Zadanie domowe: kiedy pole elektryczne jest słabe, a kiedy silne?
|
|
- Kornelia Kaczor
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zadaie domowe: kiedy pole elektrycze jest słabe, a kiedy sile? Wersje rozwiązań: Wersja z polem magetyczym; Wersja z kaciastym wykresem; Wersja bez kaciastego wykresu, ale z asyceiem; Wersja z porówaiem do Cu; Wersja z jedym zdaiem; Zadaie domowe: kiedy pole elektrycze jest słabe, a kiedy sile? Wersja z porówaiem do Cu- logika podoba do logiki tego zdaia: jabłko jest czerwoe, poieważ gruszka jest zieloa; Wersja z jedym zdaiem: prędkość uoszeia jest iezacza a fukcja rozkładów (!!!) elektroów jest iezmiea 1
2 Zadaie domowe: kiedy pole elektrycze jest słabe, a kiedy sile? Wersje rozwiązań: Wersja z polem magetyczym teksty ie a temat zawsze obiżają wartość pracy; ocea zależała od tego, do której grupy odpowiedzi ależała odpowiedź a temat ; Zadaie domowe: kiedy pole elektrycze jest słabe, a kiedy sile? Wersje rozwiązań: Wersja z kaciastym wykresemskąd się wziął te wykres/jedostki/iepewości pomiarowe/?; Wersja bez kaciastego wykresu, ale z asyceiemprzeważie brakowało uzasadieia; 2
3 ZJAWISKA KONTAKTOWE Rys: Zjawiska kotaktowe. Pojęcia. metal Φ M W W praca przeiesieia elektrou z da pasma przewodictwa do próżi, bez zwiększaia jego eergii kietyczej (którą ma zerową). Używa się tylko dla metalu. Φ termodyamicza praca wyjścia. 3
4 Zjawiska kotaktowe. Pojęcia. półprzewodik Φ S Χ E C,S E F,S E i Φ termodyamicza praca wyjścia. χ- powiowactwo elektroowe półprzewodika. E V,S Emisja elektroów z ciała stałego. Termoemisja: emisja elektroów w wysokiej temperaturze; Φ 2 Uwagi: j kt T = AT e W temperaturze pokojowej prąd termoemisji jest bardzo mały; Wzór Richardsoa jest całkowicie klasyczy, a wiadomo że cząstki o eergii wyższej iż bariera potecjału też się od iej mogą odbić. Dlatego koiecza jest modyfikacja wzoru: Φ 2 j kt T = (1 R) AT e Gdzie R jest współczyikiem odbicia ( ) Emisja elektroów powoduje oziębieie katody 4
5 Emisja elektroów z ciała stałego. W silym polu elektryczym prąd termoemisji jest większy iż bez pola (obiża się bariera potecjału pomiędzy metalem a otoczeiem - ozacza to zmiejszeie pracy wyjścia); Emisja elektroów z ciała stałego. Emisja polowa: tuelowaie elektroów w silym polu elektryczym (przez trójkątą barierę potecjału); metal 5
6 Emisja elektroów z ciała stałego. Emisja polowa występuje w silych polach elektryczych E > 10 7 V/cm; Wyjątkowymi materiałami pod względem emisji polowej elektroów są aorurki węglowe. Emisja elektroów z ciała stałego. Zjawisko emisji polowej wykorzystuje się m.i. w wyświetlaczach: Field Emissio Displays (FED): różica między FED a zwykłym ekraem jest taka, że FED wykorzystuje wiele emiterów elektroów, a ie jede; Emitery mogą być: -Mo; - CNT 6
7 Emisja elektroów z ciała stałego. Fotoemisja: emisja elektroów pod wpływem światła Emisja elektroów z ciała stałego. Fotoemisja: dwufotoowa fotoemisja - jede foto wzbudza elektro do stau wzbudzoego, ale związaego wewątrz ciała stałego; drugi - do stau iezwiązaego; 7
8 Emisja elektroów z ciała stałego. Emisja wtóra: wiązka padających elektroów wybija elektroy (wtóre) z powierzchi ciała stałego; Składa się z trzech etapów: Wzbudzeie elektroów w ciele stałym do wyższego stau eergetyczego; trasport wzbudzoych elektroów do graicy ciało stała/próżia; Emisja elektroów; Wydajość emisji wtórej opisuje się za pomocą współczyika emisji wtórej, δ; ; Większość materiałów to półprzewodiki lub izolatory, których przerwa eergetycza jest zaczie większa iż powiowactwo elektroowe. Np. MgO, BeO, Cs 3 Sb i KCl. Maksymale δ jest w zakresie Emisja elektroów z ciała stałego. Emisja wtóra. W iektórych półprzewodikach pasma są zakrzywioe w dół w taki sposób, że poziom próżi leży poiżej da pasma przewodictwa w objętości. O takim materiale mówimy, że ma ujeme powiowactwo elektroowe. Najważiejszy materiał z tej grupy to fosforek galu aktywoway cezem GaP(Cs). Osiąga o δ rzędu
9 Emisja elektroów z ciała stałego. Emisja wtóra: Zjawisko emisji wtórej wykorzystuje się w powielaczach elektroowych, w fotopowielaczach, telewizorach itd. Złącza różych materiałów: uwagi ogóle. Gdy dwa ciała tworzą złącze, lub ciało o skończoych rozmiarach zajduje się w polu elektryczym, lub w pobliżu graicy ciało-próżia, w graiczych obszarach materiału: Powstaje wewętrze (kotaktowe) pole elektrycze; Następuje redystrybucja ładuku (powstaje ładuek przestrzey); Następuje zakrzywieie pasm eergetyczych. UWAGA: to ie są trzy róże zjawiska, to są trzy aspekty tego samego zjawiska. 9
10 Złącza różych materiałów: uwagi ogóle. Rozmiar obszaru, w którym astępują zmiay jest to tzw. długość ekraowaia Debye a. εε kt L D = 0 2 2e εε kt L D = 0 2 2e 10
11 Złącza różych materiałów: uwagi ogóle. Po zetkięciu ze sobą dwóch materiałów zaczyają płyąć chwilowe prądy. Rówowaga ustala się gdy w całym obszarze potecjał chemiczy jest taki sam. E vacuum E F, e - E F,p Metal - metal Rodzaje złącz Metal półprzewodik (metal tleek półprzewodik) Półprzewodik półprzewodik Półprzewodik A półprzewodik B (heterozłącza) 11
12 Rodzaje złącz Metal - półprzewodik p- Heterozłącze p- MOS Złącze metal półprzewodik () Evacuum E vacuum eφ s eφm J ms eχ s eφ s eφ m J ms eχ s E c E Fm J sm E c E Fm E Fs J sm E i E Fs E i E v E v E Fs <E fm, Φ m <Φ s E fs >E fm, Φ m >Φ s 12
13 Przykład: metal i półprzewodik E 0 Φ M Φ s Metal E FM E C EF Semicoductor E V Przepływ prądu (chwilowego, aż do ustaleia się rówowagi); Przykład: metal i półprzewodik E 0 V E C Metal E FM E F E V Semicoductor Złącze: aładoway kodesator V = ( Φ Φ ) M s 13
14 Akumulacja większościowych ośików ładuku E vacuum E F Złącze metal półprzewodik () -J sm- eφφ m -J ms eχs eφ s E c ev bi E F eφ m eφ 0 -J sm -J ms eχs eφ s E c Ei E vacuum ev bi φ m < φ s E i E v E v φ m > φ s Nie ma bariery Bariera potecjału Napięcie kotaktowe Vbi = φs φm φ = φ χ 0 m s Złącze Schottky ego Zubożeie w większościowe ośiki ładuku Bariery potecjału Φ ms dla złącz metal-si i metal-gaas 14
15 Spolaryzowae złącza metal półprzewodik prostujące i omowe Złącze metal półprzewodik () z Φ M > Φ S Złącze spolaryzowae W zależości od zaku apięcia bariera, którą apotykają elektroy płyące z S do M albo rośie, albo maleje: złącze ą ma działaie prostujące. I ~ V kt ( a / 1 ) I0 exp 15
16 Złącze metal półprzewodik () z Φ M < Φ S E vacuum φ m < φ s E F I -J sm- eφφ m -J ms eχs eφ s E i E c ev bi E v Nie ma bariery dla elektroów z S do M. Nawet małe apięcie V A > 0 powoduje duży prąd. Mała bariera jest dla elektroów płyących z M do S, Nie ma właściwości prostujących: tzw. kotakt omowy. V A Złącze MOS Bardzo często mamy do czyieia ie ze złączem MS tylko MOS: metal - tleek- półprzwodik 16
17 Złącze P/N Co dzieje się po utworzeiu złącza? W złączu są bardzo duże gradiety kocetracji elektroów i dziur: Elektroy płyą z N do P Dziury płyą z P do N W rezultacie: Stroa ładuje się dodatio, p ujemie. Powstaje pole elektrycze P P elektroy dziury E field Obszar zubożoy N N Złącze P/N Co dzieje się po utworzeiu złącza? Pole elektrycze powoduje przepływ prądów uoszeia przeciwych iż prądy dyfuzyje. ROWNOWAGA: wypadkowy prąd ie płyie. E p dyfuzja elektroów uoszeie elektroów ev 0 E c µ F dyfuzja dziur uoszeie dziur x p 0 x E v x 17
18 Złącze P/N E field N P Obszar zubożoy W obszarze złącza powstaje tzw obszar zubożoy: zubożoy w ruchliwe ośiki ładuku; Ładuek w tym obszarze wyika z obecości joów; Pole elektrycze powoduje powstaie wewętrzej ę różicy potecjałów, którą zamy jako kotaktową różicę potecjałów V 0 Złącze P/N : schemat pasmowy. qv b V b = apięcie kotaktowe W r-dze ie płyą prądy, potecjał chemiczy jest wszędzie stały. W obszarze występowaia pola elektryczego, pasma muszą się zagiąć. 18
19 Złącze P/N : obliczeie V E C Electros µ E V E C Holes e φ 0 E V p-type semicoductor -type semicoductor Po stroie (dla x >> 0 ) Po stroie p (dla x << 0) E c µ kt = Nce E cp µ p kt p = Nve Złącze P/N : obliczeie V V zależy od szerokości przerwy eergetyczej i położeia potecjału chemiczego V E g E V E C µ 19
20 Złącze P/N : obliczeie V E g E V E C µ ( µ ) ( µ E )) 1 V = Eg ( E e 1 = ( µ µ p) e C p Vp Złącze P/N : obliczeie V E C Electros µ E V E C Holes e φ 0 E V p-type semicoductor -type semicoductor Zatem 1 kt V = ( µ = µ p) l e e p 20
21 Złącze P/N : szerokość złącza Obszar zubożoy rozciąga się w obu półprzewodikach p E g E V E C Szerokość złącza W W p W Złącze P/N : szerokość złącza Obszar zubożoy rozciąga się w obu półprzewodikach, a całkowity ładuek zawarty po obu stroach jest taki sam: Q = Q p p E g - + E C E V zjoizowae akceptory Q p W p W zjoizowae doory Q 21
22 Złącze P/N : szerokość złącza Q: gestość ładuku przestrzeego p +en D 0 x -en A W p W Złącze P/N : szerokość złącza Powierzchiowa gęstość ładuku : Q = +en D W p: Q p = -en A W p Szerokość złącza w r-dze: W d = 2ε q 0 ε r ( Na + Nd ) N N a d V 0 22
23 Złącze P/N : pole elektrycze Zając rozkład ładuku przestrzeego moża z prawa Gaussa obliczyć atężeie pola elektryczego Q p +en D 0 x -en A pole E W p W Złącze P/N : pole elektrycze Ujeme wartości ozaczają jedyie kieruek E(x) p x E W p W 23
24 Razem: Złącze P/N Techologiczie ajważiejsze j złącza ą są ą złączamią iesymetryczymi. Np. : N A >>N D lub N D >>N A 24
25 p ++ - p Złącze P/N E F W obszar zubożoy ż po stroie W p Spolaryzowae złącze p Przyłożeie zewętrzej różicy potecjału wpłyie a: Kotaktową ą różicę ę potecjału, wysokość bariery ypotecjału między i p; Szerokość warstwy zubożoej; Kocetrację i gradiety kocetracji, pole elektrycze; Nie będzie rówowagi między prądem dyfuzyjym i uoszeia; 25
26 Spolaryzowae złącze p Złącze ą iespolaryzowae Spolaryzowae w kieruku przewodzeia Spolaryzowae w kieruku zaporowym Spolaryzowae złącze: pasma przesuwają się Zero Bias Forward Bias Reverse Bias p p - + p E c qv bi E c ( ) q V bi V F E v E v E v E c ( + V) qv bi r rgy Potetial Eer V bi Vbi V F V bi + V R 26
27 Spolaryzowae złącze p Szerokość złącza w r-dze: W d = 2ε q 0 ε r ( Na + Nd ) N N a d V 0 Szerokość złącza spolaryzowaego apięciem V: W 2ε 0 ε r (N Na + Nd ) V q N N d = 0 a d ( V ) +V = kieruek przewodzeia -V = kieruek zaporowy Spolaryzowae złącze p 27
28 Spolaryzowae złącze: kieruek przewodzeia Napięcie kotaktowe maleje z V 0 do V 0 -V F. Elektroy są wstrzykiwae ze stroy do p i stają ośikami miejszościowymi po stroi p rekombiują z dziurami, zatem ich kocetracja maleje ekspoecjalie z odległością. Aalogiczie wstrzykiwae są dziury do Spolaryzowae złącze: kieruek zaporowy Większa kotaktowa bariera potecjału Elektroy są wyciągae z obszaru p do, a dziury z do p; Miejszy iż w r-dze prąd dyfuzyjy dziur z p do Miejszy iż w r-dze prąd dyfuzyjy elektroów z do p Prądy uoszeia podobe jak w r- dze. 28
29 Spolaryzowae złącze p- D pe j = Lp p + De L p ev (exp 1) k BT Spolaryzowae złącze p j = j S ev (exp 1) k B T 29
30 Spolaryzowae złącze p Polaryzacja w kieruku zaporowym: Zjawisko Zeera: tuelowaie elektroów przez barierę potecjałów (dla apięć poiżej 5 V); Joizacja lawiowa: swobode elektroy zderzając się ze związaymi elektroami joizują je (powyżej 5 V) Dioda tuelowa Dioda tuelowa: dioda silie domieszkowaa w obu częściach ( i p) => częściowo zapełioe pasmo przewodictwa po stroie i częściowo puste pasmo po stroie p; obszar zubożoy jest bardzo wąski. e F 30
31 Dioda tuelowa Dioda tuelowa: działaie Trazystor Elektroy z warstwy rekombiują z dziurami w bazie p (elektroów jest zaczie więcej iż dziur). Powstaje obszar zubożoy w złączu emiter-baza. Prąd między emiterem a kolektorem ie płyie. 31
32 Trazystor Gdy do bazy zostaie przyłożoe apięcie, elektroy zowu mogą dopływać od emitera do bazy, uwaliaa jest część dziur, obszar zubożoy maleje i może płyąć prąd między emiterem a kolektorem. Mała zmiaa prądu bazy powoduje dużą zmiaę prądu emiterkolektor. Kaał typu w materiale p Napięcie bramki (+) przyciąga elektroy. Kaał w materiale p otwiera się Trazystor polowy 32
Zjawiska kontaktowe. Pojęcia.
Zjawiska kotaktowe. Pojęcia. Próżia, E vac =0 Φ m W Φ s χ E c µ E v metal półprzewodik W praca przeiesieia elektrou z da pasma przewodictwa do próżi, bez zwiększaia jego eergii kietyczej (którą ma zerową).
Zjawiska kontaktowe. Pojęcia.
Zjawiska kotaktowe Zjawiska kotaktowe. Pojęcia. metal Φ M W W raca rzeiesieia elektrou z da asma rzewodictwa do różi, bez zwiększaia jego eergii kietyczej (którą ma zerową). Używa się tylko dla metalu.
BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ
Ćwiczeie 47 BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ 47.. Wiadomości ogóle Dla zrozumieia elektryczych właściwości ciał stałych koiecze jest pozaie praw rządzących elektroami wewątrz tych ciał.
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.
Politechika Lubelska Wydział Elektrotechiki i Iformatyki Katedra Urządzeń Elektryczych i Techiki Wysokich Napięć Dr hab. Paweł Żukowski Pierwiastek DEg C (diamet) 7,0 ev Si 1,1 ev Ge 0,7 ev S (szara cya)
Wykład XI. Light Amplification by Stimulated Emission of Radiation (LASER) laser półprzewodnikowy
Wykład XI Light Amplificatio by Stimulated Emissio of Radiatio (LASER) laser półprzewodikowy Emisja spotaicza Emisja spotaicza i wymuszoa Fotoy emitowae są we wszystkich kierukach z jedakowym prawdopodobieństwem
Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
1. Podstawowa struktura tranzystora bipolarnego
RAZYSORY POLAR SMK WYKŁAD 8 a pdstw.: W. Marciiak, W 1978, Przyrządy półprzewodikowe i układy scaloe razystor elemet trasformujący rezystację (trioda 1948 ardee, ratai trazystor ostrzowy). razystor warstwowy
Podstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
ELEMENTY ELEKTRONICZNE
AKADMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWI Wydział Iformatyki, lektroiki i Telekomuikacji Katedra lektroiki LMNTY LKTRONICZN dr iż. Piotr Dziurdzia aw. C-, okój 41; tel. 617-7-0, iotr.dziurdzia@agh.edu.l
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których
Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)
Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone
Wykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
Skończona studnia potencjału
Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach
Urządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
WYKŁAD 6 TRANZYSTORY POLOWE
WYKŁA 6 RANZYSORY POLOWE RANZYSORY POLOWE ZŁĄCZOWE (Juctio Field Effect rasistors) 55 razystor polowy złączowy zbudoway jest z półprzewodika (w tym przypadku typu p), w który wdyfudowao dwa obszary bramki
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
III. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Wykład VIII TRANZYSTOR BIPOLARNY
Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu
9. Struktury półprzewodnikowe
9. Struktury półprzewodnikowe Tranzystor pnp, npn Złącze metal-półprzewodnik, diody Schottky ego Heterozłącze Struktura MOS Tranzystory HFET, HEMT, JFET Technologia planarna, ograniczenia Tranzystor pnp
Półprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
ELEKTROGRAWIMETRIA. Warunki jakie musi spełniać osad analitu na elektrodzie
ELEKTROGRAWIETRIA Zasada ozaczaia polega a wydzieleiu aalitu w procesie elektrolizy w postaci osadu a elektrodzie roboczej ( katodzie lub aodzie) i wagowe ozaczeie masy osadu z przyrostu masy elektrody
Badanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
IM Eksperymentalne wyznaczenie wartości podstawowego kwantu przewodności.
IM - 5 BADANIE PRZEWODNOŚCI ELEKTRYCZNEJ NANODRUTÓW Cel ćwiczeia Eksperymetale wyzaczeie wartości podstawowego kwatu przewodości.. Wstęp teoretyczy. Klasycza teoria przewodictwa Ruch elektroów przewodictwa
9. Struktury półprzewodnikowe
9. Struktury półprzewodnikowe Tranzystor pnp, npn Złącze metal-półprzewodnik, diody Schottky ego Heterozłącze Struktura MOS Tranzystory HFET, HEMT, JFET Technologia planarna, ograniczenia Tranzystor pnp
Badanie charakterystyki diody
Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,
Promieniowanie atomów wzbudzonych
Achorage, USA, May 2002 W-27 (Jaroszewicz) 23 slajdy Na podstawie prezetacji prof. J. Rutkowskiego Promieiowaie atomów wzbudzoych Promieiowaie spotaicze Promieiowaie wymuszoe Promieiowaie retgeowskie 3/23-W27
Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe
Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo
Przewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Zasada działania tranzystora bipolarnego
Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego
Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał
FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury
Półprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
W1. Właściwości elektryczne ciał stałych
W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3
Termodynamika defektów sieci krystalicznej
Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
ZJAWISKA FOTOELEKTRYCZNE
ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu
Zakres wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne
TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem
= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC
4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc
Elementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.
12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy
Model Bohra atomu wodoru
Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych
Rezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.
2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały
Podstawy działania elementów półprzewodnikowych - diody
Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
EL08s_w03: Diody półprzewodnikowe
EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez
Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Przewodność elektryczna półprzewodników
Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj
Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
TRANZYSTORY BIPOLARNE ZŁĄCZOWE
TRANZYSTORY IPOLARN ZŁĄCZO ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii
SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Wykład 5 Fotodetektory, ogniwa słoneczne
Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
Ćwiczenie 241. Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) .. Ω.
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 241 Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) Opór opornika
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym
Zjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
I. DIODA ELEKTROLUMINESCENCYJNA
1 I. DIODA LKTROLUMINSCNCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: misja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka
Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII
W książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,