Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować?"

Transkrypt

1 Badanie strutury powierzchni z atomową zdolnością rozdzielczą Powierzchnia jak ją zdefiniować? Obszar kryształu, dla którego nie da się zastosować trójwymiarowych równań opisujących własności wnętrza. Definicja robocza 2-3 ostatnie warstwy atomowe

2 mikroelektronika kserograf Technologie wykorzystujące zjawiska zachodzące na powierzchniach drobne przykłady tarcie adhezja utwardzanie zwilżanie kataliza Skala długości, nm nośniki pamięci korozja generacja drugiej harmonicznej nowe materiały światłowody zabarwienia materiałów filtry

3 Badanie strutury powierzchni z atomową zdolnością rozdzielczą Informacja o symetrii powierzchni dyfrakcja niskoenergetycznych elektronów (Low Energy Electron Diffraction) LEED dyfrakcja odbiciowa wysokoenergetycznych elektronów (Reflection High Energy Electron Diffraction) RHEED holografia elektronowa rozpraszanie jonów (Ion scattering spectroscopy - ISS kanałowanie jonów - channeling

4 Badanie strutury powierzchni z atomową zdolnością rozdzielczą Informacja o lokalnym otoczeniu atomowa zdolność rozdzielcza mikroskop polowy (Field Ion Microscope) - FIM skaningowy mikroskop tunelowy (Scanning Tunneling Microscope) STM mikroskop sił atomowych (Atomic Force Microscope) AFM

5 Czy elektrony mogą wydostać się ponad powierzchnię? Uproszczony model pasmowy metalu (bariera o wysokości ϕ) Próżnia ϕ praca wyjścia z metalu E F poziom Fermiego Metal

6 Wnikanie do bariery Obszar A) Na zewnątrz x < 0 H= -(h2/2m) (d2/dx2) Wewnątrz x 0 H= -(h2/2m) (d2/dx2)+v Obszar B) Szukamy rozwiązań w postaci: dla x < 0 A) ψ ( x ) = A eikx + B e ikx dla x 0 ' ' B) ψ ( x ) = C eik x + D e ik x k = ( 2mE / h 2 ) k ' = 2m( E V ) / h 2 Wewnątrz bariery k jest urojone k =iχ ψ( x ) = C e χ x + D eχ x więc D=0 Prawdopodobieństwo znalezienia elektronu wewnątrz bariery (obszar B) P = ψ ( x ) 2 = C 2 e 2 χ x χ = (2m(V E ) / h 2 )1/ 2 = (2mϕ / h 2 )1/ 2 ϕ - praca wyjścia z metalu Funkcja falowa elektronu nie kończy się na powierzchni metalu, lecz wnika do próżni. Prawdopodobieństwo znalezienia elektronu w próżni ~ exp(-2χ x)

7 Metal w zewnętrznym polu elektrycznym W miarę oddalania się od powierzchni metalu elektron będzie odczuwał następujący potencjał V(z) V(z)=Vmetal+ Vobraz + Vpole E -Ez Vpole= - E z Vobraz = -1/(4πεo) e/(2z) ϕ0 efektywna wysokość bariery (można ją znaleźć z warunku V(z0)) EF położenie poziomu Fermiego Prawdopodobieństwo przejścia przez barierę liczone w metodzie WKB [ P ~ exp 2 zc 3/ 2 1/ 2 m /h ] (V(z) E ) 0 1/ 2 dz E energia kinetyczna cząstki o masie m V(z) energia potencjalna elektronu zc szerokość bariery

8 Przejście przez barierę inne podejście H = (h 2 / 2m)(d 2 / dx 2 ) H = (h 2 / 2m)(d 2 / dx 2 ) + V na zewnątrz barie wewnątrz barier V = (ϕ1 + ϕ2)/2 D=0 bo brak ruchu w kierunku x o obszarze C C A B Dla x 0 ψ ( x ) = A eikx + B e ikx Dla x a ψ ( x ) = C eikx + De ikx ik x ik ' x Dla 0 x a ψ ( x ) = E e + Fe, gdzie k ' = 2m(E V) / h 2 Warunki brzegowe: F=0 by ψ k ' = iχ χ = 2 m ( V E ) / h 2 ψ (x) i dψ/dx muszą być ciągłe w x=0 i w x=a 2 Ostatecznie otrzymujemy, że współczynnik przejścia C 1 = A V sinh 2 (χ a ) 1 + 4E (V E)

9 Prawdopodobieństwo tunelowania 2 C 1 P = = 2 A Vsinh 1 + 4E (V E) ( χ a) Prawdopodobieństwo tunelowania P dla χ a >> 1 P e 2 χ a χ = 2m ϕ / h 2

10 Równanie Nordheima Dokładną gęstość prądu tunelowania j można wyliczyć z zależności j=1.54x10-6 E 2 /ϕ t 2 (y) exp[-6.83x10 7 ϕ 3/2 f(y)/ E], gdzie f(y) jest stabelaryzowaną funkcją bezwymiarowego parametru y y= e 3/2 E 1/2 / ϕ Powyższe równanie można zapisać w postaci I = a U 2 exp(-b ϕ 3/2 /cu) Gdzie a,b,c są stałymi, I prądem emisji, a U przyłożonym napięciem.

