Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:"

Transkrypt

1 Razem Kod ucznia Nr zadania Liczba punktów możliwych do zdobycia Liczba punktów zdobytych XV Powiatowy Konkurs z Matematyki dla uczniów gimnazjum w roku szkolnym 2014/2015 organizowany przez Jurajskie Stowarzyszenie Nauczycieli Twórczych ETAP I 26 luty 2015 r. Przeczytaj uważnie poniższą instrukcję: Test składa się z trzech części. Pierwsza część zawiera 9 zadań. Tylko jedna odpowiedź jest poprawna. Za każdą poprawną odpowiedź uzyskujesz 1 punkt. Druga część zawiera 1 zadanie na uzupełnienie, 2 zadania typu prawda fałsz. Przekreśl tę literkę (P lub F), która będzie odpowiednia dla zadania. Za każdy dobry wybór otrzymasz 1 punkt. Trzecia część to 3 zadania otwarte, które wymagają analizy, obliczeń i wskazania odpowiedzi. Przy numerze zadania została podana maksymalna liczba punktów możliwych do zdobycia za to zadanie. Nie używaj kalkulatora. Przeczytaj uważnie zadania. Na rozwiązanie wszystkich zadań masz 90 minut. Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: A. 6 B. 10,5 C. 11,5 D. 21 Zadanie 2 (0-1) Na osi liczbowej zaznaczono liczbę b. Różnica między zaokrągleniem tej liczby do jedności, a zaokrągleniem tej liczby do części dziesiątych wynosi: A. - 0,3 B. 0,2 C. 0,3 D. 0,7 Zadanie 3 (0-1) Dzieląc liczbę x = 5k - 2, (gdzie k jest liczbą naturalną) przez liczbę y = 5 otrzymamy resztę równą: A. 1 B. 2 C. 3 D. 4 1

2 Zadanie 4 (0-1) Jeden mikrometr to 10-6 metra. Jeden arkusz papieru kserograficznego ma grubość 125 mikrometrów. Ile co najmniej takich arkuszy należy ułożyć jeden na drugim, aby otrzymana warstwa miała wysokość 1 metr? A B C D Zadanie 5 (0-1) Jeden z kątów przyległych jest o 200% większy od drugiego. Miara większego z nich wynosi: A. 45 B. 60 C. 120 D. 135 Zadanie 6 (0-1) Dwóch rowerzystów wyrusza jednocześnie z tego samego miejsca. Jeden porusza się z prędkością 12 km/h i jedzie na zachód, a drugi z prędkością 16 km/h jedzie na południe. Po jakim czasie odległość między nimi będzie równa 60 km? A. po ok.2 godz. B. po 3 godz. C. po 3,75 godz. D. po 9 godz. Zadanie 7 (0-1) Na obszycie zielonej serwetki zużyto x dm koronki. Na obszycie czerwonej serwetki zużyto (x+3) dm koronki. O ile centymetrów promień koła, w kształcie którego jest czerwona serwetka, jest większy od promienia koła, w kształcie którego jest zielona serwetka? W obliczeniach przyjmij π = 3. A. 3 dm B. 5 cm C. 3 cm D. 0,5 cm Zadanie 8 (0-1) W trapezie równoramiennym o obwodzie 21 cm suma długości ramienia i krótszej podstawy jest równa 8 cm. Różnica długości podstaw tego trapezu jest równa: A. 13 cm B. 10 cm C. 5 cm D. 2,5 cm Zadanie 9 (0-1) Pan Zenon założył roczną lokatę o stałym oprocentowaniu w wysokości zł. Po roku, po dopisaniu odsetek pan Zenon miał na lokacie zł. Oprocentowanie w skali roku tej lokaty wynosiło: A. 1 0% B. 4 % C. 6 % D. 20 % Zadanie 10 (0-3) Trójkąty ABD oraz ACD są trójkątami prostokątnymi o kącie prostym w wierzchołku A. Wiedząc, że kąt α=60, a kąt β=30 uzupełnij luki tak, aby otrzymać zdania prawdziwe. I. Odcinek BD ma długość II. III. Obwód trójkąta ACD jest równy Pole trójkąta BCD wynosi.. 2

3 Zadanie 11 (0-5) VAT to podatek doliczany do cen towarów i usług. Cena powiększona o doliczony podatek VAT nazywana jest ceną brutto. W pewnym sklepie stawka VAT na wszystkie towary wynosi 23%. Jeśli znamy cenę brutto towaru z tego sklepu, to aby obliczyć jego cenę bez podatku, wystarczy: I. od ceny brutto odjąć jej 23%. P F II. podzielić cenę brutto przez 1,23. P F III. obliczyć 77% ceny brutto. P F IV. pomnożyć cenę brutto przez 100 i wynik podzielić przez 123. P F V. podzielić cenę brutto przez 0,77. P F Zadanie 12 (0-3) Od kartonika w kształcie trójkąta równobocznego odcięto naroża tak, jak pokazano na rysunku i otrzymano sześciokąt foremny o bokach długości 3. Oceń prawdziwość podanych zdań. I. Kartonik był trójkątem o obwodzie 27. P F II. Obwód trójkątnego kartonika jest równy obwodowi otrzymanego sześciokąta. III. Suma pól odciętych naroży jest dwa razy mniejsza od pola sześciokąta. P P F F Zadanie 13 (0-3) Dziewięć wafelków kosztuje 11 złotych z groszami, a trzynaście wafelków kosztuje 15 złotych z groszami. Ile dokładnie kosztuje jeden wafelek? Zapisz obliczenia. 3

4 Zadanie 14 (0-3) Monika posiada materiał o wymiarach 120 cm x 150 cm, z którego chce uszyć spódnicę (wzorzec wykroju spódnicy na rysunku). W tym celu z materiału powinna wyciąć koło, a w nim otwór kołowy dopasowany do talii. Obwód talii dziewczyny jest równy 66 cm, a zaplanowana długość spódnicy (razem z założeniem) to 50 cm. Czy z posiadanego materiału Monika może uszyć spódnicę o zaplanowanej długości? Uzasadnij odpowiedź. Zapisz obliczenia przyjmując za. 4

5 Zadanie 15 (0-4) Na rysunku przedstawiono bryłę, której każda ściana jest albo kwadratem, albo trójkątem równobocznym. Kwadratami są też czworokąty ABCD i EFGH. Każda krawędź ma 4 cm długości. Oblicz pole powierzchni oraz objętość tej bryły. 5

PROBNY EGZAMIN GIMNAZJALNY

PROBNY EGZAMIN GIMNAZJALNY IMIE I NAZWISKO PROBNY EGZAMIN GIMNAZJALNY 25 PAŹDZIERNIKA 2012 CZAS PRACY: 90 MIN. ZADANIE 1 W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D

Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D A B C D 4 4 9 9 4 5 6 2 4 5 4 Zad. 1. (4 pkt.) Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) Ma oś symetrii Obwód wynosi 12 Ma środek symetrii

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00 WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Próbny egzamin w drugiej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka

Próbny egzamin w drugiej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w drugiej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 9 stron.

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA TRZECIA

Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA TRZECIA Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 06 - gminny konkurs matematyczny FINAŁ 0 maja 06 KLASA TRZECIA. Przed Tobą zestaw 0 zadań konkursowych. Zanim rozpoczniesz pracę nad

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 6 KWIETNIA 2013 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. 52

Bardziej szczegółowo

IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ROK SZKOLNY 2017/2018 ELIMINACJE REJONOWE Kod pracy - M A T - Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 6 stron

Bardziej szczegółowo

Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA

Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14

Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14 Razem Kod ucznia Nr zadania 2 3 4 5 6 7 8 9 0 2 3 4 5 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 5 4 4 4 4 5 35 XIV Powiatowy Konkurs z Matematyki dla uczniów gimnazjum w roku szkolnym

Bardziej szczegółowo

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP II - POWIATOWY 18 stycznia 2018 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 60 minut Liczba punktów możliwych do uzyskania:

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2015 r. 120 minut Informacje dla

Bardziej szczegółowo

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Styczeń 2017 Matematyka

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Styczeń 2017 Matematyka Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Styczeń 017 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10 stron.

Bardziej szczegółowo

1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem.

1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem. Warto rozwiązać: 1. W tubie, w kształcie walca, o wysokości 6 cm umieszczono pionowo trzy piłeczki, które ściśle przylegały do ścianek i do siebie nawzajem. Oceń prawdziwość podanych zdań. Wybierz, jeśli

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY .......................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania

Bardziej szczegółowo

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu? Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 .... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE LAMBDA Zespół Szkół w Chełmży ul. Hallera 23, 87 140 Chełmża tel./fax. 675 24 19 Konkurs matematyczny dla uczniów klas III gimnazjum www.lamdba.neth.pl ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki

Bardziej szczegółowo

Klasa 3.Graniastosłupy.

Klasa 3.Graniastosłupy. Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

Kąty, trójkąty i czworokąty.

Kąty, trójkąty i czworokąty. Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki lutego 01 r. 90 minut Informacje dla ucznia:

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte

Bardziej szczegółowo

Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA PIERWSZA

Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA PIERWSZA Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2016 - gminny konkurs matematyczny FINAŁ 20 maja 2016 KLASA PIERWSZA 1. Przed Tobą zestaw 20 zadań konkursowych. Zanim rozpoczniesz

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 20 KWIETNIA 2013 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Do papierowej torebki, w której znajdowały się tylko

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2016/2017 11.01.2017 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 29 MARCA 2014 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wyniki pracy klasowej z matematyki

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r. KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 5 3 4 4 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r. Przeczytaj uważnie

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 6 KWIETNIA 209 CZAS PRACY: 90 MINUT ZADANIE ( PKT) Grupie dwustu osób zadano pytanie: Jaka jest twoja ulubiona

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 08/09.0.09 R.. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY RÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW RZYGOTOWANY RZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2018 CZAS RACY: 90 MINUT 1 ZADANIE 1 (1 KT) Wykres przedstawia zależność objętości wody w zbiorniku deszczowym

Bardziej szczegółowo

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO SPRAWDZIAN 2 SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Trzej robotnicy pracujacy dziennie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019 Nr identyfikacyjny spma - 2018/2019 (numer porządkowy z kodowania) Nr identyfikacyjny - wyjaśnienie sp szkoła podstawowa, symbol przedmiotu MA matematyka, numer porządkowy wynika z numeru stolika wylosowanego

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: szkolny 13 listopada 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2018/2019

WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2018/2019 KOD UCZNIA Imię i nazwisko ucznia (Wpisuje Wojewódzka Komisja Konkursowa po rozkodowaniu prac) Czas rozwiązywania: 90 minut... Informacje: WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów szkół podstawowych

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014 I Ty możesz zostać itagorasem róbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz 1 Styczeń 2014 Liczba punktów 29, czas pracy 90min mgr Iwona Tlałka I Ty możesz zostać itagorasem próbny

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 Instrukcja dla ucznia ETAP TRZECI 1. Zestaw

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2016/2017 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka WYPEŁNIA UCZEŃ PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

XVI WOJEWÓDZKI KONKURS Z MATEMATYKI

XVI WOJEWÓDZKI KONKURS Z MATEMATYKI Zadanie 1 Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Suma punktów XVI WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW KLAS TRZECICH GIMNAZJÓW ORAZ KLAS TRZECICH ODDZIAŁÓW GIMNAZJALNYCH PROWADZONYCH W SZKOŁACH

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 23 MARCA 209 CZAS PRACY: 90 MINUT Informacja do zadań i 2 W trakcie przygotowań do zawodów pływackich Szymon i

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku?

Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku? Praca kontrolna nr 3, listopad 2018 termin oddania pracy do 3.12.2018 Imię i nazwisko... klasa III Zadanie 1. (0 1) Ile z następujących liczb: 2 3, 1 6, 0,( 62 ), 0 626,( ) ma cyfrę 6 na dziewiątym miejscu

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

5. Oblicz pole powierzchni bocznej tego graniastosłupa.

5. Oblicz pole powierzchni bocznej tego graniastosłupa. 11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi

Bardziej szczegółowo

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10 stron.

Bardziej szczegółowo

Kąty przyległe, wierzchołkowe i zewnętrzne

Kąty przyległe, wierzchołkowe i zewnętrzne Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa

Bardziej szczegółowo

PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.

PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie. Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Arkusz

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki. Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki. Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 016/017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą

Bardziej szczegółowo

ARKUSZ VIII

ARKUSZ VIII www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania.

PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania. Układ graficzny CKE 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem

Bardziej szczegółowo

Pole trójkata, trapezu

Pole trójkata, trapezu Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

POTĘGI I PIERWIASTKI

POTĘGI I PIERWIASTKI POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo