Techniki Rozdzielania TCh II/II (sem. IX dla studiów zintegrowanych ) -- Wykład II-gi + III-ci --
|
|
- Wiktoria Orzechowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Techniki Rozdzielania TCh II/II (sem. IX dla studiów zintegrowanych ) -- Wykład II-gi + III-ci Powtórzenie z rozszerzeniem + nowy materiał -- prof. M. Kamioski markamin@pg.gda.pl Tel Gdaosk 016
2 PRZEWODY RUROWE / KANAŁY / WARSTWY POROWATE \ Profil przepływu - powtórzenie Opór przepływu - powtórzenie Dyspersja masy podczas przepływu w: - rurociągach / kanałach nowy materiał - warstwach porowatych nowy materiał Zasady realizacji operacji sorpcji desorpcji nowy materiał - wsadowo okresowo, w sposób półciągły, - elucyjnie w sposób okresowy, pół-ciągły, ciągły, izotermicznie, izokratycznie, gradientowo
3 Przepływ płynu w rurociągach / warstwach porowatych -- opory przepływu / dyspersja masy -- w części przypomnienie, w części nowy materiał Prawo Newtona a opór przepływu / profil przepływu płynu - w rurociągach (przewodach rurowych) - w warstwach porowatych (ziarnistych / monolitycznych / pakietowych) -- w zależności od - warunków przepływu / charakterystyki powierzchni / zwilżanej, - charakterystyki profilu przepuszczalności wypełnienia porowatego Prawo Poiseill a - dla kapilar / warstw porowatych ruch laminarny Równanie D Arcy Weisbacha ogólny opis oporów przepływu w przewodach rurowych / kapilarach aparatury analitycznej Równania Leeva ogólny opis oporów przepływu w warstwach porowatych Prawo Pascala nie zapominad!
4 WARSTWY POROWATE (ziarniste, elementowe, pakietowe) KOLUMNY WYPEŁNIONE (wypełnieniem ziarnistym, elementowym, pakietowym) REAKTORY z WYPEŁNIENIEM (ziarnistym warstwy: stacjonarne / fluidalne) -- sorpcja desorpcja (absorpcja, adsorpcja, wymiana jonowa, powinowactwo) -- chromatografia (wykluczania GPC/SEC, układy - NP, RP, (HIC) HILIC, IExch, IExcl, LExch, -- kataliza heterogeniczna (złoże stacjonarne / fluidalne) Parametry: wielkośd i kształt ziaren, rozkład granulometryczny, porowatośd - między- / wewnątrz-ziarnowa, średnica porów, rozkład wielkości porów - opór przepływu; - dyspersja masy; sprawnośd warstwy wypełnienia / kolumny; - kinetyka / dynamika ruchu / wymiany masy, - czas przebywania w reaktorze z wypełnieniem ziarnistym / fluidalnym,
5 Niektóre wielkości procesowe i ich wymiary Natężenie objętościowe Strumieo objętościowy (prędkośd liniowa) Natężenie masowe Strumieo masowy Natężenie molowe Strumieo molowy w V V dv m d s 3 dvv m Sd m s u 3 dm kg d s M W W m m w m w m s d m kg Ad m s m m dn d mol s N W dn mol n WA Ad m s A
6 CIECZE RZECZYWISTE - LEPKIE - PRAWO LEPKOŚCI NEWTONA - df/ds = -η du/dx Wektor naprężenia ścinającego trących się o siebie wzajemnie warstewek lepkiego płynu - df/ds (cieczy, gazu, płynu nadkrytycznego), jest proporcjonalny do gradientu prędkości liniowej płynu - du/dx - i jest przeciwnie skierowany (stąd - ), a współczynnikiem proporcjonalności (η ) jest właściwością płynu, nazwaną lepkością dynamiczną, albo współczynnikiem lepkości dynamicznej, opisujący tarcie wewnętrzne w przestrzeni płynu. Płyny spełniające to prawo noszą nazwę płynów newtonowskich. Te, które nie spełniają nie-newtonowskich.
7 Lepkość - tarcie wewnętrzne płynu Płaszczyzna ruchoma F du F A du dy dy Płaszczyzna nieruchoma x F A du dy. γ Równanie Newtona - naprężenie styczne, N/m = Pa - szybkość ścinania, s -1 - współczynnik proporcjonalności nazywany współczynnikiem lepkości dynamicznej (lepkość dynamiczna)
8 - współczynnik lepkości dynamicznej Jednostka lepkości dynamicznej w układzie SI: [kg / m s]=[ Pa s ] Inne jednostki : P (puaz) cp (centipuaz) Lepkość wody i powietrza w 0 C: HO 1 cp, pow cp 1 cp= 1Pa s/1000 = 1 m Pa s - współczynnik lepkości kinematycznej (lepkośd kinematyczna) Miano w układzie SI [m /s] St - stoks 1 St = 1 cm /s
9 σ = ɳ du/dx
10 Pomiary lepkości kinematycznej charakteryzują się wyższą dokładnością i precyzją od pomiarów lepkości dynamicznej W przypadku wykorzystywania wyników badao lepkości w warunkach wysokich prędkości ścinania w płynie (wysokich Re) należy korzystad tylko z lepkości dynamicznej! Lepkościomierz Hoeplera jedna z metod pomiaru lepkości dynamicznej płynów najprostsza i najtaosza - zasada pomiaru Niektóre inne metody pomiaru lepkości dynamicznej / kinematycznej : - Brookfielda - dynamiczna - Ubehloda - kinematyczna - Cannon Fensky - kinematyczna -
11 OPORY PRZEPŁYWU / PROFIL PRZEPŁYWU PŁYNU w PRZEWODACH (RUROCIĄGACH) / WARSTWACH POROWATYCH A ruch laminarny (uwarstwiony) B ruch burzliwy (wirowy) Re<300 Re>3000 (10 000) W warunkach przemysłowych dąży się z zasady do utrzymywania warunków przepływu burzliwego w rurociągach / aparatach oprócz kolumn z mikro-ziarnistymi wypełnieniami. W warunkach laboratoryjnych, szczególnie podczas przepływu cieczy z powodu względnie wysokich lepkości oraz niskich wartości średnic przewodów rurowych uzyskiwanie warunków ruchu burzliwego cieczy w przewodach rurowych - nie jest najczęściej możliwe. W przypadku przepływu gazu w przewodach rurowych laboratoryjnych układów reaktorowych ruch gazu ma najczęściej charakter słabo burzliwy. W warstwach porowatych tak, w warunkach przemysłowych ( procesowych, technicznych ), jak i laboratoryjnych, ruch płynu (gazu / cieczy / płynu nadkrytycznego) w przestrzeni międzyziarnowej tych obiektów ma prawie z reguły charakter laminarny (uwarstwiony)
12 Opis warunków laminarnego (uwarstwionego) (Re<300) / burzliwego (wirowego) (Re>3000) przepływu płynu lepkiego w przewodach rurowych / kanałach Profil przepływu Równania opisujące profil przepływu płynu w przewodach rurowych można wyprowadzid zrównao różniczkowych Paraboloida obrotowa Profil zmierza do równomiernego (tłokowego) W miarę wzrostu wartości liczby Reynoldsa
13 Opory przepływu w przewodach (rurociągach) -- Określanie spadku ciśnienia podczas przepływu płynu P 3 3 h P 1 1, P P 0 0 h 1 przekrój 0 - dla zwierciadła cieczy w dolnym zbiorniku przekrój 1 - przed pompą przekrój - za pompą przekrój 3 - dla zwierciadła cieczy w górnym zbiorniku
14 Zasady analizy wymiarowej Wyznaczanie strat ciśnienia płynu w oparciu o analizę wymiarową P f d,l,u,, d - średnica przewodu, m L - długość przewodu, na której nastąpił spadek ciśnienia płynu, m u - średnia liniowa prędkość przepływu płynu, m/s - gęstość płynu, kg/m 3 - lepkość dynamiczna płynu, Pas
15 e d c b a u L d A P e d c b a s m kg m kg s m m m A s m kg 3 poszukiwaną zależność przedstawia się w postaci iloczynu potęg podstawowych wymiarów fizycznych układu miar (SI) wszystkie symbole należy rozumieć jako wymiary fizyczne a nie wielkości procesowe Zasady analizy wymiarowej, d,l,u, P f
16 3 s m kg A : s m kg m kg s m m m A s m kg e d c b a s m kg s m kg m kg s m m m A e e e d d c c b a przy m przy s przy kg e d c b a e c e c 0 e d e d e e e b a 0 e b a e b a Zasady analizy wymiarowej
17 u Du D L A P e b u : u du d L A P e b du, d L f u P e d c b a u L d A P e e e b e b u L d A P 1 0 e b a e b a c e d e 1 Zasady analizy wymiarowej
18 PODOBIEŃSTWO GEOMETRYCZNE / FIZYCZNE Przepływ płynu lepkiego (η) w różnych układach pod działaniem różnicy ciśnień ΔP Eu L d P u P u L f d du, Podobieństwo geometryczne - simpleks geometryczny Liczba kryterialna Eulera - podobieństwo hydrodynamiczne w zakresie : -- stosunek sił ciśnienia (Δp wyraża różnicę ciśnień w dwóch dowolnych punktach strumienia) do sił bezwładności (ciśnienie dynamiczne odpowiadające energii kinetycznej jednostki objętości płynu), czyli określa Re ud ud Liczba kryterialna Reynoldsa, podobieństwo hydrodynamiczne w zakresie : -- stosunek sił bezwładności do sił lepkości (tarcia wewnętrznego) i określa podobieństwo hydrodynamiczne w przypadku przepływu płynu rzeczywistego przez przewody / warstwy porowate / kolumny / reaktory / wymienniki ciepła /
19 Zasady analizy wymiarowej Liczba Reynoldsa - opisuje charakter przepływu płynu -- stosunek sił bezwładności do sił lepkości -- Re ud ud dla Re 100 ruch laminarny (lepki, uwarstwiony) dla 3000 <Re 100 ruch przejściowy dla Re 3000 ruch burzliwy (turbulentny, wirowy) Liczba Eulera - opisuje charakter przepływu płynu -- stosunek sił ciśnienia do sił bezwładności Eu = P/ρu
20 Współczynnik oporu Przepływ laminarny w przewodach rurowych / kapilarach P u P f L d du, L d u Re ud 64 Re 64 ud P 64 ud L d u 3uL P Równanie Poiseuill a d
21 Współczynnik oporu Przepływ laminarny w przewodach rurowych / kapilarach Liczba Reynoldsa f Re, Chropowatośd ścianki (pomijalna w warunkach przepływu laminarnego, (ważna w przypadku ruchu burzliwego) Przepływ laminarny - szorstkość wewnętrznych ścian nie odgrywa roli i zależność na bezwymiarowy współczynnik oporu przyjmuje postać: Re100 a Re Wartość parametru a: 64 dla przekrojów kołowych 57 dla przekrojów kwadratowych 96 dla przekrojów pierścieniowych ( rura w rurze )
22 Współczynnik oporu Przepływ burzliwy (wirowy) w przewodach rurowych / kapilarach Re 3000 P u L d f Re f Re, f Re - bezwymiarowy współczynnik oporów jest funkcją liczby Reynoldsa i szorstkości rury P u L d P H L d L 1 d u u g,pa,m Równanie Darcy - Weisbacha
23 Współczynnik oporu Wyznaczanie współczynnika oporu : Przepływ burzliwy a f Re, a, b, n stałe, charakterystyczne dla różnych zakresów liczb Reynoldsa Re b Re n 0, 3164 Re 0, 5 Wzór Blasiusa Re Re 3, , 16 Re 0, 003 0, 16 0, 1 Re 0, 37 Wzór Generaux Wzór Nikuradase
24 Współczynnik oporu
25 Opory lokalne Spadek ciśnienia płynu na oporach lokalnych - zmiany przekroju (nagłe zwężenie lub rozszerzenie przekroju), zmiany kierunku przepływu (np. kolanka), elementy aparatury i armatury umieszczone w drodze przepływu (zawory, kurki, zasuwy, przepływomierze itd.) - jest sumą oporów trasy przepływu (tr) - samego rurociągu oraz tychże oporów lokalnych (ol) P P tr P ol
26 1 u d L d L P e P u p g h u p g h Opory lokalne
27 1. Opory lokalne Spadek ciśnienia płynu na oporach lokalnych L e n L e długośd zastępcza przewodu prostego, na którym to odcinku spadek ciśnienia płynu jest taki sam jak na danym oporze lokalnym, m Le u Pol d d n
28 g u D L D L H e, H g u g p h g u g p h Opory lokalne
29 . Opory lokalne Spadek ciśnienia płynu na oporach lokalnych P współczynnik oporu lokalnego, charakterystyczny dla danego oporu lokalnego, - ol i u Rodzaj oporu Współczynnik ξ Współczynnik n wlot 0,5 5 wylot 1 50 nagłe rozszerzenie przewodu (A 1 / A pole przekroju węższej /szerszej części) A1 1 A kolanko 90 o 0,7 35 kolanko 45 o 0,3 15 zawór 3, 150 zasuwa 0,15 7 kurek do pobierania prób
30
31
32 WARSTWY POROWATE ZIARNISTE / MONOLITYCZNE -- przepływ jednofazowy Przykłady zastosowao -- Charakterystyka, wymagania -- Parametry oraz sposoby opisu: -- Ziarnistości, porowatości, oporów przepływu -- Sprawności - dyspersji masy (efektywnej dyfuzji)/profilu przepływu -- Efektów sterycznych, retencji, równowag sorpcyjnych -- Selektywności rozdzielania -- Rodzaje zastosowao warstw porowatych w układach płyn ciało stałe -- sorpcja desorpcja (absorpcja, adsorpcja, wymiana jonowa w układach płyn ciało stałe (G-S, L-S, SF - S) płyn ciecz (G-L, L-L, SF-L), -- w warunkach: wykluczania sterycznego, wymiany jonowej, normalnych / odwróconych układach faz, wykluczania jonowego, wymiany ligandów, powinowactwa, oddziaływao hydrofobowych,
33 Wypełnienie ziarniste kolumny HPLC - warstwa porowata - kolumny HPLC / płytki TLC / adsorbera
34
35 Wypełnienia pakietowe
36 Pojęcia porowatości -- stosunek przestrzeni zajętej przez płyn do całkowitej objętości -- ε m/z - porowatośd między-ziarnowa (odniesiona do objętości złoża (kolumny)) ε w/z - porowatośd wewnątrz-ziarnowa (odniesiona do sumy objętości ziaren w warstwie porowatej (wypełnieniu kolumny)) ε t - porowatośd całkowita (odniesiona do objętości złoża (kolumny)) Dośd łatwo można wykazad, że: ε t = ε m/z + (1- ε m/z ) ε w/z Np. dla ε m/z = 0.4 i ε w/z = 0.6 ε t = V o = V c ε t
37
38 Pojęcia porowatości -- stosunek przestrzeni zajętej przez płyn do całkowitej objętości ε m/z - porowatość między-ziarnowa (odniesiona do objętości złoża (kolumny)) ε w/z - porowatość wewnątrz-ziarnowa (odniesiona do sumy objętości ziaren w warstwie porowatej (wypełnieniu kolumny)) ε t - porowatość całkowita (odniesiona do objętości złoża (kolumny)) Dość łatwo można wykazać, że: ε t = ε m/z + (1- ε m/z ) ε w/z Np. dla ε m/z = 0.4 i ε w/z = 0.6 ε t = V o = V c ε t objętość elucji trasera niesorbowanego, wnikającego do wszystkich porów w ziarnach wypełnienia dawniej - objętość martwa kolumny
39 Opór przepływu w warstwach porowatych -- równanie Lev a ε porowatośd międzyziarnowa wypełnienia L u P 3 ϕ czynnik kształtu wypełnienia stosunek Re de powierzchni wypełnienia do powierzchni kuli o tej samej objętości, jak element wypełnienia lg ( ) K współczynnik oporu przepływu L d p L c d m e d z m --- wielkośd ziaren (d p d e, d z ) w Re - dla przepływu płynu w warstwach porowatych (!!!) Re = u d p ρ / η u liniowa prędkośd przepływu płynu w warstwie porowatej, obliczana dla pustej d e zastępcza średnica wypełnienia o określonej geometrii d p średnia średnica wypełnienia ziarnistego o ziarnach kulistych / nieregularnych d z średnica zastępcza wypełnienia ziarnistego
40 Opór przepływu płynu w warstwach porowatych -- równanie Blake Kozeny wyłącznie dla ziarnistych warstw porowatych i przepływu laminarnego (Re<1) Re = U o d p ρ / η gdzie : ΔP opór przepływu (spadek ciśnienia na warstwie porowatej) *Pa+ U o prędkośd przepływu cieczy w przestrzeni między-ziarnowej [m/s] ε porowatośd między-ziarnowa wypełnienia kolumny *1+ L = Lc długośd warstwy porowatej *m+ ρ gęstośd płynu *kg/m 3 ]
41 Jeśli wartość porowatości (międzyziarnowej) wypełnienia nie zmienia się pod wpływem ciśnienia oddziałującego na wlocie płynu do warstwy wypełnienia, wypełnienie nazywamy nieściśliwym. W przeciwnym razie - ściśliwym Wypełnienie nieściśliwe / ściśliwe P 400 R e L d e u 1 3 Zredukowana przepuszczalność kolumn Φ = (dp) /K, obliczona na podstawie przepuszczalności K ; K = u Lc η / ΔP, powinna wynosić ok od ok. 750 do Poniżej 750 złoże kolumny może być niestabilne (nietrwałe) kolumna zbyt luźno wypełniona; Powyżej 1500 nienaturalny opór.
