przykładów dpwiednie nazwy prcesów, wstawiając znak

Bardziej szczegółowo

Węzeł 2 Funkcyjny - Równoległy c.o. i c.w.u. Adres: Siedlce. Komenda Policji

Węzeł 2 Funkcyjny - Równoległy c.o. i c.w.u. Adres: Siedlce. Komenda Policji Węzeł 2 Funkcyjny - Równoległy i u. Adres: Siedlce Komenda Policji. Bilans zaotrzebowania na moc cielną Zaotrzebowanie na moc cielną do (wg danych PEC) Zaotrzebowanie na moc do średnie Zaotrzebowanie na

Bardziej szczegółowo

ZESPÓ FILTRUJ CO-REDUKCYJNY G3/8 - G1/2 - G3/4

ZESPÓ FILTRUJ CO-REDUKCYJNY G3/8 - G1/2 - G3/4 SP Ó KA AKCY JN A ul. Waiennikowa 90, - KIELCE, tel. 04 36-9-4, fax. 0-4 36-9-08 www.rema.l e-mail: rema@rema.l ZESPÓ FILTRUJ CO-REDUKCYJNY G3/8 - G/ - G3/4 ZASTOSOWANIE Zesó³ filtruj¹co-redukcyjny s³u

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA

WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA WYMAAA TECHCZE DLA PŁYTOWYCH WYMEKÓW CEPŁA DLA CEPŁOWCTWA iniejsza wersja obowiązuje od dnia 02.11.2011 Stołeczne Przedsiębiorstwo Energetyki Cielnej SA Ośrodek Badawczo Rozwojowy Ciełownictwa ul. Skorochód-Majewskiego

Bardziej szczegółowo

Mechanika płynów. Wykład 9. Wrocław University of Technology

Mechanika płynów. Wykład 9. Wrocław University of Technology Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy

Bardziej szczegółowo

CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI

CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI CHARAERYSYI ZŁOŻOYCH UŁADÓW Z URBIAMI AZOWYMI Autor: rzysztof Badyda ( Rynek Energii nr 6/200) Słowa kluczowe: wytwarzanie energii elektrycznej, turbina gazowa, gaz ziemny Streszczenie. W artykule rzedstawiono

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

Symulacja i analiza przebiegu pracy napędu tramwaju w okresach zerwania przyczepności

Symulacja i analiza przebiegu pracy napędu tramwaju w okresach zerwania przyczepności Logistya - naua Maciej Kozłowsi Wydział Transportu Politechnii Warszawsiej Symulacja i analiza przebiegu pracy napędu tramwaju w oresach zerwania przyczepności. WPROWADZENIE Prawidłowa współpraca oła z

Bardziej szczegółowo

POLEPSZANIE WŁASNOŚCI UKŁADU STIG POPRZEZ PRZEGRZEW I CHŁODZENIE MIĘDZYSTOPNIOWE

POLEPSZANIE WŁASNOŚCI UKŁADU STIG POPRZEZ PRZEGRZEW I CHŁODZENIE MIĘDZYSTOPNIOWE MODELOWAIE IśYIERSKIE ISS 1896-771X 34, s. 43-48, Gliwice 007 POLEPSZAIE WŁASOŚCI UKŁADU SIG POPRZEZ PRZEGRZEW I CHŁODZEIE MIĘDZYSOPIOWE KRZYSZOF J. JESIOEK, ADRZEJ CHRZCZOOWSKI Politechnika Wrocławska

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU socjalny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Olsztyn, ul. Sybiraków NAZWA ROJEKTU Budynek socjalny LICZBA LOKALI LICZBA

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

Opis techniczny. Strona 1

Opis techniczny. Strona 1 Ois techniczny Strona 1 1. Założenia dla instalacji solarnej a) lokalizacja inwestycji: b) średnie dobowe zużycie ciełej wody na 1 osobę: 50 [l/d] c) ilość użytkowników: 4 osób d) temeratura z.w.u. z sieci

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Płynem nazywamy ciało łatwo ulegające odkształceniom postaciowym. Przeciwieństwem płynu jest ciało stałe, którego odkształcenie wymaga przyłożenia stosunkowo dużego naprężenia (siły). Ruch ciała łatwo

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU mieszkalny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Olsztyn, ul. Grabowa 7 NAZWA ROJEKTU Standard energooszczędny LICZBA LOKALI

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście

Bardziej szczegółowo

Termodynamiczny model działania broni z odprowadzeniem gazów prochowych w okresie napędzania suwadła

Termodynamiczny model działania broni z odprowadzeniem gazów prochowych w okresie napędzania suwadła BIULETYN AT VOL. LVIII, NR 3, 9 Termodynamiczny model działania broni z odrowadzeniem gazów rochowych w oresie naędzania suwadła GRZEGORZ LEŚNIK, ZBIGNIE SURMA, STANISŁA TORECKI, RYSZARD OŹNIAK ojsowa

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

Wykład XVIII. SZCZEGÓLNE KONFIGURACJE OBWODÓW TRÓJFAZOWYCH. POMIARY MOCY W OBWODACH TRÓJFAZOWYCH I 1 U 12 I 2 U 23 3 U U Z I = ; I 12 I 23

Wykład XVIII. SZCZEGÓLNE KONFIGURACJE OBWODÓW TRÓJFAZOWYCH. POMIARY MOCY W OBWODACH TRÓJFAZOWYCH I 1 U 12 I 2 U 23 3 U U Z I = ; I 12 I 23 7. związywanie bwdów prądu sinusidalneg 5 Wykład XVIII. SCEGÓLE KOFIGACJE OBWODÓW TÓJFAOWYCH. POMIAY MOCY W OBWODACH TÓJFAOWYCH Symetrycz układzie gwiazdwym W symetryczm u gwiazdwym, zasilam napięciem

Bardziej szczegółowo

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa MECHANIK 7/2014 Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa WYZNACZENIE CHARAKTERYSTYK EKSPLOATACYJNYCH SIŁOWNI TURBINOWEJ Z REAKTOREM WYSOKOTEMPERATUROWYM W ZMIENNYCH

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU mieszkalny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Olsztyn, ul. Grabowa 7 NAZWA ROJEKTU Standard tradycyjny LICZBA LOKALI

Bardziej szczegółowo

Układ termodynamiczny

Układ termodynamiczny Uład terodynaiczny Uład terodynaiczny to ciało lub zbiór rozważanych ciał, w tóry obo wszelich innych zjawis (echanicznych, eletrycznych, agnetycznych itd.) uwzględniay zjawisa cieplne. Stan uładu charateryzuje

Bardziej szczegółowo

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników.

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Roztwory Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Własności fizyczne roztworów są związane z równowagę pomiędzy siłami wiążącymi cząsteczki wody i substancji rozpuszczonej.

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Kinetyka chemiczna kataliza i reakcje enzymatyczne

Kinetyka chemiczna kataliza i reakcje enzymatyczne inetya chemiczna ataliza i reacje enzymatyczne Wyład z Chemii Fizycznej str. 3.3 / 1 Ilościowy opis mechanizm działania atalizatorów Wyład z Chemii Fizycznej str. 3.3 / 2 Ilościowy opis mechanizm działania

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego

Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego Pmpy ciepła W naszym klimacie bardz isttną gałęzią energetyki jest energetyka cieplna czyli grzewanie. W miesiącach letnich kwestia ta jest mniej isttna, jednak z nadejściem jesieni jej znaczenie rśnie.

Bardziej szczegółowo

Kinetyka reakcji chemicznych Kataliza i reakcje enzymatyczne Kinetyka reakcji enzymatycznych Równanie Michaelis-Menten

Kinetyka reakcji chemicznych Kataliza i reakcje enzymatyczne Kinetyka reakcji enzymatycznych Równanie Michaelis-Menten Kinetya reacji chemicznych 4.3.1. Kataliza i reacje enzymatyczne 4.3.2. Kinetya reacji enzymatycznych 4.3.3. Równanie Michaelis-Menten Ilościowy opis mechanizm działania atalizatorów Kinetya chemiczna

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

ZJAWISKO TERMOEMISJI ELEKTRONÓW

ZJAWISKO TERMOEMISJI ELEKTRONÓW ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z-980-1 d zasilania katdy lampy wlframwej 2. Zasilacz Z-980-4 d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF-04-222-2

Bardziej szczegółowo

Restauracja a poprawa jakości obrazów

Restauracja a poprawa jakości obrazów Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy

Bardziej szczegółowo