Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7
|
|
- Iwona Czech
- 8 lat temu
- Przeglądów:
Transkrypt
1 Temodynamika Zadania Oblicz: cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę sześcienną, na uncję na cal sześcienny MJ na BTU, cal, koń mechaniczny na godzinę 1,200 BPD na ft3 hr, m3 s 50 atm na kpa, 20 bar, na kpa, Psi, Torr 20 normalnych metrów sześciennych ile to? Wyznaczyć z definicji ciepło właściwe i wykładnik adiabaty doskonałego gazu jedno i dwuatomowego. 1.2 Wyznaczyć molowe ciepła właściwe i wykładnik adiabaty mieszaniny 2 mol i 1 mol Ar i H 2, 5 i 1 tych samych gazów. 1.3 Roztwór o gęstości normalnej 1/m 3 zmieszano z roztworem o gęstości normalnej 0.4/m 3. Gęstość roztworu wyjściowego wynosi 0.5/m 3. Ile wynosiły stosunki molowe wejściowych roztworów? 1.4 Roztwór CO 2, N 2, H 2 posiada gęstość normalną 1.1/m 3, oraz udział gramowy CO 2 = 0.2. Określić udziały gramowe pozostałych składników dla T = 600K i p = 0.2 MPa. 1.5 Roztwór jedno i dwuatomowego gazu doskonałego ma pojemność cieplną właściwą C p = 26kJ/(kmol K). Określić molowy skład roztworu 1.6 Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Sanki o ciężarze 50 są ciągnięte siłą 900N przez linkę pod kątem 30 od podłoża. Jaka praca zostanie wykonana po 40 metrach drogi? Jeżeli współczynnik tarcia wynosi 0.2 ile wyniesie praca sił tarcia? 1.8 Zawór w tłoku o średnicy 30cm utrzymuje wewnątrz stałe ciśnienie p 0 = 50kP a. Jaką pracę należy wykonać by ścisnąć tłok o 5cm? 1.9 Gaz w tłoku ekspanduje wg. zależności pv 2 = A. Od ciśnienia p 1 = Pa, do p 2 = 10 4 Pa i objętości końcowej V 2 = 0.5 m 3. Zaniedbując straty wyznaczyć objętość początkową V 1, pracę bezwzględną i pracę techniczną dla A = Wyznacz zmianę energii wewnętrznej na jeden kilogram Ar i N 2, przy ogrzewaniu od 400 do 800 K, zakładając iż gazy można traktować jako idealne Wyznacz zmianę energii wewnętrznej, oraz entalpii gazu doskonałego ogrzanego od 40 do 100 C. Wykładnik adiabaty wynosi 1.4, a indywidualna stała gazowa 200 P a m 3 / K 1.12 Wyznacz średnie kilo-molowe ciepło właściwe dla CO 2 i N 2 w zakresie temperatur C, (a) zakładając, że ciepło właściwe zmienia się liniowo z temperaturą wg. zależności kolejno T i T (b) w oparciu o tablice średniego ciepła właściwego, gdzie c 100,CO2 = , c 200,CO2 = , c 100,N2 = , c 200,N2 = kj/ C
2 Otrzymujemy zatem w naszym przedziale: c N2 = c CO2 = , Dokonano kompresji 7 wody od ciśnienia 100 kpa i 20 C do 30 MPa i 80 C. Zakładając iż woda jest nieściśliwa wyznaczyć przyrost energii wewnętrznej, oraz entalpii. c p = 4178 J/ K 1.14 Metan o masie 5 i temperaturze t 1 = 80 C został pod stałym ciśnieniem ochłodzony do temperatury t 2 = 20 C, a następnie sprężony kosztem dostarczonej energii 300 kj. Wyznaczyć zmianę energii wewnętrznej gazu. Masa molekularna metanu wynosi 16, 042 /kmol, średnie molowe ciepło właściwe 43,2 kj/k kmol 2 Bilans masy i energii 2.1 Podczas bez tarciowej przemiany dwuatomowego gazu doskonałego przebiegającego w układzie zamkniętym, praca bezwzględna L 1 2 = 100kJ, praca techniczna L t = 200kJ. Określić Q 1 2. (Wynik Q 1 2 = 150kJ) 2.2 Gaz doskonały o znanym κ, podlega przemianie beztarciowej w układzie zamkniętym (tłok). Praca użyteczna jest równa zeru. Dane są parametry p 1, p 2, V 1, V 2, p ot (ciśnienie atmosferyczne). Obliczyć ciepło doprowadzone Q Dwuatomowy gaz doskonały podlega w zamknięty cylindrze przemianie beztarciowej, podczas której stosunek wykonanej pracy bezwzględnej do doprowadzonego ciepła jest znany W 1 2 /Q 1 2 = a. Dane są p 1, p 2, V 1, V 2. Obliczyć Q 1 2, W Obrazem przemiany beztarciowej jest w układzie p, V jest linia łamana 1 4, której punkty mają współrzędne : p 1 = 1MP a, V 1 = 0.1m 3, p 2 = 0.7MP a, V 2 = 0.2m 3, p 3 = 0.2MP a, V 3 = 0.2m 3, p 4 = 0.5MP a, V 4 = 0.15m 3. Pokazać w układzie p, V, pracę bezwzględną i techniczną przemiany. 