42 Metody postępowania Warunki elucji czołowej (tryb wsadowy), Warunki elucji impulsowej (tryb elucyjny) Warunki pracy okresowej Warunki pracy pół-ciągłej ( pseudo-ciągłej) Warunki pracy ciągłej -- z symulacją ruchu złoża (SMB Simulated Moving Bed) -- z rzeczywistym przemieszczaniem sorbentu
43 Przepływ jednofazowy przez warstwy porowate Operacje adsorpcji desorpcji, wymiany jonowej, katalizy, transportu
44 i wymiany jonowej A. Selecki, L. Gradoo, Podstawowe procesy przemysłu chemicznego, WNT W tym, ekstrakcja do fazy stałej (SPE) elucyjna chromatografia cieczowa (LC) / Gazowa (GC) / z nadkrytycznym płynem (SFC), jako eluentem w skali laboratoryjnej, semi-preparatywnej, preparatywnej oraz procesowej Ważne także : -- oczyszczanie wodoru do procesów rafineryjnych, -- odwadnianie etanolu, -- oczyszczanie wody z zastosowaniem wymiany jonowej / adsorpcji na węglu aktywnym
45 Technika czołowa Wykorzystywana w praktyce w warunkach SPE / adsorpcji desorpcji wykonywanej w trybie wsadowym, np., w celu oczyszczania powietrza, rozpuszczalników, wody itp., Eluent ze składnikami rozdzielanymi wprowadza się do kolumny w roztworze ; Najsłabiej sorbowane składniki wypływają z kolumny jako pierwsze; Są jedynym składnikiem / składnikami otrzymywanym / otrzymywanymi w czystej postaci (po rozdzieleniu od eluentu)
46 Schemat przebiegu elucji czołowej
47 Chromatogram elucji czołowej
48 Równowaga sorpcji desorpcji izoterma Langmuire a
49 Profil adsorbatu podczas operacji adsorpcji w złożu kolumny adsorpcyjnej
50 Ta sama zasada ma miejsce w procesie demineralizacji wody z zastosowaniem wymieniaczy jonowych kationitu / anionitu oraz do regeneracji wymieniaczy jonowych
51
52 Hydrorafinacja olejów katalityczna kilkustopniowa hydrorafinacja na stacjonarnym złożu katalitycznym porowatym wypełnieniu - w celu produkcji oleju bazowego Parametry procesu Ilośd gazu wodorowego 5 Nm3/ m3 wsadu. Ciśnienie gazu wodorowego 3,8 MPa. Temperatura w reaktorze C w zależności od typu wsadu.
53 Technika elucyjna najczęściej prawie wyłącznie wykorzystywana w praktyce w chromatografii -- gazowej (Gas Chromatography GC / cieczowej Liquid Chromatography - LC) ekstrakcji do fazy stałej: SPE Solide Phase Ekstraction -- W technice tej, składniki mieszaniny rozdzielanej są wprowadzane do kolumny / na płytkę TLC - w postaci wąskiego lub pasma / punktowo i poruszają się wzdłuż kolumny, z szybkością określoną przez ich retencją oraz przez prędkośd przepływu eluentu (u); Jeżeli różnice energii sorpcji składników rozdzielanych są znaczne, albo kolumna jest dostatecznie długa, możliwe jest całkowite rozdzielenie wszystkich składników mieszaniny wprowadzonej do kolumny / na płytkę TLC; Często, zwłaszcza dla rozdzielania mieszanin o złożonym składzie należy stosowad tzw. elucję gradientową, tzn. programowane zmiany siły elucyjnej eluentu w f. czasu rozdzielania: Eluent, podawany w sposób ciągły do kolumny, wypływa z w mieszaninie z poszczególnymi składnikami rozdzielonymi i dla ich wydzielenia musi zostad od nich oddzielony, np. na drodze odparowania, liofilizacji, często po uprzednim wzbogaceniu frakcji eluatu w rozdzielane składniki
54 Klasyczna elucyjna technika kolumnowa (LC) 1) przygotowanie kolumny i wypełnienia, wypełnienie, kondycjonowanie, ) dozowanie, elucja, detekcja, kolekcja frakcji, 3) re-kondycjonowanie, ) dozowanie,,albo rozładowanie, 1 )
55 Chromatogram analizy elucyjnej
56 ELUENT ELUAT, substancje rozdzielane
57 FAZA RUCHOMA
58 k= ( 1/Rf ) - 1 d c Rf 3 c d b a FAZA RUCHOMA Rf 1 Rf a d b d
59
60 Najczęściej HPLC Widok pasm rozdzielania kilku składników ekstraktu acetonowego trawy - przez szklaną ścianę kolumny HPLC typu CN (faza stacjonarna alkilonitryl związany na powierzchni porów wewnątrz ziaren żelu krzemionkowego, eluent heksan MTBE - THF; kolejność pasm - od dołu: caroteny, produkt rozkładu chlorofilu, chlorofil A, carotenoidy-i, chlorofil B, carotenoidy-ii carotenoidy II chlorofil B Tu NP HPLC warunki bezwodne! kierunek przepływu eluentu carotenoidy I chlorofil A Warunki rozdzielania Kolumna 150x3mm, Separon CN 5 um,eluent: heksan:mtbe:thf=55:8:6,4 (v/v/v), próbka 30 ul ekstraktu acetonowego z trawy, temperatura pokojowa produkt utleniania chlorofili Natężenie przepływu eluentu w=0.8 ml/min
61
62 W tej części tego chromatogramu powinno byd co najmniej 0 pików rozdzielonych do linii bazowej!!! Możliwe do uzyskania, dzięki: -- optymalizacji programu elucji, -- maksymalizacji sprawności kolumny (N>=50 tys.) Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
63 Thin Layer Chromatography (TLC) Chromatografia cienkowarstwowa (planarna), odkryta jako bibułowa 1889 (PC - Paper Chromatography) Tu: wynik rozdzielania mieszaniny kilku nisko i średnio polarnych barwników na żelu krzemionkowym na płytce szklanej; Widad także, że na starcie pozostaje składnik / mieszanina polarnych składników ; Dla tych składników mieszaniny - eluent o zbyt niskiej sile elucyjnej
64 Transposition, example 1 Flush Chromatography In ideal conditions, transposition from TLC to Flash Chromatography should give such results Merck Chimie S.A.S. 5/11/005 Page 64
65
66
67 SPE SPE (Solide Phase Extraction) z elucją stopniową, albo wzbogacaniem i elucją
68 Znaczenie minimalizacji dyspersji w warstwach porowatych (zapewnienia tłokowego profilu przepływu płynu) Maksymalizacja sprawności i rozdzielczości -- minimalizacja HETP, maksymalizacja liczby półek teoretycznych (N) / rozdzielczości (R) / efektywności rozdzielania / oczyszczania / reaktywności Unifikacja czasu przebywania w reaktorach z wypełnieniem ziarnistym Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
69 Podstawowe parametry opisu dyspersji w ziarnistych / monolitycznych warstwach porowatych i wzajemny związek między nimi W bogatej literaturze opisu dyspersji masy podczas przepływu płynu w warstwach porowatych mają miejsce dwa podejścia, prowadzące do odrębnych, wzajemnie powiązanych parametrów miary dyspersji. HETP (H) albo D eff W przypadku rejestracji przebiegu rozkładu stężenia niesorbowanego, albo sorbowanego trasera, przemieszczanego w złożu porowatym z prędkością u D eff = (µ / M 1 ) u Lc stąd : H = D eff / u gdzie: u średnia prędkośd ruchu trasera; w przypadku sorpcji u = u 0 / (1+k) u 0 prędkośd średnia eluentu (u 0 =Lc/t 0 ); µ - drugi moment centralny; M 1 -pierwszy moment zwykły krzywej rozkładu stężenia trasera Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
70 PROFIL PRZEPŁYWU PŁYNU w przestrzeni międzyziarnowej warstw porowatych w kapilarach międzyziarnowych / w przestrzeniach makro-porów / porów strukturalnych ziarnistych / monolitycznych warstw porowatych, w przestrzeniach wolnych - pakietowych wypełnieo kolumn A ruch laminarny (uwarstwiony); B ruch burzliwy (wirowy) Re<300 Re>3000 (10 000) DYSPERSJA MASY podczas przepływu płynu przez : - przewody rurowe / kapilary transportowe - warstwy porowate ziarniste / pakietowe / monolityczne dominuje dyfuzja molekularna dominują opory przenoszenia masy mikro-wiry zmniejszają dyspersję
71 Dyspersja osiowa (aksjalna) w warstwie porowatej Warunek otrzymywania oczekiwanej sprawności kolumny - poprawnie wypełniona oraz tłokowy profil przepływu 1. Badanie dyspersji na zasadzie pomiaru poprzez przeźroczystą ścianę kolumny z warstwą z warstwą porowatą. Badanie dyspersji na podstawie przebiegu sygnału detektora na wylocie z kolumny HETP = μ L /M 1 L D eff = HETP/u ; u=lc/tr HETP = Lc μ /M 1 HETP = 1/5.54 Lc (S 1/ i / l ri )
72 Dyspersja masy w warstwie porowatej miary dyspersji, związek z parametrami operacyjnymi / z profilem przepływu, u L D eff efektywny współczynnik dyfuzji *m /sek] H wysokośd równoważna półce teoretycznej *m+ τ czas [sek] σ L wariancja [m ] μ L - drugi moment centralny [m ] D eff H = σ L L / L M 1 - pierwszy moment zwykły (mediana) *sek] L M 1 Dyspersja trasera obserwowana w warstwie porowatej na dystansie L (po czasie τ) od powierzchni wprowadzenia w formie impulsu Dirac a u prędkośd przepływu (obserwowana(!)
73 W przypadku rejestracji rozkładu trasera na wylocie z warstwy porowatej za pomocą dynamicznego detektora przepływowego o znikomej objętości martwej przepływowego naczyoka detekcyjnego, podane zależności opisujące dyspersję są słuszne tylko dla wypełnieo o wewnętrznie nieporowatych ziarnach, albo w przypadku ziaren porowatych wewnętrznie - gdy traser nie jest w stanie wnikad do porów wewnątrz-ziarnowych. W przeciwnych przypadkach do obliczania miary dyspersji należy zastosowad następujące zależności (dla momentów statystycznych wyznaczanych w tych samych jednostkach miar) : H= Lc (μ / (M 1 ) ) D eff = (µ / M 1 ) u Lc H = D eff / u lub D eff = H u, natomiast, u = L c /t o gdzie : u [m/sek] prędkośd przemieszczania się trasera w warstwie porowatej między wlotem i wylotem z kolumny o długości L c [m], gdy tzw. czas martwy kolumny wynosi t o [sek] - czas elucji niesorbowanego trasera, wnikającego do wszystkich porów wewnątrz-ziarnowych Dla w przybliżeniu gaussowskich krzywych przebiegu rozkładu trasera ( pików ) można skorzystad z właściwości krzywej Gaussa. Otrzymujemy wówczas na podstawie szerokości kiu w ½ wysokości oraz dystansu elucji : H = Lc / 5.54 (S 1/ /l) oraz N = Lc / H
74 Miary dyspersji - sprawności (H) porowatego wypełnienia kolumny, liczby półek teoretycznych (N) kolumny wypełnionej, asymetrii pików - na podstawie szerokości w ½ wysokości pików gaussowskich (S 1/ ) oraz retencji (l) - na podstawie momentów statystycznych : μ drugiego momentu centralnego oraz M 1 - pierwszego momentu zwykłego pików nie opisywanych krzywą Gaussa H N As L H 0,1 LC S ( 5,54 l C V o = V c ε t ; 5,54( b a 1/ l S u ) ) L C t 0 H= Lc (μ / (M 1 ) ) N= Lc/H = (μ / (M 1 ) ) -1 1/ Obliczanie / szacowanie - prędkości przepływu eluentu (u) objętości martwej kolumny (V o ), czasu martwego (t o, t M ) ε t = ok V c = t o = w / V o = w/(v c ε t ) = w / (F c L c ε t ) u = w / (Fc ε t )
75 DYSPERSJA MASY Wiele zjawisk przyczynia się do dyspersji stref rozdzielanych substancji Wzrost dyspersji = spadek sprawności kolumny wzrasta H i spada N Im niższa wartość wysokości równoważnej półce teoretycznej (HETP, H), tym wyższa wartość liczby półek teoretycznych tym wyższa sprawność rozdzielania - także - kolumny
76
77 Dyspersja stref zjawisko niekorzystne, jednak, nieuniknione u - liniowa prędkośd fazy ruchomej u=lc/to Zjawiska powodujące dyspersję (najważniejsze dla uproszczenia) - Dyfuzja wirowa (A); - Dyfuzja molekularna (B); - Opory przenoszenia masy (C) 1. w fazie ruchomej (Cm),. w fazie stacjonarnej (Cs) Równanie Van Deemter a, H = B/u + A + Cu C = (Cm + Cs) u bardziej adekwatne dla LC równania: Knox a : h = B/v + A v Cv B=0.5; A= (1); C=0.1 (0.05) h=h/dp ν - tzw. zredukowana prędkośd przepływu eluentu (Pe) [1] D M współczynnik dyfuzji molekularnej substancji rozdzielanej w eluencie [m /sek] d p średnica ziaren wypełnienia kolumny; wielkośd ziaren wypełnienia kolumny [m] v=udp/dm
78 Obliczanie sprawności (H) porowatego wypełnienia kolumny, liczby półek teoretycznych (N) kolumny wypełnionej, asymetrii pików - na podstawie szerokości w ½ wysokości pików gaussowskich (S 1/ ) oraz retencji (l) - na podstawie momentów statystycznych : μ drugiego momentu centralnego oraz M 1 - pierwszego momentu zwykłego pików nie opisywanych krzywą Gaussa H N As L LC S ( 5,54 l C H 0,1 V o = V c ε t ; 5,54( b a 1/ l S 1/ u ) ) L C t 0 H= Lc (μ / (M 1 ) ) N= Lc/H = (μ / (M 1 ) ) -1 Obliczanie / szacowanie - prędkości przepływu eluentu (u) objętości martwej kolumny (V o ), czasu martwego (t o, t M ) ε t = ok V c = t o = w / V o = w/(v c ε t ) = w / (F c L c ε t ) u = w / (Fc ε t )
79 Zależność dyspersji od warunków elucji i parametrów wypełnienia kolumny najprostsze, aktualne dla CGC w przypadku HPLC aktualne co do zasady H min A BC u opt B C H min A B C
80 Modification of the van Deemter Equation: the Giddings Equation Giddings realized that the eddy diffusion and resistance to mass transfer in the mobile phase must be treated dependently: H 5 i1 1 A 1 1 C u 1 B u C u s C m u H e H = B/u + A + Cu C = (Cm + Cs) u
81
82 Particle size comparisons Test silice Si µm Test silice Si µm Test silice Si µm Merck Chimie S.A.S. 5/11/005 Page 8
83 Informacje niesione z chromatogramem i podstawowe zależności Rs -rozdzielczośd pików -zależnośd teoretyczna R S k k 1 N - zależnośd obliczeniowa t R czas retencji t M czas martwy kolumny retencja substancji niesorbowanej, wnikającej do porów wypełnienia kolumny k współczynnik retencji k t R t -współczynnik rozdzielenia k tr tm k1 tr 1 tm N-liczba półek teoretycznych N Rs=(t Rn+1 t Rn ) / ½(S n+1 + S n ) M t M t 5,54 w R h
84
85
86 (Rs) R-rozdzielczośd pików zależnośd teoretyczna R S k k 1 N selektywność współczynnik retencji sprawność Wpływa : rodzaj fazy stacjonarnej, skład fazy ruchomej, temperatura, ph, dodatek do eluentu substancji solwatujących / tworzących pary jonowe moc / siła elucyjna zastosowanego eluentu, w RP także: ph - dodatki cofające dysocjację elektrolityczną, dodatki solwatujące, zwłaszcza, jeśli zmieniają hydrofobowość średnica ziaren wypełnienia, prędkość przepływu eluentu i w mniejszym stopniu, ale nie bez znaczenia - lepkość fazy ruchomej oraz współczynnik dyfuzji, a więc, także temperatura
87 F. Steiner, THERMO FISHER SCIENTIFIC, Technical Informations
88 k opt = (7.0)
89 Profil przepływu, dyspersja masy w warstwie porowatej --- barwna strefa obserwowana przez przeźroczystą ścianę kolumny --- D eff M 1
90 Zapewnienie tłokowego profilu przepływu płynu w ziarnistej / monolitycznej warstwie porowatej wypełnienia kolumny / reaktora ze złożem porowatym warunkiem koniecznym minimalizacji dyspersji Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
91 Najważniejsze znaczenie ma : -- optymalna konstrukcja kolumny i poprawny sposób jej wypełnienia -- poprawny profil przepływu eluentu w przekroju poprzecznym wypełnienia kolumny
92 WARUNKI MINIMALIZACJI DYSPERSJI Równomierna dystrybucja / kolekcja + równomierna przepuszczalnośd warstwy porowatej + poprawne użytkowanie -- warunkiem tłokowego profilu przepływu płynu w ziarnistej / monolitycznej warstwie porowatej - wypełnienia / reaktora ze złożem porowatym, jednocześnie - warunki konieczne dla minimalizacji dyspersji Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
93 Wpływ dystrybucji/kolekcji na profil przepływu płynu w warstwie porowatej WPŁYW DYSTRYBUCJI / KOLEKCJI -- łatwy do eliminacji -- Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
94 Przykłady poprawnych (w tym własnych) rozwiązao technicznych dystrybucji kolekcji Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
95 Nierównomierny rozkład wielkości ziaren wypełnienia i/lub porowatości międzyziarnowej - główna przyczyna nie-tłokowego profilu przepływu oraz podwyższonej dyspersji Przykłady wyników badao - Rozkład ziarnistości / porowatości międzyziarnowej oraz kształt stref barwnego trasera (przebieg profilu przepływu cieczy) w zależności od warunków wypełniania kolumn PLC / P- HPLC A-C kolumny PLC dc=5 mm, wypełniane techniką udarową - na sucho; D, D, E kolumny PLC dc=5 mm, wypełniane techniką zawiesinową - na mokro dp 1 μm - niezabarwione; dp = 33 μm zabarwione; dp1 / dp = 1/1 v/v; Zakreskowanie oznacza jednolitą barwę przekroju wypełnienia Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
96 Przykłady wyników dla kolumn preparatywnych HPLC wypełnianych na mokro techniką zawiesinową Sympozjum Inżynierii Chemicznej Procesowej - Spała 016
97 The uniformity of flow profile in the large scale column and bed structure stability is very much important in preparative or process chromatography Wet packed columns dp<5 um Dry packed columns dp>5 um
98 Technika rugowania (displacement) Składnik rugujący substancje (displacer) jest komponentem roztworu wsadu (próbki) dozowanej do kolumny w trybie elucyjnym; Powinien byd w znacznym stężeniu i łatwy do usunięcia z eluentu; Najsłabiej sorbowane składniki są eluowane / rozdzielane w trybie elucyjnym przed rugującym składnikiem dozowanej mieszaniny; Zastosowanie wystarczająco sprawnej kolumny umożliwia rozdzielanie wszystkich składników dozowanej do kolumny mieszaniny;
99 C Składnik rugujący (D) silniej oddziałuje z fazą stacjonarną niż składniki (B i A), a słabiej niż C
100 Przykład operacji absorpcji oparów w cieczy
101
102 Przeciwprądowy przepływ dwufazowy w kolumnach przez warstwy z wypełnieniem
103
Techniki Rozdzielania TCh II/II (sem. IX dla studiów zintegrowanych ) Warstwy porowate zasady
Techniki Rozdzielania TCh II/II (sem. IX dla studiów zintegrowanych ) Warstwy porowate zasady Przepływ płynu w rurociągach / warstwach porowatych - opory przepływu / dyspersja masy Adsorpcja i chromatografia
Technik sorpcji i chromatografii to także techniki przygotowania wsadu do rozdzielania / próbki do analizy
Chromatografia cieczowa jako technika rozdzielania, oczyszczania, otrzymywania czystych substancji / grup substancji, a także analityki technicznej i kontroli jakości -- podstawy HPLC/TLC/PLC prof. dr
Bioreaktory z warstwą porowatą - z unieruchomionym
Bioreaktory z warstwą porowatą - z unieruchomionym (immobilizowanym) osadem czynnym i podobne - ważne zjawiska i efekty - w znacznej części - przypomnienie ogólnych zasad j/w - w zastosowaniu do bioreaktorów
5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ
5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą
Techniki Rozdzielania Mieszanin
Techniki Rozdzielania Mieszanin Techniki Sorpcji i Chromatografii cz. I prof. dr hab. inż. Marian Kamiński Gdańsk 2010 Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania,
- Dyfuzja / Konwekcja / Wnikanie / Przenikanie - Masy -
Układy wielofazowe płyn1 (G Gas / V - Vapor) // płyn2 (L (Liquid)) -- na powierzchni ciała stałego (S) jako nośnika (G/V-L-S) -- na półkach aparatów półkowych -- - Dyfuzja / Konwekcja / Wnikanie / Przenikanie
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
-- w części przypomnienie - Gdańsk 2010
Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 4. --mechanizmy retencji i selektywności -- -- w części
1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy:
RP WPRWADZENIE M. Kamiński PG WCh Gdańsk 2013 Układy faz odwróconych RP-HPLC, RP-TLC gdy: Nisko polarna (hydrofobowa) faza stacjonarna, względnie polarny eluent, składający się z wody i dodatku organicznego;
Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej?
Kolumnowa Chromatografia Cieczowa I 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? 2. Co jest miarą polarności rozpuszczalników w chromatografii cieczowej?
4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP
4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP Opracował: Krzysztof Kaczmarski I. WPROWADZENIE W chromatografii adsorpcyjnej rozdzielanie mieszanin jest uwarunkowane różnym powinowactwem adsorpcyjnym składników
Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw
1 WYMAGANIA STAWIANE KOLUMNIE CHROMATOGRAFICZNEJ w chromatografii cieczowej Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.edu.pl 2 CHROMATOGRAF
ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ
ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.gda.pl ROZDZIELENIE
Płyny newtonowskie (1.1.1) RYS. 1.1
Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w
Pytania z Wysokosprawnej chromatografii cieczowej
Pytania z Wysokosprawnej chromatografii cieczowej 1. Jak wpłynie 50% dodatek MeOH do wody na retencję kwasu propionowego w układzie faz odwróconych? 2. Jaka jest kolejność retencji kwasów mrówkowego, octowego
III r. EiP (Technologia Chemiczna)
AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12
CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC
CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC MK-EG-AS Wydział Chemiczny Politechniki Gdańskiej Gdańsk 2009 Chromatograficzne układy faz odwróconych (RP) Potocznie: Układy chromatograficzne, w których
Parametry układu pompowego oraz jego bilans energetyczny
Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa
OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU
OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU 1. WPROWADZENIE W czasie swej wędrówki wzdłuż kolumny pasmo chromatograficzne ulega poszerzeniu, co jest zjawiskiem
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013
RP WPRWADZENIE M. Kamioski PG WCh Gdaosk 2013 Fazy stacjonarne w RP-HPLC / RP-HPTLC CN, cyklodekstryny, - głównie substancje średnio polarne i polarne metabolity, organiczne składniki ścieków i inne Zestawienie
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich
Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy
Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Kontrola produktu leczniczego. Piotr Podsadni
Kontrola produktu leczniczego Piotr Podsadni Kontrola Kontrola - sprawdzanie czegoś, zestawianie stanu faktycznego ze stanem wymaganym. Zakres czynności sprawdzający zapewnienie jakości. Jakość to stopień,
Operacje wymiany masy oraz wymiany ciepła i masy
Operacje wymiany masy oraz wymiany ciepła i masy WPROWADZENIE + Destylacja - różniczkowa / równowagowa / z parą wodną prof. M. Kamioski Gdaosk, 2017 INŻYNIERIA CHEMICZNA i BIO-PROCESOWA OPERACJE WYMIANY
Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -
Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 5. Podstawy instrumentalizacji chromatografii aparatura
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.
Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu
Instrukcja stanowiskowa
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
GraŜyna Chwatko Zakład Chemii Środowiska
Chromatografia podstawa metod analizy laboratoryjnej GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia gr. chromatos = barwa grapho = pisze Michaił Siemionowicz Cwiet 2 Chromatografia jest metodą
Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami
Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej
Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej WPROWADZENIE Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną techniką analityczną, stosowaną
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin
Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin Badania dotyczące dobrania wypełnienia o odpowiednim zakresie wielkości porów, zapewniających wnikanie wszystkich molekuł warunki
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Opracowanie: mgr inż. Anna Dettlaff Obowiązkowa zawartość projektu:. Strona tytułowa 2. Tabela z punktami 3. Dane wyjściowe do zadania
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
prędkości przy przepływie przez kanał
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k
TRM TECHNIKI i METODY, SORPCJI-DESORPCJI i CHROMATOGRAFII -- adsorpcji-desorpcji, absorpcji-desorpcji, wymiany jonowej, wykluczania sterycznego,
TRM TECHNIKI i METDY, SRPCJI-DESRPCJI i CHRMATGRAFII -- adsorpcji-desorpcji, absorpcji-desorpcji, wymiany jonowej, wykluczania sterycznego, jonowego, wymiany ligandów, powinowactwa, -- w układach dwufazowych
Opory przepływu powietrza w instalacji wentylacyjnej
Wentylacja i klimatyzacja 2 -ćwiczenia- Opory przepływu powietrza w instalacji wentylacyjnej Przepływ powietrza w przewodach wentylacyjnych Powietrze dostarczane jest do pomieszczeń oraz z nich usuwane
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?
1. Chromatogram gazowy, na którym widoczny był sygnał toluenu (t w =110 C), otrzymany został w następujących warunkach chromatograficznych: - kolumna pakowana o wymiarach 48x0,25 cala (podaj długość i
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 OPTYMALIZACJA ROZDZIELANIA MIESZANINY WYBRANYCH FARMACEUTYKÓW METODĄ
J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2
J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można
Zastosowanie chromatografii żelowej w skali preparatywnej do otrzymywania niskodyspersyjnych
Prof. dr hab. inż. Marian Kamiński PG, Wydział Chemiczny.10.05. Instrukcje ćwiczeń laboratoryjnych Techniki rozdzielania Zastosowanie chromatografii żelowej w skali preparatywnej do otrzymywania niskodyspersyjnych
TECHNIKI i METODY SORPCJI DESORPCJI i CHROMATOGRAFII w układach ciało stałe ciecz / ciecz ciecz wewnątrz porów sorbentu
TECHNIKI i METDY SRPCJI DESRPCJI i CHRMATGRAFII w układach ciało stałe ciecz / ciecz ciecz wewnątrz porów sorbentu prof. M. Kamiński GDAŃSK 2016 UKŁADY / WARUNKI SRPCJI DESRPCJI - ogólnie - Gaz Ciało stałe
Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.
Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. 2017 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia
Operacje wymiany masy oraz wymiany ciepła i masy. -- Rektyfikacja. INŻYNIERIA CHEMICZNA i BIO-PROCESOWA
Operacje wymiany masy oraz wymiany ciepła i masy -- Rektyfikacja INŻYNIERIA CHEMICZNA i BIO-PROCESOWA REKTYFIKACJA INŻYNIERIA CHEMICZNA i BIO-PROCESOWA INŻYNIERIA CHEMICZNA i BIO- PROCESOWA Kolumny
HPLC? HPLC cz.1. Analiza chromatograficzna. Klasyfikacja metod chromatograficznych
HPLC cz.1 ver. 1.0 Literatura: 1. Witkiewicz Z. Podstawy chromatografii 2. Szczepaniak W., Metody instrumentalne w analizie chemicznej 3. Snyder L.R., Kirkland J.J., Glajch J.L. Practical HPLC Method Development
Inżynieria Chemiczna i Bio-Procesowa Techniki Rozdzielania Mieszanin. -- wykład podsumowujący --
Inżynieria Chemiczna i Bio-Procesowa --------------------------------------------- Techniki Rozdzielania Mieszanin -- wykład podsumowujący -- prof. M. Kamiński 2017-18 OPERACJE i PROCESY WYMIANY MASY ROZDZIELANIE
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
Chromatografia cieczowa jako technika analityczna i technika otrzymywania substancji -- podstawy i główne g wne zasady stosowania
Z Z czego składa się zieleń pól l i lasów Chromatografia cieczowa jako technika analityczna i technika otrzymywania substancji -- podstawy i główne g wne zasady stosowania Prof. dr hab. inż. Marian Kamiński
Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015.
Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia chromatografii
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia
WIROWANIE. 1. Wprowadzenie
WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił
Pytania z Chromatografii Cieczowej
Pytania z Chromatografii Cieczowej 1. Podaj podstawowe różnice, z punktu widzenia użytkownika, między chromatografią gazową a cieczową (podpowiedź: (i) porównaj możliwości wpływu przez chromatografistę
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ
OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania
Zadanie 1. Zadanie 2.
Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie
Hydrostatyczne Układy Napędowe Laboratorium
Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL
HPLC_UPLC_PLC. Aparatura / problemy z aparaturą / sposoby ich eliminacji, minimalizacji (bez detekcji) 2/9/2014
HPLC_UPLC_PLC Aparatura / problemy z aparaturą / sposoby ich eliminacji, minimalizacji (bez detekcji) M. Kaminski Wiedzieć jaka jest przyczyna problemu, to najczęściej - potrafić samemu sobie poradzić
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
Materiały pomocnicze z Aparatury Przemysłu Chemicznego
Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA
4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5
Wykonanie ćwiczenia 4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 4A. Chromatografia adsorpcyjna Stanowisko badawcze składa się z: butli
Egzamin z Technik Rozdzielania Mieszanin - Termin III
Wersja z odpowiedziami Gdańsk, 04..204 Imię i nazwisko Nr Indeksu Egzamin z Technik Rozdzielania Mieszanin - Termin III Proszę dokładnie czytać polecenia. Należy obwieść okręgiem poprawne alternatywy,
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Oznaczanie benzoesanu denatonium w skażonym alkoholu etylowym metodą wysokosprawnej
Fazą ruchomą może być gaz, ciecz lub ciecz w stanie nadkrytycznym, a fazą nieruchomą ciało stałe lub ciecz.
Chromatografia jest to metoda fizykochemicznego rozdziału składników mieszaniny związków w wyniku ich różnego podziału pomiędzy fazę ruchomą a nieruchomą. Fazą ruchomą może być gaz, ciecz lub ciecz w stanie
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC
PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego 1. Wstęp Chromatografia jest techniką umożliwiającą rozdzielanie składników
Przepływy laminarne - zadania
Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH
WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].
WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one
OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC
OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC prof. Marian Kamiński Wydział Chemiczny, Politechnika Gdańska CEL Celem rozdzielania mieszaniny substancji na poszczególne składniki, bądź rozdzielenia tylko wybranych
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA Prof. M. Kamiński Gdańsk 2015 PLAN Znaczenie procesowe wymiany ciepła i zasady ogólne Pojęcia i definicje podstawowe Ruch ciepła na drodze przewodzenia Ruch ciepła na
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń
WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu
Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi
Pracownia: Utylizacja odpadów i ścieków dla MSOŚ Instrukcja ćwiczenia nr 17 Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny
KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA
Piotr KOWALIK Uniwersytet Przyrodniczy w Lublinie Studenckie Koło Naukowe Informatyków KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA 1. Ciekłe układy niejednorodne Ciekły układ niejednorodny
Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]
Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana
Transport masy w ośrodkach porowatych
grudzień 2013 Dyspersja... dyspersja jest pojęciem niesłychanie uniwersalnym. Możemy zrekapitulować: dyspersja to w ogólnym znaczeniu rozproszenie, rozrzut, rozcieńczenie. Możemy nazywać dyspersją roztwór
Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG. Ćwiczenie: LC / GC. Instrukcja ogólna
Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG Przedmiot: Chemia analityczna Instrukcje ćwiczeń laboratoryjnych Ćwiczenie: LC / GC Instrukcja ogólna Uzupełniający
WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ
WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ Wprowadzenie Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną technika analityczną, stosowaną
Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC
Chromatografia Chromatografia cienkowarstwowa - TLC Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie analiza jakościowa analiza ilościowa Chromatogram czarnego atramentu Podstawowe rodzaje