Klasa 6. Pola wielokątów
|
|
- Piotr Kurowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D. Druga przekątna ma A. 2 cm B. 3 cm Pole tego rombu jest równe C. 18 cm 2 D. 9 cm 2 2. Podstawa trójkąta ma długość 5 cm, a wysokość opuszczona na tę podstawę jest równa 4 cm. Oblicz pole tego trójkąta. 3. Uzupełnij zdania. a) Pole kwadratu o boku 9 cm wynosi cm 2. b) Pole prostokąta o bokach 6 cm i cm wynosi 48 cm Jedna podstawa trapezu ma 5 cm, a druga podstawa jest od niej o 2 cm dłuższa. Wysokość trapezu jest równa 6 cm. Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. Dłuższa podstawa ma 7 cm. prawda fałsz Pole trapezu jest równe 42 cm 2. prawda fałsz 5. Oblicz pole trapezu prostokątnego o podstawach 5 cm i 1,3 dm i ramionach 60 mm i 10 cm. 6. Boki równoległoboku mają 10 cm i 5 cm, a wysokość opuszczona na krótszy bok ma 6 cm. Oblicz pole równoległoboku i długość drugiej wysokości. 7. Taras w kształcie czworokąta przedstawiono na rysunku obok. Część P pokryto płytkami, a na części T położono sztuczną trawę. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D. Powierzchnia tarasu wynosi m 2. A. 14 B. 22,5 Trawa zajmuje powierzchnię m 2 mniejszą niż płytki. o C. 5 D. 7,5 8. Czy podane zdania są prawdziwe? Wstaw znak X w odpowiednią kratkę. Pole prostokąta o wymiarach 6 dm 13 dm jest większe niż 70 dm 2. Prostokąt o wymiarach 3 cm 1,5 cm ma mniejsze pole niż prostokąt o bokach 4 cm i 1 cm. TAK TAK NIE NIE
2 gr. A str. 2/4 9. Jeden z boków prostokąta ma 10 cm, a drugi jest 2 razy krótszy. Pole tego prostokąta wynosi: A. 5 cm 2 B. 30 cm 2 C. 40 cm 2 D. 50 cm Pan Wojciech jest właścicielem działki rekreacyjnej o powierzchni 630 m 2. Działka pana Mariusza ma kształt prostokąta o wymiarach 27 m 23 m. Który z panów ma większą działkę? O ile większą? 11. Pole kwadratu wynosi 25 cm 2. Oblicz długość boku tego kwadratu. 12. Oblicz pole prostokąta o bokach długości 5 cm i 13 cm. 13. W którym przykładzie poprawnie ustalono zależność między jednostkami pola? A. 1 m 2 = 100 cm 2 C. 1 m 2 = cm 2 B. 1 m 2 = cm 2 D. 1 m 2 = 0,01 0,01 cm Pole prostokąta wynosi 176 cm 2, a jeden z jego boków ma 8 cm. Oblicz obwód tego prostokąta. 15. Oblicz pole kwadratu o obwodzie 10 dm. 16. Zamień jednostki pola: a) 1 dm 2 = cm 2 c) 1 a = m 2 b) 1 mm 2 = cm 2 d) 1 m 2 = km Pole kwadratu wynosi 169 cm 2. Oblicz obwód tego kwadratu. 18. Ela i Krysia przygotowały plakaty na lekcję biologii. Plakat Eli był w kształcie prostokąta o bokach 9 dm i 5 dm, a plakat Krysi był w kształcie prostokąta o wymiarach 25 cm 20 cm. Czy podane zdania są prawdziwe? Wstaw znak X w odpowiednią kratkę. Plakat Eli ma większe pole niż plakat Krysi. TAK NIE Większy plakat ma 5 razy większe pole od mniejszego. TAK NIE 19. Podłoga w łazience ma kształt kwadratu o boku 4,5 m. Podłogę tę wyłożono kwadratowymi płytkami o boku 0,25 m. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D. Powierzchnia tej łazienki wynosi A. 18 m 2 B. 20,25 m 2 Do ułożenia podłogi użyto C. 324 płytki D. 181 płytek 20. Pan Maciej jest właścicielem działki rekreacyjnej o powierzchni 8,4 ara. Działka pana Jakuba ma kształt prostokąta o wymiarach 32 m 26 m. Który z panów ma większą działkę? O ile większą?
3 gr. A str. 3/4 21. Jeden z boków prostokąta jest 3 razy dłuższy niż drugi bok. Obwód tego prostokąta wynosi 24 cm. Oblicz jego pole. 22. Z dwóch jednakowych kwadratów o boku 9 cm wycięto po cztery kwadraty o boku 2 cm, tak jak przedstawiono na rysunku obok. Uzupełnij zdania dotyczące powstałych w ten sposób figur. a) Pole figury B wynosi cm 2. b) Figura ma o cm mniejszy obwód niż figura Narysuj równoległobok o polu 10 cm 2, niebędący prostokątem. 24. Oblicz pole rombu, którego przekątne mają 4 dm i 13 cm. 25. Jedna przekątna rombu o polu 36 cm 2 ma 6 cm. Długość drugiej przekątnej wynosi: A. 6 cm B. 12 cm C. 3 cm D. 9 cm 26. Wysokości równoległoboku są równe 6 cm i 5 cm. Krótsza wysokość jest opuszczona na bok długości 12 cm. Jaką długość ma drugi bok równoległoboku? 27. Prostokąt i równoległobok na rysunku obok mają parę boków tej samej długości. Wybierz zdanie prawdziwe. A. Prostokąt ma większe pole, a równoległobok ma większy obwód. B. Pola i obwody obu czworokątów są równe. C. Prostokąt ma większe pole, a obwody obu czworokątów są równe. D. Pola obu czworokątów są równe, a równoległobok ma większy obwód. 28. Jakie pole ma trójkąt o podstawie 4 cm, jeśli wysokość opuszczona na tę podstawę ma 3 cm? A. 6 cm 2 B. 12 cm 2 C. 7 cm 2 D. 1 cm Oblicz pola poniższych trójkątów.
4 gr. A str. 4/4 30. Narysuj: a) dowolny trójkąt prostokątny DEF o polu dwa razy mniejszym niż pole trójkąta ABC, b) dowolny trójkąt rozwartokątny KLM o polu dwa razy większym niż pole trójkąta ABC.
5 Klasa 6. Pola wielokątów gr. B str. 1/4... imię i nazwisko klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm dłuższa. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D. Druga przekątna ma A. 9 cm B. 18 cm Pole tego rombu jest równe C. 27 cm 2 D. 18 cm 2 2. Podstawa trójkąta ma długość 3 cm, a wysokość opuszczona na tę podstawę jest równa 8 cm. Oblicz pole tego trójkąta. 3. Uzupełnij zdania. a) Pole kwadratu o boku 6 cm wynosi cm 2. b) Pole prostokąta o bokach 9 cm i cm wynosi 63 cm Jedna podstawa trapezu ma 9 cm, a druga podstawa jest od niej o 4 cm krótsza. Wysokość trapezu jest równa 6 cm. Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. Krótsza podstawa ma 6 cm. prawda fałsz Pole trapezu jest równe 42 cm 2. prawda fałsz 5. Oblicz pole trapezu prostokątnego o podstawach 7 cm i 1,5 dm i ramionach 60 mm i 10 cm. 6. Boki równoległoboku mają 10 cm i 4 cm, a wysokość opuszczona na krótszy bok ma 5 cm. Oblicz pole równoległoboku i długość drugiej wysokości. 7. Taras w kształcie czworokąta przedstawiono na rysunku obok. Część P pokryto płytkami, a na części T położono sztuczną trawę. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D. Powierzchnia tarasu wynosi m 2. A. 21 B. 13 Trawa zajmuje powierzchnię m 2 mniejszą niż płytki. o C. 6 D Czy podane zdania są prawdziwe? Wstaw znak X w odpowiednią kratkę. Pole prostokąta o wymiarach 5 dm 13 dm jest większe niż 70 dm 2. Prostokąt o wymiarach 2 cm 1,5 cm ma mniejsze pole niż prostokąt o bokach 1 cm i 3 cm. TAK TAK NIE NIE
6 gr. B str. 2/4 9. Jeden z boków prostokąta ma 12 cm, a drugi jest 3 razy krótszy. Pole tego prostokąta wynosi: A. 36 cm 2 B. 32 cm 2 C. 16 cm 2 D. 48 cm Pan Wojciech jest właścicielem działki rekreacyjnej o powierzchni 620 m 2. Działka pana Mariusza ma kształt prostokąta o wymiarach 27 m 23 m. Który z panów ma większą działkę? O ile większą? 11. Pole kwadratu wynosi 36 cm 2. Oblicz długość boku tego kwadratu. 12. Oblicz pole prostokąta o bokach długości 5 cm i 12 cm. 13. W którym przykładzie poprawnie ustalono zależność między jednostkami pola? A. 1 km 2 = 0,0001 0,0001 dm 2 C. 1 km = dm 2 B. 1 km 2 = dm 2 D. 1 km 2 = dm Pole prostokąta wynosi 144 cm 2, a jeden z jego boków ma 6 cm. Oblicz obwód tego prostokąta. 15. Oblicz pole kwadratu o obwodzie 18 dm. 16. Zamień jednostki pola: a) 1 dm 2 = cm 2 c) 1 ha = m 2 b) 1 mm 2 = dm 2 d) 1 m 2 = km Pole kwadratu wynosi 100 cm 2. Oblicz obwód tego kwadratu. 18. Ela i Krysia przygotowały plakaty na lekcję biologii. Plakat Eli był w kształcie prostokąta o bokach 75 cm i 20 cm, a plakat Krysi był w kształcie prostokąta o wymiarach 6 dm 10 dm. Czy podane zdania są prawdziwe? Wstaw znak X w odpowiednią kratkę. Plakat Krysi ma większe pole niż plakat Eli. TAK NIE Mniejszy plakat ma 4 razy mniejsze pole od większego. TAK NIE 19. Podłoga w przedpokoju ma kształt prostokąta o wymiarach 3,5 m 4,5 m. Podłogę tę wyłożono kwadratowymi płytkami o boku 0,25 m. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A lub B oraz C lub D. Powierzchnia tego przedpokoju wynosi A. 16 m 2 B. 15,75 m 2 Do ułożenia podłogi użyto C. 252 płytki D. 160 płytek 20. Pan Maciej jest właścicielem działki rekreacyjnej o powierzchni 8,5 ara. Działka pana Jakuba ma kształt prostokąta o wymiarach 26 m 33 m. Który z panów ma większą działkę? O ile większą?
7 gr. B str. 3/4 21. Jeden z boków prostokąta jest 4 razy krótszy niż drugi bok. Obwód tego prostokąta wynosi 20 cm. Oblicz jego pole. 22. Z dwóch jednakowych kwadratów o boku 10 cm wycięto po cztery kwadraty o boku 2 cm, tak jak przedstawiono na rysunku obok. Uzupełnij zdania dotyczące powstałych w ten sposób figur. a) Pole figury B wynosi cm 2. b) Figura ma o cm mniejszy obwód niż figura Narysuj równoległobok o polu 9 cm 2, niebędący prostokątem. 24. Oblicz pole rombu, którego przekątne mają 2 dm i 14 cm. 25. Jedna przekątna rombu o polu 45 cm 2 ma 9 cm. Długość drugiej przekątnej wynosi: A. 5 cm B. 13,5 cm C. 2,5 cm D. 10 cm 26. Wysokości równoległoboku są równe 3 cm i 7 cm. Krótsza wysokość jest opuszczona na bok długości 14 cm. Jaką długość ma drugi bok równoległoboku? 27. Prostokąt i równoległobok na rysunku obok mają parę boków tej samej długości. Wybierz zdanie prawdziwe. A. Pola obu czworokątów są równe, a równoległobok ma większy obwód. B. Prostokąt ma większe pole, a obwody obu czworokątów są równe. C. Pola i obwody obu czworokątów są równe. D. Prostokąt ma większe pole, a równoległobok ma większy obwód. 28. Jakie pole ma trójkąt o podstawie 6 cm, jeśli wysokość opuszczona na tę podstawę ma 4 cm? A. 24 cm 2 B. 2 cm 2 C. 10 cm 2 D. 12 cm Oblicz pola poniższych trójkątów.
8 gr. B str. 4/4 30. Narysuj: a) dowolny trójkąt prostokątny DEF o polu dwa razy większym niż pole trójkąta ABC, b) dowolny trójkąt rozwartokątny KLM o polu równym polu trójkąta ABC.
Kąty, trójkąty i czworokąty.
Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość
Bardziej szczegółowoKlasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
Bardziej szczegółowoObwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Bardziej szczegółowoKlasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?
Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm
Bardziej szczegółowoFigury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
Bardziej szczegółowo1 Pole figury. P 1. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) cm i cm c) 15 cm i 5,2 dm
68 Pola figur 6 Pola figur Pole figury P. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) 3 2 cm i 2 7 cm c) 5 cm i 5,2 dm P 2. Oblicz pole prostokąta o podanych bokach. a) 8 cm i 6 cm b) 4
Bardziej szczegółowoPole trójkata, trapezu
Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj
Bardziej szczegółowoAstr. 1/5. Klasa 5. Figury na płaszczyźnie. 8,5 cm. 7 cm. 4,5 cm. 3,5 cm 7 cm. 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm.
Klasa 5. Figury na płaszczyźnie Astr. 1/5... imię i nazwisko...... klasa data 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm. 2. Narysuj sześciokąt o dokładnie dwóch kątach ostrych. 3.
Bardziej szczegółowoZadanie 1.1. Zadanie 1.2. Zadanie 1.3. Zadanie 1.4. Zadanie 1.5. Zadanie 1.6. Zadanie 1.7. Zadanie 1.8* Zadanie 1.9. Zadanie 1.10
Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole narysowanej obok figury wyrażone za pomocą trójkątów Pole narysowanej obok figury wyrażone za pomocą figur A. 10 B. 12 C. 7 D. 11 A. 4 B. 3 C. 2 D. 8 Zadanie
Bardziej szczegółowoKlasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Bardziej szczegółowoI POLA FIGUR zadania średnie i trudne
I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka
Bardziej szczegółowoSkrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
Bardziej szczegółowoOBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Bardziej szczegółowoSPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania
SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i działania... 7 Systemy zapisywania liczb... 12 Działania pisemne... 17 Własności liczb naturalnych... 22 Proste, odcinki, kąty...
Bardziej szczegółowoI POLA FIGUR zadania łatwe i średnie
I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość
Bardziej szczegółowoPowtórka przed klasówką nr 4 - pola wielokątów
Powtórka przed klasówką nr 4 - pola wielokątów MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Plakat informujący o zawodach miał kształt prostokąta o wymiarach 50 cm 60 cm. Oblicz pole prostokąta
Bardziej szczegółowoPraca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
Bardziej szczegółowoSPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania
SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...
Bardziej szczegółowoKarta pracy w grupach
Karta pracy w grupach WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. To jest siatka sześcianu. P
Bardziej szczegółowoZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
Bardziej szczegółowoZestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
Bardziej szczegółowoPOTĘGI I PIERWIASTKI
POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.
Bardziej szczegółowo1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
Bardziej szczegółowo6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA
GRUPA A 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać
Bardziej szczegółowoZespół Placówek Oświatowych im. Jana Pawła II w Gościeradowie. autorki: Zuzanna Olech i Wiktoria Błachnio
Zespół Placówek Oświatowych im. Jana Pawła II w Gościeradowie autorki: Zuzanna Olech i Wiktoria Błachnio Popatrz na rysunek obok. Narysowana figura została podzielona na 17 jednakowych kwadratów. Mówimy,
Bardziej szczegółowo7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Bardziej szczegółowo2 Figury geometryczne
Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest
Bardziej szczegółowoOdcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
Bardziej szczegółowoKlasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Bardziej szczegółowoTest na koniec nauki w klasie trzeciej gimnazjum
3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5
Bardziej szczegółowoKąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
Bardziej szczegółowoSprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.
Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3
Bardziej szczegółowoSPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
Bardziej szczegółowoPŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7
Bardziej szczegółowoBank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Bardziej szczegółowoPlanimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Bardziej szczegółowoKURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Bardziej szczegółowoTrójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Bardziej szczegółowoMatematyka. Klasa V. Pytania egzaminacyjne
Matematyka Pytania egzaminacyjne Klasa V 07. Oblicz najprostszym sposobem. a) + 9 + 67 + b) 0 8. Oblicz łączny koszt zakupów: owoców za zł, książki za 9 zł, mapy za 7 zł i kosmetyków za zł.. Oblicz najprostszym
Bardziej szczegółowoGRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
Bardziej szczegółowoTydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...
Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 18.11.2016 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Bardziej szczegółowoKONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych.
KONSPEKT DO LEKCJI MATEMATYKI W KL.V TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. CELE LEKCJI: kształcenie umiejętności stosowania zdobytych wiadomości w różnych sytuacjach rzeczywistych utrwalenie
Bardziej szczegółowoKlasa 2. Ostrosłupy str. 1/4
Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego
Bardziej szczegółowoII. III. Scenariusz lekcji. I. Cele lekcji
Scenariusz lekcji I. Cele lekcji 1) Wiadomości i umiejętności sprawdzane w zadaniach testu: Uczeń: zna sumę miar kątów w trójkącie, rozpoznaje proste równoległe, rozpoznaje wielokąty, rozpoznaje figury
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje
Bardziej szczegółowoDolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
Bardziej szczegółowoSprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Bardziej szczegółowoTest na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
Bardziej szczegółowoScenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych
Bardziej szczegółowoPROBNY EGZAMIN GIMNAZJALNY
IMIE I NAZWISKO PROBNY EGZAMIN GIMNAZJALNY 25 PAŹDZIERNIKA 2012 CZAS PRACY: 90 MIN. ZADANIE 1 W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest
Bardziej szczegółowoZad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
Bardziej szczegółowoPlanimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Bardziej szczegółowoEGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_2) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (1 pkt) Asia
Bardziej szczegółowoSkrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala
Bardziej szczegółowoSkrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Figury płaskie Podstawowe figury geometryczne
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Bardziej szczegółowoKONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Bardziej szczegółowox Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
Bardziej szczegółowoPotęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6
Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9
Bardziej szczegółowo2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
Bardziej szczegółowoZestaw powtórzeniowy nr 17
klasa.. nr w dzienniku. data Imię i nazwisko ucznia Zestaw powtórzeniowy nr 17 Własności figur płaskich, pola figur płaskich część 2 (na 28. lutego 2011) Informacja do zadań 1. i 2. Podczas remontu łazienki
Bardziej szczegółowoKlasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Bardziej szczegółowoKlasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoEgzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
Bardziej szczegółowoPlanimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
RÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW RZYGOTOWANY RZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2018 CZAS RACY: 90 MINUT 1 ZADANIE 1 (1 KT) Wykres przedstawia zależność objętości wody w zbiorniku deszczowym
Bardziej szczegółowoPowodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
Bardziej szczegółowoUZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem
Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Bardziej szczegółowoEGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Bardziej szczegółowoSPRAWDZIAN NR 1 GRUPA IMIĘ I NAZWISKO: KLASA: Wszelkie prawa zastrzeżone 1 ANNA KLAUZA
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzupełnij zdania. Wpisz w każdą lukę odpowiednią liczbę. a) Dziedziną funkcji jest zbiór x takich, że x. b) Zbiorem wartości funkcji są wszystkie
Bardziej szczegółowoKuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 21 KWIETNIA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród
Bardziej szczegółowoEGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_C) Czas pracy: 100 minut Czas pracy może być przedłużony zgodnie z przyznanym dostosowaniem. GRUDZIEŃ 2017
Bardziej szczegółowoKONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,
Bardziej szczegółowoKonkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
Bardziej szczegółowoXII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Bardziej szczegółowoSprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr
Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr Opracowały: Grala Ewa Sylwia Filipkowska Jadwiga Potaś Janina Rydzewska Agnieszka Sienkiewicz Bożena Sprawdzian wiadomości
Bardziej szczegółowoKlasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoZadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
Bardziej szczegółowoMatematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
Bardziej szczegółowo9. PLANIMETRIA zadania
Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..
Bardziej szczegółowoEGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
Bardziej szczegółowoEgzamin ósmoklasisty Matematyka
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNI ZESPÓŁ NZORUJĄY KO UZNI PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka T: 16 kwietnia 2019 r. GOZIN ROZPOZĘI:
Bardziej szczegółowoMARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?
Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego
Bardziej szczegółowoEgzamin ósmoklasisty Matematyka
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNI ZESPÓŁ NDZORUJĄY KOD UZNI PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DT: 16 kwietnia 2019 r. GODZIN ROZPOZĘI:
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Bardziej szczegółowoSpotkanie 1: Ćwiczenia otwierające Zmagania z polami
Spotkanie 1: Ćwiczenia otwierające Zmagania z polami Aufgabe 1. Quadrat und Rechteck (8 Punkte) Ein Quadrat hat einen gleichen Umfang wie ein Rechteck mit Seiten 60m und 40m. Um wie viel ist die Quadratfläche
Bardziej szczegółowoTWÓJ KOD. do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU
TWÓJ KOD do elektronicznego zeszytu ćwiczeń ZNAJDUJE SIĘ W ŚRODKU 2 część 2 klasa Spis treści V. Wyrażenia algebraiczne 1. Wyrażenia algebraiczne / 5 2. Wartość liczbowa wyrażenia algebraicznego / 9 3.
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowoEGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_1) Czas pracy: 100 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
Bardziej szczegółowoEgzamin ósmoklasisty od roku szkolnego 2018 / Matematyka. Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut
Egzamin ósmoklasisty od roku szkolnego 2018 / 2019 Matematyka Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut Zadanie 1. (0-1) Z okazji Światowego Dnia Książki uczniowie klasy VII zorganizowali
Bardziej szczegółowoW zadaniach 2 5 wpisz w wykropkowane miejsca odpowiednie wielkości.
Zadanie 1. ( 2 p.) Florentyna, Martyna i Karolina złożyły się na prezent dla cioci. Florentyna dała o 26 zł mniej niż Karolina, Martyna 2 razy mniej niż Karolina. Oblicz i wpisz do tabeli kto, komu i w
Bardziej szczegółowo