2.5 Przemiana gazu doskonałego dwuatomowego jest przedstawiona w układzie p, V odcinkiem prostej. Dane są parametry p 1, V 1, p 2, V 2. Określić ciepło doprowadzone z zewnątrz, jeżeli ciepło tarcia stanowi 10% bezwzględnej wartości pracy bezwzględnej (praca bezwzględna może być ujemna, straty są zawsze dodatnie). (Wynik Q 1 2 = 1 κ 1 (p 2V 2 p 1 V 1 ) + (p1 p2)(v2 V1) 2(1±0.1), ± zależnie czy L 1 2 jest dodatnia czy ujemna.) 2.6 Powietrze płynie w przewodzie o stałej średnicy i przepływa przez dławik. Na wejściu posiada temperaturę 30 C, ciśnienie 200 kpa i prędkość 15 m/s, jaką posiada temperaturę na wyjściu jeżeli ciśnienie wynosi 120 kpa i prędkość 30m/s? 2.7 Dokonano kompresji 2 m 3 powietrza od 100 kpa i 25 C do 600 kpa i 150 C. Wyznaczyć objętość powietrza po kompresji przy założeniu iż można go opisywać jako gaz doskonały. 2.8 Przemiana gazowa powietrza przebiega od ciśnienia 100 kpa i objętości 2 m 3 do ciśnienia 200 kpa i objętości 1.21 m 3. Wyznacz składanki bilansu energii jeżeli (a) obrazem przemiany w zmiennych p,v jest linia prosta, (b) przemiana jest adiabatyczna. 2.9 Przemiana gazowa powietrza przebiega od ciśnienia 100 kpa i temperatury 30 C i objętości 2 m 3 do ciśnienia 200 kpa. Wyznacz składanki bilansu energii jeżeli (a) obrazem przemiany w zmiennych p,v jest linia prosta i temperatura końcowa wynosi 30 C (b) przemiana jest izotermiczna. 3 II zasada dynamiki 3.1 Powietrze o gęstości 0.6/m 3 i temperaturze 147 C, zostało podgrzane i sprężone do 1,4 MPa i 367 C. Wyznacz zmianę entropii zakładając iż powietrze jest gazem idealnym o stałym cieple właściwym: c p = kj K ir i = kj K. 3.2 CO 2 pod cienieniem 190 kpa i temperaturze 45 C zostaje przeprowadzony do stanu końcowego o parametrach 375 kpa i temperaturze 80 C. Wyznacz zmianę entropii. c p = 0.881kJ/ K, M CO2 = 44/mol 3.3 Czy możliwa kompresja adiabatyczna CO 2 z 70 kpa i 310 K do 140 kpa i 400 K? Odczytane z tablic wartości s 0 wynoszą odpowiednio , kj/ K 2
3 3.4 Narysować w układzie T, s, obieg prawobieżny gazu doskonałego składający się z kolejno z przemian: adiabata nieodwracalna (rozprężanie), izotermiczne sprężanie, dławienie, izoentropowe sprężanie, izobara. Zaznaczyć ciepła doprowadzane i oddawane. Wszystkie procesy oprócz adiabaty nieodwracalnej są beztarciowe. 4 Obiegi termodynamiczne 4.1 Cykl Carnota wykosztuje powietrze jako gaz roboczy (gaz idealny). Temperatury chłodnicy i grzejnicy wynoszą odpowiednio 0 i 500 C. Minimalne i maksymalne ciśnienia odpowiednio 100 kpa i 10 MPa. Wyznaczyć sprawność cyklu, pracę, ciepło pobrane z grzejnicy. Przyjąć stałe ciepło właściwe. M pow = 28.9/kmol, κ = Moc silnika Carnota wynosi 10 kw. Temperatury rezerwuarów wynoszą 50 a 500 C. Wyznacz przepływ ciepła z rezerwuarami. 4.3 Idealny cykl Otta posiada współczynnik kompresji 8.5. Skrajne temperatury w cyklu wynoszą 100 a 800 C. Ciśnienie na początku kompresji wynosi 100 kpa. Silnik pobiera w trakcie cyklu 600 kj energii. Zakładając iż gaz roboczy jest gazem idealnym narysuj diagram P,v cyklu. Wyznacz pracę w trakcie kompresji, pracę w trakcie rozprężania, ciepło oddane z chłodnicy. 4.4 Idealny cykl diesla posiada współczynnik kompresji 17.5, oraz parametr odcięcia 1.5. Gaz na początku kompresji posiada ciśnienie 120 kpa i temperaturę 293 K, natomiast na końcu procesu sprężania 1472 K. Zakładając iż gazem roboczym jest powietrze które można traktować jako gaz idealny wyznacz pracę w jednym cyklu dla 1 czynnika, oraz ciepło wymienione z chłodnicą (zmiana zadania w porównaniu z poprzednim zestawem) Jaką masę ma 0.5 m 3 pary wodnej przy temperaturze 300 C i stopniu suchości 0.7. v 3 m3 = , v = m3. (dla pary zachodzi A=A +x(a -A ), gdzie A to funkcja termodynamiczna) 5.2 Wyznaczyć objętość, entalpię, energię wewnętrzną i entropię 2 pary wodnej przy ciśnieniu 1.9 MPa i stopniu suchości 0.6. Odczytane wartości z tablic: v 3 m3 = , v = m3 h = kj, h = 2798 kj s = kj K, s = kj K 5.3 Parę wodną o masie 5, i objętości 0.4 m 3 i temperaturze 200 C doprowadzono izobaryczne do stopnia suchości równego Wyznacz stopień suchości, jaki para miała na początku. Oblicz objętość końcową pary oraz zmianę jej energii wewnętrznej. 5.4 Parę wodną o masie 6 i ciśnieniu 0.9 MPa ochłodzono izobaryczne tak, że stopień suchości zmniejszył się od 0.92 do Obliczyć jaką ilość ciepła odprowadzono od pary. 5.5 Zamknięty zbiornik o objętości 0.5 m 3, zawierający parę wodną o ciśnienie 0.6 MPa i stopniu suchości 0.7 MPa, i otrzymano parę nasyconą suchą. Określić temperaturę i ciśnienie końcowe pary oraz ilość doprowadzonego ciepła. 5.6 Wyznacz parametry zredukowane, wsp. kompresji i objętość CH 4 pod ciśnieniem 32.5 MPa i temperaturze 110 C. Parametry krytyczne T c = K, P c = 4.64 MPa, M = kmol. Porównaj uzyskaną wartość z wielkością orzynaną z równania gazu doskonałego. 5.7 Wyznacz parametry zredukowane, wsp. kompresji i objętość butanu pod ciśnieniem 20 MPa i temperaturze 200 C. Parametry krytyczne T c = K, P c = 3.8 MPa, M = kmol. Porównaj uzyskaną wartość z wielkością orzynaną z równania gazu doskonałego. 5.8 Wyznacz ciśnienie jednego mola azotu przy objętości molowej m 3 /mol i temperaturze 177 Cwykorzystując równanie Van der Waalsa. T c = K, P c = 3.39 MPa. Porównaj z ciśnieniem otrzymanym z równania gazu doskonałego. gdzie v to objętość molowa. (P + a )(v b) = RT v2 a = 27 R 2 Tc 2, b = RT c
4 5.9 Wykorzystując równanie Redlicha-Kwonga oblicz Ciśnienie 1 mol metanu w temperaturze 100 C i objętości molowej Porównaj w cynikiem w oparciu o gaz doskonały. Parametry krytyczne metanu: T c = 191 K, P c = 46 bar P = RT v b a v(v + b)t 1 2 a = R2 Tc 2.5, b = RT c Dla tych samych gazów wyznacz ciśnienie na podstawie równanie Soave-Redlicha-Kwonga. P = RT v b aα v(v + b) a = R2 Tc 2.0, b = RT c α = (1 + m(1 T 0.5 r )) 2 gdzie T r = T T c to temperatura zredukowana. m = ω ω 2 ω to czynnik acentryczny Pitzera. Dla metanu ω = Oblicz ciśnienie mieszaniny 92% metanu i 8% azotu stosując równanie stanu Penga-Robinsona wiedząc iż w temperaturze 100 C gęstość wynosi 80 /m 3. Parametry krytyczne metanu: T c = 191 K, P c = 46 bar, ω = Parametry krytyczne azotu: T c = 126 K, P c = 34 bar, ω = P = RT v b aα v(v + b) + b(v b) a = R2 Tc 2.0, b = RT c α = (1 + m(1 T 0.5 r )) 2 m = ω ω 2 ω to czynnik acentryczny Pitzera Wyznacz gęstość i masę metanu w zbiorniku o objętości 20 m 3 w oparciu o równanie Redlicha- Kwonga. Jeżeli jego ciśnienie wymości 20 MPa a temperatura 27 C. Prawdziwy jest wzór mzr i T = pv. Wsp. kompresji można wyznaczyć z zależności: Z 3 Z 2 + (A B B 2 )Z AB = 0 A = ap bp R 2, B = T 2.5 RT 4
5 5
6 6
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa
1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
K raków 26 ma rca 2011 r.
K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077
. Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla
4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
ZADANIA Z FIZYKI - TERMODYNAMIKA
ZADANIA Z FIZYKI - TERMODYNAMIKA Zad 1.(RH par 22-8 zad 36) Cylinder jest zamknięty dobrze dopasowanym metalowym tłokiem o masie 2 kg i polu powierzchni 2.0 cm 2. Cylinder zawiera wodę i parę o temperaturze
Inżynieria procesów przetwórstwa węgla, zima 15/16
Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza
Obiegi gazowe w maszynach cieplnych
OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:
Przemiany gazowe 1. Czy możliwa jest przemiana gazowa, w której temperatura i objętość pozostają stałe, a ciśnienie rośnie: a. nie b. jest możliwa dla par c. jest możliwa dla gazów doskonałych 2. W dwóch
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.
PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Zadania domowe z termodynamiki dla wszystkich kierunków A R C H I W A L N E. Zadania domowe z termodynamiki I dla wszystkich kierunków
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki dla wszystkich kierunków ROK AKADEMICKI 2017/2018 Zad. nr 10 za 3% [2018.01.26 13:30] Obieg
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów
b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11
Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
liczba Materiał realizowany na zajęciach: zajęć
Podręcznik (także w wersji elektronicznej!): Foltańska-Werszko Danuta Teoria systemów cieplnych: termodynamika-podstawy Plan ćwiczeń rachunkowych: Nr liczba Materiał realizowany na zajęciach: zajęć godz.
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej PRACA SEMINARYJNA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej Agnieszka Wendlandt Nr albumu : 127643 IM M (II st.) Semestr I Rok akademicki 2012 / 2013 PRACA SEMINARYJNA Z PRZEDMIOTU
Rodzaje pracy mechanicznej
Rodzaje pracy mechanicznej. Praca bezwzględna Jest to praca przekazana przez czynnik termodynamiczny na wewnętrzną stronę denka tłoka. Podczas beztarciowej przemiany kwazystatycznej praca przekazana oczeniu
Chłodnictwo i Kriogenika - Ćwiczenia Lista 3
Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 dr hab. nż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Techniki niskotemperaturowe w medycynie
INŻYNIERIA MECHANICZNO-MEDYCZNA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA Techniki niskotemperaturowe w medycynie Temat: Lewobieżny obieg gazowy Joule a a obieg parowy Lindego Prowadzący: dr inż. Zenon
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)
Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Opracowała: Natalia Strzęciwilk nr albumu 127633 IM-M sem.01 Gdańsk 2013 Spis treści 1. Obiegi gazowe 2. Obieg Ackereta-Kellera 2.1. Podstawy
Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19
Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)
Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła
Zadania z fizyki. Wydział PPT
Zadania z fizyki Wydział PPT 13 Termodynamika Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Komentarz do Zad. 1-4: Cztery pierwsze zadania dotyczą rozszerzalności
YCa. y 1. lx \x. Hi-2* sp = SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE
SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE Maszyna,.która kosztem energii pobranej z obcego źródła podnosi ciśnienie gazu, nazywa się; sprężarką. Na rys.7.1 w układzie p-v przedstawiono teoretyczny przebieg
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego.
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego. Adam Nowaczyk IM-M Semestr II Gdaosk 2011 Spis treści 1. Obiegi termodynamiczne... 2 1.1 Obieg termodynamiczny... 2 1.1.1 Obieg prawobieżny... 3
T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika:
Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Zamiana ciepła na pracę przez cyklicznie działającą maszynę cieplną jest możliwa tylko przy wykorzystaniu dwóch zbiorników ciepła o różnych
PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ
1 PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ Dane silnika: Perkins 1104C-44T Stopień sprężania : ε = 19,3 ε 19,3 Średnica cylindra : D = 105 mm D [m] 0,105 Skok tłoka
Skraplarki Claude a oraz Heylandta budowa, działanie, bilans cieplny oraz charakterystyka techniczna
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Skraplarki Claude a oraz Heylandta budowa, działanie, bilans cieplny oraz charakterystyka techniczna Wykonała: Alicja Szkodo Prowadzący: dr inż. W. Targański 2012/2013
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
W pierwszym doświadczeniu nastąpiło wrzenie wody spowodowanie obniżeniem ciśnienia.
Termodynamika - powtórka 1. Cząsteczki wodoru H 2 wewnątrz butli mają masę około 3,32 10 27 kg i poruszają się ze średnią prędkością 1220. Oblicz temperaturę wodoru w butli. 2. 1,6 mola gazu doskonałego
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń
Maszyny cieplne substancja robocza
Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła.
M. Chorowski, Podstawy Kriogeniki, wykład 0 7. Chłodziarki z regeneracyjnymi wymiennikami ciepła. W chłodziarkach z regeneracyjnymi wymiennikami ciepła wstępne obniżenie temperatury gazu zachodzi w regeneratorze,
Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin
Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...
Obieg Ackeret-Kellera i lewobieżny obieg Philipsa (Stirlinga) - podstawy teoretyczne i techniczne możliwości realizacji.
Obieg Ackeret-Kellera i lewobieżny obieg Philipsa (Stirlinga) - podstawy teoretyczne i techniczne możliwości realizacji. Wykonała: Anna Grzeczka Kierunek: Inżynieria Mechaniczno-Medyczna sem. II mgr Przedmiot:
WŁAŚCIWOŚCI GAZÓW 3.1. PODSTAWY TEORETYCZNE
WŁAŚCIWOŚCI GAZÓW 3.1. PODSTAWY TEORETYCZNE Gazem doskonałym nazwano taki gaz, w którym nie istnieją siły przyciągania międzycząsteczkowego, a objętość cząsteczki równa jest zeru. Inaczej gaz doskonały
Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak
Państwowa Wyższa Szkoła Zawodowa w Koninie Janusz Walczak Te r m o d y n a m i k a t e c h n i c z n a Konin 2008 Tytuł Termodynamika techniczna Autor Janusz Walczak Recenzja naukowa dr hab. Janusz Wojtkowiak
Wykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna
W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej
Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał.
Temat : Pierwsza zasada termodynamiki. Wyobraźmy sobie następującą sytuację : Jest zima. Temperatura poniżej zera. W wyniku długotrwałego wystawiania dłoni na działanie lodowatego powietrza, odczuwamy,
Energetyka odnawialna i nieodnawialna
Energetyka odnawialna i nieodnawialna Repetytorium Podstawy termodynamiczne Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz gar@imp. imp.gda.pl, 601-63 63-22-84 Materiały y uzupełniaj niające:
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego.
Lewobieżny obieg gazowy Joule a a obieg parowy Lindego. Wojciech Głąb Techniki niskotemperaturowe Inżynieria Mechaniczno-Medyczna st. II sem. I Spis treści 1. Obieg termodynamiczny... 3 2. Obieg lewobieżny
Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK
Wykład 7. Entalpia układu termodynamicznego.. Entalpia; odwracalne izobaryczne rozpręŝanie gazu.2. Entalpia; adiabatyczne dławienie gazu dla przepływu ustalonego.3. Entalpia; nieodwracalne napełnianie
WYZNACZANIE STOSUNKU c p /c v
Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie
Maszyny cieplne i II zasada termodynamiki
Maszyny cieplne i II zasada termodynamiki Maszyny cieplne, chłodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamiczna definicja II zasada termodynamiki i entropia Cykle termodynamiczne.
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI
BILANSE ENERGETYCZ1TE. I ZASADA TERMODYNAMIKI 2.1. PODSTAWY TEORETYCZNE Sporządzenie bilansu energetycznego układu polega na określeniu ilości energii doprowadzonej, odprowadzonej oraz przyrostu energii
TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE
TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Skraplarka Claude a i skraplarka Heylandt a budowa, działanie, bilans cieplny, charakterystyka techniczna. Natalia Szczuka Inżynieria mechaniczno-medyczna St.II
Termodynamika, ciepło
Termodynamika, ciepło C. Właściwy Punkt Potrójny, 26 lutego 217 r. Rozwiązanie każdego zadania zapisz na oddzielnej, podpisanej kartce z wyraźnie zaznaczonym numerem zadania. 1 Zadanie Ogrzewanie wody
Wykład Temperatura termodynamiczna 6.4 Nierówno
ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu