Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
|
|
- Katarzyna Kowalska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm ; 1dm b) 4,6cm ; 105mm ; 1,52dm c) 0,75m ; 6,2dm ; 4,5cm 2. Oblicz kąty α,β,γ na podstawie rys. 3. Uzupełnij zapisy z jednostkami długości i pola powierzchni: a) 0,2m= mm ; 28000dm=.km ; 0,0027km=.cm ; 890m=.km b) 0,2a=.m 2 ; 280cm 2 =.m 2 ; 0,008km 2 =.ha ; 0,087ha= m 2 ; 350a= km 2 4. Wiedząc, że proste a i b są równoległe oblicz kąty α,β,γ na podstawie rys. 5. Jeden bok prostokąta ma długość 24cm. Oblicz pole tego prostokąta, jeśli drugi bok jest o 25% dłuższy od pierwszego. 6. W rombie jedna przekątna ma długość 20cm a druga jest o 30% krótsza. Oblicz pole rombu. 7. Oblicz kąty α,β,γ na podstawie rys W prostokącie szerokość wynosi 20cm zaś długość jest o 50% dłuższa. Jaki procent obwodu stanowi dłuższy bok prostokąta? 9. Oblicz pole równoległoboku, w którym podstawa o długości 12cm stanowi 75% wysokości.
2 10. W trapezie wysokość ma 10cm długości. Oblicz pole trapezu, jeśli krótsza podstawa stanowi 60% wysokości zaś dłuższa stanowi 120% krótszej podstawy. 11. Oblicz pole koła jeśli: a) promień ma długość 0,8dm; b) średnica ma długość 20cm; c)obwód wynosi 8π m 12. Ile metrów siatki należy zakupić do ogrodzenia działki prostokątnej jeśli wymiary jej na mapie sporządzonej w skali 1:1000 wynoszą: 5,5cm ; 3,5cm. 13. Koło ma średnicę 0,5m. Ile pełnych obrotów wykona to koło na drodze 1km? Liczbę π zaokrąglij do 3, Oblicz obwód kwadratowej działki, którego pole wynosi 4a. 15. Oblicz pole zacieniowanego pierścienia na podstawie rys. 16. Działka pana Kowalskiego ma kształt trapezu równoramiennego, którego podstawy mają długości 28 m i 22m. Ile arów wynosi pole tej działki, jeśli jej wysokość stanowi 0,6 sumy długości podstaw trapezu. 17. Boisko szkolne jest prostokątem o wymiarach 120m x 80m. Jakie wymiary będzie mieć ten prostokąt na planie w skali 1:500? 18. Przyjmijmy, że pole jednej kratki jest równe 1. Oblicz pole zacieniowanej części figury. 19. Oblicz pole trapezu równoramiennego o obwodzie 52cm, jeśli jego ramię wynosi 13cm zaś wysokość 12cm. 20. Oblicz wysokość równoległoboku h 2 (rys) 21. Oblicz pole deltoidu, którego jedna z przekątnych ma długość 12cm, zaś druga przekątna jest o 25% krótsza. 22. Ile metrów siatki należy zakupić do ogrodzenia działki prostokątnej jeśli wymiary jej na mapie sporządzonej w skali 1:1000 wynoszą: 5,5cm i 3,5cm. 23. W trapezie równoramiennym o podstawach 24cm i 12cm jeden z kątów wewnętrznych ma miarę 135 o. Oblicz pole tego trapezu.
3 24. Oceń prawdziwość podanych zdań: każdy czworokąt o równych przekątnych jest prostokątem istnieje trójkąt rozwartokątny i równoramienny każde dwa trójkąty o takich samych polach są przystające wysokości każdego trójkąta leżą wewnątrz trójkąta jeżeli prostokąt ma prostopadłe przekątne to jest rombem 25. Oblicz pole wycinka koła na podstawie rys. 26. Jaką drogę pokona koło roweru o średnicy 70cm po 400 obrotach w jedną stronę (za π przyjmij wartość 22 7 ). 27. Oblicz pole odcinka koła o promieniu r=3,6cm i kącie środkowym α=90 o (rys.) 28. Zapisz w postaci wyrażenia algebraicznego Podwojona suma liczby b oraz iloczynu liczb 2 i a Kwadrat różnicy liczby 20 oraz ilorazu liczb x i y Iloczyn sumy kwadratów liczb a i b przez różnicę liczb a i b. Na parkingu zaparkowano m samochodów i n motorów. Ile kół mają zaparkowane pojazdy? Ile sekund stanowi p godzin i q minut 29. Uporządkuj jednomiany: x 2 y (-5y) (-0,4) 30. Zmieszano 10 kg cukierków I gatunku i 20 kg II gatunku. Cena 1 kg cukierków I gatunku równa jest m zł, a cena 1 kg II gatunku jest o 2 zł niższa. Oblicz cenę 1 kg mieszanki. 31. Ewa otrzymała ze sprawdzianu x punktów. Punkty zdobyte przez Ewę stanowią 75% punktów możliwych do uzyskania z tego sprawdzianu. Jaka była maksymalna liczba punktów możliwych do uzyskania z tego sprawdzianu? 32. Dla jakiego a wyrażenia mają sens liczbowy: 2 a a ; 2a 2 5 a 3
4 33. Usuń nawiasy i wykonaj redukcję wyrazów podobnych: a) b) (6a 2 + 2a + 1) (-3a 2 2a + 5) c) 5x + (2x 7) 9x (-3x + 8) x d) -9z (4 3z) 8y (-7z + 8y) + (-2y 7) e) 7x 3(5x + 2) 6(7 + 2x) f) -5(3y 7) 2(6 + 4y) + 3y g) 34. Wykonaj redukcję wyrazów podobnych i oblicz wartość liczbową wyrażenia: 3xy 3 + 3xy (2xy 3 xy) dla x = -1, y = 2 9y (7y + x) + (6x 7y) dla x = -2, y = 3 (6a - 8b 0,7) (6,9 + a 5b) + 1,8 dla a = 0,2, b = 0,1 (5x + 7y) 8(y + 1) + 3(x y) dla x=0,5, y=0, Wyłącz wspólny czynnik przed nawias: 4x 8y 4z 5a 2 15b + 20c 2x + 3x 2 y 12xy 3a 2 b 3-6ab 2 +12a 3 b Jakie jest pole prostokąta o obwodzie równym 2x + 6y, jeśli jeden bok ma długość 3y x? 37. Działka w kształcie prostokąta ma x metrów szerokości, jej długość jest o y metrów większa od szerokości. Ile metrów bieżących siatki potrzeba na ogrodzenie dwóch takich działek? 38. Zapisz za pomocą wyrażenia algebraicznego pole wielokąta i wykonaj obliczenia dla x=2 39. Przekształć i oblicz wartość liczbową wyrażenia dla x= -1 i y= ,2 x xy x x 1,5 xy 2x Ela ma teraz y lat, Frania jest od niej o 3 lata młodsza, Zuzia zaś jest starsza od Eli o 6 lat. Zapisz wyr. algebr. średnią wieku dziewczynek. 41. W lesie zasadzono 3 gatunki drzew: x świerków, sosen o 20 więcej niż świerków i brzóz 2 razy mniej sosen. Zapisz wyr. algebraicznym ilość wszystkich drzew.
5 42. Zapisz wyrażeniem algebraicznym pola figur (rys) 43. Doprowadź wyrażenia do najprostszej postaci -(-2x+4y-3)+(x-4y+2)= (3a-2b)-(a-3b+2)-4a= (2xy+3x-y)+(-2x-xy+2y)= 2(-3m+2n)-4(m-5n)-(-2mn+5n)= 0,5(2z-6)+1,2(10z-5)-(4-3z)= 44. Oblicz wartość wyrażenia x y, jeśli wiadomo, że x y : Oblicz wartość wyrażenia 2a 2 2 6a 12a +a, jeśli wiadomo, że 1, 2W liczbie trzycyfrowej 6 cyfra setek wynosi a, cyfra dziesiątek jest o 2 mniejsza od cyfry setek zaś cyfra jedności jest 2 razy większa od cyfry setek. Zapisz wyrażeniem algebraicznym postać tej liczby. 46. Wykaż, że suma trzech kolejnych liczb naturalnych jest liczbą podzielną przez Stefek ma x lat, a Felek jest młodszy od Stefka o 3 lata, zaś Franek jest dwa razy starszy od Felka. Ile będą mieli razem lat za 3 lata? Wynik zapisz wyrażeniem algebraicznym w najprostszej postaci. 48. Stefek pomyślał pewną liczbę. Następnie pomnożył ją przez 4 i dodał 16 a otrzymany wynik podzielił przez 8 i na koniec odjął połowę pomyślanej liczby. Wykaż, że otrzymany wynik w działaniu Stefka zawsze wynosi 2 bez względu na pomyślaną liczbę. 49. Czas jaki Franek poświęca na odrabianie pracy domowej to: x godzin, 10 razy więcej minut niż godzin i 8 razy więcej sekund niż godzin. Zapisz wyrażeniem algebraicznym ile to sekund. 50. Która z figur ma większe pole: kwadrat o boku x+1 czy trójkąt prostokątny o przyprostokątnych 2x i x+2. Oblicz ile wynosi różnica pól.
Zestaw powtórzeniowy z matematyki dla uczniów kl III PG nr 3. Część 2 (własności figur płaskich, wyrażenia algebraiczne, równania i układy równań)
Zestaw powtórzeniowy z matematyki dla uczniów kl III PG nr 3 Część 2 (własności figur płaskich, wyrażenia algebraiczne, równania i układy równań) 1. Korzystając z rysunku oblicz miary kątów α,β,γ 2. Proste
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem
WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem. Zapisz liczbę 5 razy większą od ilorazu liczby x przez liczbę y. Oblicz wartość wyrażenia x y xy dla x = 6 oraz y = -.. Uprość wyrażenie: - 5x (x y) =.
Bardziej szczegółowoI POLA FIGUR zadania średnie i trudne
I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka
Bardziej szczegółowoMARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?
Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego
Bardziej szczegółowoI POLA FIGUR zadania łatwe i średnie
I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość
Bardziej szczegółowoKąty, trójkąty i czworokąty.
Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość
Bardziej szczegółowoPlanimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Bardziej szczegółowoSPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania
SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...
Bardziej szczegółowoKONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Bardziej szczegółowoTrójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Bardziej szczegółowo9. PLANIMETRIA zadania
Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..
Bardziej szczegółowoBadanie wyników nauczania z matematyki klasa II
Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie. (0-) Po podniesieniu liczby -2 2 do kwadratu otrzymamy liczbę: 25 A) B) C) 6 D) Zadanie 2. (0-) Wynikiem
Bardziej szczegółowoZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Bardziej szczegółowoKlasa 6. Pola wielokątów
Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A
Bardziej szczegółowoKlasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
Bardziej szczegółowoPlanimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Bardziej szczegółowo2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Bardziej szczegółowo7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Bardziej szczegółowoDolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
Bardziej szczegółowoSuma ( ) 0,3 jest równa:
Liczby i działania Zadania zamknięte: Zadanie. (0-p.) Dane są liczby: 9 ; - 8,5 ; - 4, ; 6,5. Która z nich ma wartość bezwzględną mniejszą od 5? A) -9. B) 6,5 C) -8,5 D) 4, Zadanie. (0-p.) Ile liczb całkowitych
Bardziej szczegółowoMARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
Bardziej szczegółowoKlasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
Bardziej szczegółowoETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE
LAMBDA Zespół Szkół w Chełmży ul. Hallera 23, 87 140 Chełmża tel./fax. 675 24 19 Konkurs matematyczny dla uczniów klas III gimnazjum www.lamdba.neth.pl ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE
Bardziej szczegółowoObwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Bardziej szczegółowoKlasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Bardziej szczegółowoPraca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
Bardziej szczegółowoBank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Bardziej szczegółowoZestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby
Bardziej szczegółowoSUKCES W NAUCE MATEMATYKA. klasa IV
SUKCES W NAUCE SPRAWDZIANY MATEMATYKA klasa IV FIGURY GEOMETRYCZNE: WIELOKĄTY, KOŁA I SKALA Zadanie 1. Która z narysowanych figur jest wielokątem? A. B. C. D. Zadanie 2. Wielokąt o 5 wierzchołkach ma:
Bardziej szczegółowoKlasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Bardziej szczegółowoMatematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Bardziej szczegółowoMini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Bardziej szczegółowoFigury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
Bardziej szczegółowoKlasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?
Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm
Bardziej szczegółowoZad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
Bardziej szczegółowo1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
Bardziej szczegółowoZadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Bardziej szczegółowoBadanie wyników nauczania z matematyki klasa II
Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie 1. (0-1) Po podniesieniu liczby -2 2 1 do kwadratu otrzymamy liczbę: 1 25 1 A) B) C) 6 D) 1 Zadanie 2. (0-1)
Bardziej szczegółowoŻyczymy powodzenia w rozwiązywaniu zadań!
Kod Ucznia Porąbka Uszewska, 21 maja 2014 r. Test Liczba punktów za zadanie otwarte Zad. 1-13 1 2 3 4 5 6 7 8 9 10 razem POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS V ETAP FINAŁOWY Celem obliczeń nie
Bardziej szczegółowoZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
Bardziej szczegółowoSkrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
Bardziej szczegółowoKURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Bardziej szczegółowoMiędzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
Bardziej szczegółowoKuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Bardziej szczegółowoPlanimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Bardziej szczegółowo1 Pole figury. P 1. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) cm i cm c) 15 cm i 5,2 dm
68 Pola figur 6 Pola figur Pole figury P. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) 3 2 cm i 2 7 cm c) 5 cm i 5,2 dm P 2. Oblicz pole prostokąta o podanych bokach. a) 8 cm i 6 cm b) 4
Bardziej szczegółowoKONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,
Bardziej szczegółowoMatematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
Bardziej szczegółowoPowodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
Bardziej szczegółowoOBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3
Bardziej szczegółowoZadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
Bardziej szczegółowoPole trójkata, trapezu
Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj
Bardziej szczegółowoPLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź
Bardziej szczegółowowymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Bardziej szczegółowoSprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.
Bardziej szczegółowoZADANIA KONKURSOWE Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7
ZADANIA KONKURSOWE 2019 ZADANIA ZAMKNIĘTE 1. Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7 2. Wszystkich liczb pięciocyfrowych, w których suma cyfr
Bardziej szczegółowoMatematyka test dla uczniów klas drugich
Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 2011/20 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko kl... Zadanie 1. Liczba 5 1, 75 jest równa liczbie 6 7 1 A. 2
Bardziej szczegółowoZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 Instrukcja dla ucznia ETAP TRZECI 1. Zestaw
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
Bardziej szczegółowoSPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
Bardziej szczegółowoDŁUGOŚĆ OKRĘGU. POLE KOŁA
Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole koła o promieniu długości 9 m A. 81π m 2 C. 18π m 2 B. 81 m 2 D. 9π m 2 Długość okręgu o średnicy 4 cm A. 4 cm C. 8π cm B. 4π cm D. 16π cm Zadanie 1.3 Zadanie
Bardziej szczegółowoKonkurs przedmiotowy z matematyki dla uczniów gimnazjów 11 marca 2016 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 11 marca 2016 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
Bardziej szczegółowoMatematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA TRZECIA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 06 - gminny konkurs matematyczny FINAŁ 0 maja 06 KLASA TRZECIA. Przed Tobą zestaw 0 zadań konkursowych. Zanim rozpoczniesz pracę nad
Bardziej szczegółowoPytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Bardziej szczegółowoZadanie 2. ( 4p ) Czworokąt ABCD ma kąty proste przy wierzchołkach B i D. Ponadto AB = BC i BH = 1.
Zadanie 1. ( p ) Dodatnia liczba naturalna n ma tylko dwa dzielniki naturalne, podczas gdy liczba n + 1 ma trzy dzielniki naturalne. Liczba naturalna n + ma. dzielniki naturalne. Liczna n jest równa..
Bardziej szczegółowoPOTĘGI I PIERWIASTKI
POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.
Bardziej szczegółowoPLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99
PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99 Dla następujących działów: 1. Wyrażenia algebraiczne. 2. Mierzenie. 3. Bryły. 4. Przekształcenia geometryczne.
Bardziej szczegółowoKRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Bardziej szczegółowoGeometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12
Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015
Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o
Bardziej szczegółowoPYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Bardziej szczegółowoI. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Bardziej szczegółowoGeometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
Bardziej szczegółowoPRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,
Bardziej szczegółowoMATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
Bardziej szczegółowoKL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
Bardziej szczegółowo6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA
GRUPA A 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Bardziej szczegółowoGEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Bardziej szczegółowoWielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
Bardziej szczegółowoSprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ...
MATEMATYKA Przed próbną maturą Sprawdzian. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 6 Imię i nazwisko... Liczba punktów Procent Przed próbną maturą. Sprawdzian. Zadanie 1. (0
Bardziej szczegółowoPODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Bardziej szczegółowoW zadaniach 2 5 wpisz w wykropkowane miejsca odpowiednie wielkości.
Zadanie 1. ( 2 p.) Florentyna, Martyna i Karolina złożyły się na prezent dla cioci. Florentyna dała o 26 zł mniej niż Karolina, Martyna 2 razy mniej niż Karolina. Oblicz i wpisz do tabeli kto, komu i w
Bardziej szczegółowoMatematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA TRZECIA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 07 - gminny konkurs matematyczny FINAŁ 9 maja 07 KLASA TRZECIA. Przed Tobą zestaw 0 zadań konkursowych. Zanim rozpoczniesz pracę nad
Bardziej szczegółowoTest diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
Bardziej szczegółowoMATURA PRÓBNA PODSTAWOWA GEOMETRIA Z TRYGONOMETRIA
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI MTUR PRÓN POSTWOW GEOMETRI Z TRYGONOMETRI ZNIE 1 (1 PKT) W trójkacie prostokatnym naprzeciw kata ostrego α leży przyprostokatna długości 3 cm.
Bardziej szczegółowoKąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
Bardziej szczegółowo