11 Jak uzyskać duże E? E ~ q/r 2 dla r R 0 R 0 i r 0 E Szukamy elektrod o ostrych końcach

12 Mikroskop polowy Elektrony będą emitowane z miejsc, w których potencjał szybko się zmienia, czyli np. z okolic, gdzie występują defekty, czy też gdzie ulokowane są atomy. Powiększenie M =D/d M =L/R0 = 15 cm/10nm

13 Co się stanie, gdy w pobliżu powierzchni próbki umieścimy sondę? Próbka Sonda Prawdopodobieństwo tunelowania P dla χ a >> 1 16 E (ϕ E) 2 χ a P= e 2 ϕ, gdzie χ = 2 m (ϕ E ) / h 2 ϕ1 + ϕ 2 ϕ= 2

14 I Prąd tunelowy przypadek ogólny Model ostrza z falą typu s κ R = 32π h e Vφ0ρsa (EF) Rt κ e t ψν (r0 ) 2δ(Eν E F ) Cała informacja o strukturze elektronowej siedzi w gęstości stanów elektronowych próbki ρ sa I(d) = V ρ sa (E F ) e gdzie odległość [d] w Å, a średnia praca wyjścia [ϕ] w ev ϕ d, Prąd tunelowy ( jednostki umowne) Odległość ostrze-próbka ( Å )

15 Spektroskopia STM Korzystając z mikroskopu STM można określić gęstość stanów ρ badanej powierzchni. Jeżeli element macierzowy przejścia jest stały, prąd tunelowania I można przybliżyć wyrażeniem: I eu 0 ρ SA (E F eu + ε) dε E F energia Fermiego, U napięcie na próbce. Pochodna di/du pozwala wyznaczyć gęstość stanów na poziomie E F -eu di du ρ SA (E eu) F Zmieniając U badamy kształt pasm

16 Przepływ elektronów Kierunek przepływu elektronów zależy od polaryzacji próbki Próbka spolaryzowana ujemnie Próbka spolaryzowana dodatnio

17 Jak zbudować mikroskop? Mikroskop skaningowy musi posiadać: Ostrze Układ umożliwiający precyzyjne przesuwanie ostrza Układ umożliwiający tłumienie drgań.

18 Ostrze Przypadek idealny Przypadek rzeczywisty Ostrze j p U d exp ( A ϕd ) j p - prąd tunelowy ( na); ϕ uśredniona praca wyjścia elektrody i ostrza ( kilka ev ). A ~ ev -1/2 Å -1 U - napięcie pomiędzy podłożem i ostrzem ( kilka V ) d - odległość ostrza od podłoża ( ~ Å ) Za względu na silną zależność prądu tunelowania od odległości, jedynie atom znajdujący się najbliżej powierzchni jest aktywny.

19 Jak przesuwać ostrze? Zjawisko piezoelektryczne Odkrywcy: 1880 Piotr i Paweł Curie Przy ściskaniu lub rozciąganiu niektórych kryształów na ich krawędziach pojawiają ładunki elektryczne. Materiały piezoelektryczne: kwarc, turmalin, sól Saignette a, tytanian baru, piezoceramiki Pb(Ti,Zr)O 3 (PZT) i inne. Komórka elementarna kwarcu SiO 2 (wiązanie jonowe) O Si

20 Kwarc Przesunięcie jonów spowodowało, że na ściankach kryształu prostopadłych do osi X 1 wydzielił się ładunek Podobne efekt pojawi się, gdy kryształ ściśniemy wzdłuż osi X 2 i X 3. rzyłożenie zewnętrznego pola elektrycznego wymusi ruch jonów krzemu i tlenu, a tym samym zdeformuje kryształ Przyłożenie napięcia elektrycznego U powoduje odkształcenia kryształu x i x i = α U

21 Skaner Odkształcenia x i są w pewnym zakresie proporcjonalne do przyłożonego napięcia U x i = α ι U α ι = 1-6 Å / V Skaner może być walcem wykonanym z piezoelektryka, podzielonym na 4 sektory. Do przeciwległych sektorów przykładamy napięcia o takich samych wartościach, lecz przeciwnych znakach. Po przyłożeniu napięcia odpowiedni sektor wydłuża się lub skraca, przechylając igłę zamocowaną na końcu skanera.

22 Tłumienie drgań Aby uzyskać atomową zdolność rozdzielczą odległość pomiędzy ostrzem a próbką musi być utrzymywana z dokładnością 0.01 Å. Należy wyeliminować drgania!!!! Drgania mogą być powodowane przez: wibracje budynku Hz biegnących ludzi 2-4 Hz pompy próżniowe dźwięk. Drgania można eliminować poprzez: zawieszenie mikroskopu na sprężynach ( z dodatkowym tłumieniem przy pomocy prądów wirowych) pneumatyczne podpórki izolujące zwiększenie masy własnej podstawy.

23 Skaningowy Mikroskop Tunelowy Stacjonarny uchwyt na próbki 10 µm skaner piezoelektryczny Izolacja drgań Inercyjny układ transportu Uchwyt ma próbkę 8 calowa flansza UHV Pracownia układów mezoskopowych Zakładu Fizyki Doświadczalnej UJ

24 Skaningowy mikroskop elektronowy (SEM)

25 STM

26 STM mechanika

27 Transmisyjny mikroskop elektronowy (TEM)

28 Transmisyjny mikroskop elektronowy (TEM)

29 Mody pracy Mod stałoprądowy Skaner zmienia odległość pomiędzy ostrzem a próbką w taki sposób, aby prąd tunelowania był stały. Mierzone jest napięcie przyłożone do elementów piezoelektrycznych. To napięcie jest następnie przeliczane na zmianę długości tych elementów. Ten sposób pracy jest zalecany, gdy nie znamy morfologii próbki lub, gdy powierzchnia jest silnie pofałdowana

30 Mody pracy Mod stałonapięciowy Odległość pomiędzy ostrzem a próbką jest stała. Mierzone są zmiany prądu tunelowego. Ten sposób pracy jest zalecany, gdy badamy gładkie powierzchnie. Ze względu na silną zależność pomiędzy prądem tunelowania a odległością igła-próbka, przy tym sposobie pracy osiąga się dużą rozdzielczość. Uwaga: Łatwo uszkodzić igłę.

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM)

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Zasada działania Historia odkryć Zastosowane rozwiązania Przykłady zastosowania Bolesław AUGUSTYNIAK Zasada działania mikroskopu skanującego

Bardziej szczegółowo

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Badanie struktury powierzchni z atomową zdolnością rozdzielczą Emisja polowa i zjawisko tunelowe Mikroskopia polowa Mikroskopia skaningowa Czy elektrony mogą wydostać się ponad powierzchnię? Uproszczony

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Mikroskopie skaningowe

Mikroskopie skaningowe SPM Scanning Probe Microscopy Mikroskopie skaningowe (SPM- Sharp Probe Microscopy) Mikroskopy skanujące 1. Efekt tunelowania (STM). Stały prąd, stała wysokość. 2. Oddziaływania sił atomowych(afm). W kontakcie,

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Skaningowy mikroskop tunelowy STM

Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy (ang. Scanning Tunneling Microscope; STM) należy do szerszej rodziny mikroskopów ze sondą skanującą. Wykorzystuje on zjawisko tunelowania

Bardziej szczegółowo

Jak badać strukturę powierzchni?

Jak badać strukturę powierzchni? Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.2.

Wykład 21: Studnie i bariery cz.2. Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza

Bardziej szczegółowo

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006 FIZYKA POWIERZCHNI I NANOSTRUKTURY dr hab. Zbigniew Postawa Zakład Fizyki Doświadczalnej pok. 016 Tel. 5626 e-mail: zp@castor.if.uj.edu.pl H H C H H C H H Wykład odbędzie się w II semstrze 2005/2006 Bez

Bardziej szczegółowo

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy)

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) Spis treści 1 Historia 2 Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) 2.1 Skaningowy mikroskop tunelowy (STM od ang. Scanning Tunneling Microscope) 2.1.1 Uzyskiwanie obrazu metodą

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz.13

Dobór materiałów konstrukcyjnych cz.13 Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby

Bardziej szczegółowo

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1.

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) I. Wstęp teoretyczny 1. Wprowadzenie Mikroskop sił atomowych AFM (ang. Atomic Force Microscope) jest jednym

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Oglądanie świata w nanoskali mikroskop STM

Oglądanie świata w nanoskali mikroskop STM FOTON 112, Wiosna 2011 23 Oglądanie świata w nanoskali mikroskop STM Szymon Godlewski Instytut Fizyki UJ Od zarania dziejów człowiek przejawiał wielką ciekawość otaczającego go świata. Prowadził obserwacje

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Studnie i bariery. Fizyka II, lato

Studnie i bariery. Fizyka II, lato Studnie i bariery Fizyka II, lato 017 1 Nieskończona studnia potencjału Nieskończenie duży potencjał na krawędziach studni nie pozwala elektronom opuścić obszaru 0

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

The role of band structure in electron transfer kinetics at low dimensional carbons

The role of band structure in electron transfer kinetics at low dimensional carbons The role of band structure in electron transfer kinetics at low dimensional carbons Paweł Szroeder Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland Reakcja przeniesienia

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Piezoelektryki. Jakub Curie

Piezoelektryki. Jakub Curie Piezoelektryki Ryszard J. Barczyński, 2011 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Piezoelektryki Jakub Curie Piotr Curie W 1880 Piotr

Bardziej szczegółowo

ostawa. Fizyka powierzchni i nanostruktury 4

ostawa. Fizyka powierzchni i nanostruktury 4 Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej

Bardziej szczegółowo

Mikroskopia skaningowa tunelowa i siłowa

Mikroskopia skaningowa tunelowa i siłowa Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Instytut Fizyki Doświadczalnej Lipowa 41, 15-424 Białystok Tel: (85) 7457228 http://physics.uwb.edu.pl/zfmag Mikroskopia skaningowa tunelowa i siłowa

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały

Bardziej szczegółowo

1 k. AFM: tryb bezkontaktowy

1 k. AFM: tryb bezkontaktowy AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia

Bardziej szczegółowo

Mikroskopie skaningowe

Mikroskopie skaningowe SPM Scanning Probe Microscopy Mikroskopie skaningowe (SPM- Sharp Probe Microscopy) Richard Feynman, Dec.29 th, 1959, Caltech: There's Plenty of Room at the Bottom. I want to offer another prize of another

Bardziej szczegółowo

AFM. Mikroskopia sił atomowych

AFM. Mikroskopia sił atomowych AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Aparatura do osadzania warstw metodami:

Aparatura do osadzania warstw metodami: Aparatura do osadzania warstw metodami: Rozpylania mgnetronowego Magnetron sputtering MS Rozpylania z wykorzystaniem działa jonowego Ion Beam Sputtering - IBS Odparowanie wywołane impulsami światła z lasera

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Pole elektryczne w ośrodku materialnym

Pole elektryczne w ośrodku materialnym Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała

Bardziej szczegółowo

Uniwersytet Łódzki, Wydział Chemii Katedra Chemii Nieorganicznej i Analitycznej Zakład Elektroanalizy i Elektrochemii Łódź, ul.

Uniwersytet Łódzki, Wydział Chemii Katedra Chemii Nieorganicznej i Analitycznej Zakład Elektroanalizy i Elektrochemii Łódź, ul. Uniwersytet Łódzki, Wydział Chemii 91-403 Łódź, ul. Tamka 12 Andrzej Leniart Akademia Ciekawej Chemii 11 czerwiec 2014 r. Z czego zbudowana jest materia? Demokryt z Abdery (ur. ok. 460 p.n.e., zm. ok.

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XI Badania powierzchni ciała stałego: elektronowy mikroskop skaningowy (SEM), skaningowy mikroskop tunelowy

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0 Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Materiał do tematu: Piezoelektryczne czujniki ciśnienia. piezoelektryczny

Materiał do tematu: Piezoelektryczne czujniki ciśnienia. piezoelektryczny Materiał do tematu: Piezoelektryczne czujniki ciśnienia Efekt piezoelektryczny Cel zajęć: Celem zajęć jest zapoznanie się ze zjawiskiem piezoelektrycznym, zachodzącym w niektórych materiałach krystalicznych

Bardziej szczegółowo

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element)

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Wady ostrza Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Ponieważ ostrze ma kilka zakończeń w obrazie pojawiają się powtórzone struktury

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Wykład V Złącze P-N 1

Wykład V Złącze P-N 1 Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

M2 Mikroskopia sił atomowych: badanie nanostruktur.

M2 Mikroskopia sił atomowych: badanie nanostruktur. M2 Mikroskopia sił atomowych: badanie nanostruktur. Celem ćwiczenia jest poznanie mikroskopii sił atomowych i zbadanie otrzymanych próbek. Wymagane zagadnienia Podstawy fizyczne mikroskopii sił atomowych:

Bardziej szczegółowo

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI Analiza ciała stałego ANALIZA POWIERZCHNI ANALIZA CAŁEJ OBJTOCI CIAŁO STAŁE ANALIZA POWIERZCHNI METODY NISZCZCE METODY NIENISZCZCE Metody niszczce: - przeprowadzenie do roztworu (rozpuszczanie, roztwarzanie

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA 3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony

Bardziej szczegółowo

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo