6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA

Wielkość: px
Rozpocząć pokaz od strony:

Download "6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA"

Transkrypt

1 GRUPA A 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać 27 punktów. Oceniane będą tylko wyniki wpisane w ramki obok zadań. Wyniki wpisz czytelnie.

2 Zadanie = 85 : 5 = A = 56 : 7 = 27 2 = 63 : 7 = : = 5 9 = Zadanie 2 Z pięciu jednakowych kwadratów o obwodzie 4 dm ułożono prostokąt. Jaki obwód ma ten prostokąt? ob. prostokąta= A) 5 dm B) 12 dm C) 20 dm D) 48 dm Kwadrat o boku 4 cm ustawiono na prostokącie o wymiarach 8 cm x 6 cm. Jaki obwód ma ośmiokąt, który powstał z tych dwóch figur? ob. figury= A) 44 cm B) 36 cm C) 12 cm D) nie da się obliczyć Zadanie = 72 : 18 = ( ) : = 4 9 = 3 17 = 99 : 3 = 2 36 = Zadanie 4 Jaką długość ma bok trójkąta równobocznego o obwodzie 72 dm? Obwód trójkąta równoramiennego jest równy 40 cm, jego ramię ma długość 15 cm. Jaką długość ma podstawa trójkąta? Obwód trójkąta równoramiennego jest równy 50 cm, jego podstawa ma długość 14 cm. Jaką długość ma ramię tego trójkąta? bok (dm)= podstawa (cm)= ramię (cm)=

3 Zadanie = 7 0 = A = 4 : 1 = 72: 3 = 51 : 3 = 56 : 4 = Zadanie 6 W trójkącie dwa kąty mają miarę 49 o i 27 o. jaką miarę ma trzeci kąt? trzeci kąt= Jeżeli trzy kąty wewnętrzne czworokąta mają miary: 173 o, 46 o,124 o, to czwarty kąt tego czworokąta ma miarę: Zadanie 7 80 : 20 = 72 :6 = czwarty kąt= : = 72 : 9 = 13 6 = 74 : 2 = ( ) = 9 9 = Zadanie 8 Blat stołu ma kształt prostokąta, którego obwód jest równy 38 dm. Jeden z jego boków ma 70 cm długości. Jaką jest długość drugiego boku stołu? Jaką długość miałby bok stołu o takim samym obwodzie w kształcie kwadratu? Jaką długość (nie szerokość)miałby bok stołu o takim samym obwodzie jeżeli jeden bok byłby o 300 mm dłuższy od drugiego? WYNIKI PODAJ W CENTYMETRACH!!! drugi bok(cm)= bok kwadratu(cm)= długość boku (cm)=

4 Zadanie 9 34 : 17 = 4 17 = 7 9 = = 36: 9 = 0 : 4 = A ( ) = + = Zadanie 10 Obwód kwadratu jest równy 23m, więc bok tego kwadratu jest równy: bok kwadratu (m)= A) m B) 51 4 m C) m D) 53 4 m Prostokąt ma boki długości 3 1 cm i 2 24 cm. Obwód tego 5 obwód (cm)= prostokąta jest równy: A) 6 3 cm 10 B) 123 cm 5 C) 12 7 cm 10 D) 133 cm 5 Zadanie :12 = = 6 4 3= = 12 8:2 = = = Zadanie 12 Działka w kształcie prostokąta ma wymiary 40 m i 70 m. Podaj szerokość działki narysowanej w skali 1:250. Jaki jest obwód tej działki w skali 1:1, a jaki w skali 1:250? szerokość (cm)= obwód (m) 1:1 obwód (cm) 1:250

5 GRUPA B 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać 27 punktów. Oceniane będą tylko wyniki wpisane w ramki obok zadań. Wyniki wpisz czytelnie.

6 Zadanie = 95 : 5 = 56 : 7 = 27 2 = 63 : 7 = 5 9 = B = : = Zadanie 2 Z dziewięciu jednakowych kwadratów o obwodzie 4 dm ułożono prostokąt. Jaki obwód ma ten prostokąt? Ob. prostokąta= A) 5 dm B) 12 dm C) 20 dm D) 48 dm Kwadrat o boku 4 cm ustawiono na prostokącie o wymiarach 8 cm x 9 cm. Jaki obwód ma ośmiokąt, który powstał z tych dwóch figur? Ob. figury= A) 42 cm B) 36 cm C) 12 cm D) nie da się obliczyć Zadanie = 72 : 18 = 4 9 = ( ) : = 3 17 = 99 : 3 = 2 36 = Zadanie 4 Jaką długość ma bok trójkąta równobocznego o obwodzie 69 dm? Obwód trójkąta równoramiennego jest równy 40 cm, jego ramię ma długość 16 cm. Jaką długość ma podstawa trójkąta? Obwód trójkąta równoramiennego jest równy 50 cm, jego podstawa ma długość 18 cm. Jaką długość ma ramię tego trójkąta? bok= podstawa= ramię=

7 Zadanie = 7 0 = B = 4 : 1 = 81: 3 = 51 : 3 = 56 : 4 = Zadanie 6 W trójkącie dwa kąty mają miarę 49 o i 28 o. jaką miarę ma trzeci kąt? trzeci kąt= Jeżeli trzy kąty wewnętrzne czworokąta mają miary: 172 o, 46 o,124 o, to czwarty kąt tego czworokąta ma miarę: Zadanie 7 80 : 20 = 72 :6 = czwarty kąt= : = 72 : 9 = 13 6 = 76 : 2 = ( ) = 9 9 = Zadanie 8 Blat stołu ma kształt prostokąta, którego obwód jest równy 42 dm. Jeden z jego boków ma 70 cm długości. Jaką jest długość drugiego boku stołu? Jaką długość miałby bok stołu o takim samym obwodzie w kształcie kwadratu? Jaką długość (nie szerokość) miałby bok stołu o takim samym obwodzie jeżeli jeden bok byłby o 300 mm dłuższy od drugiego? WYNIKI PODAJ W CENTYMETRACH!!! drugi bok(cm)= bok kwadratu(cm)= długość boku (cm)=

8 Zadanie 9 34 : 17 = 4 17 = 7 9 = = 27: 9 = 0 : 4 = B ( ) = + = Zadanie 10 Obwód kwadratu jest równy 21m, więc bok tego kwadratu jest równy: w terenie (m) B) m B) 51 4 m C) m D) 53 4 m Prostokąt ma boki długości 3 4 cm i 5 21 cm. Obwód tego 2 na mapie (cm) prostokąta jest równy: A) 6 3 cm 10 B) 133 cm 5 C) 12 7 cm 10 D) 123 cm 5 Zadanie :12 = = 6 4 4= = 12 8:2 = = = Zadanie 12 Działka w kształcie prostokąta ma wymiary 30 m i 70 m. Podaj szerokość działki narysowanej w skali 1:250. Jaki jest obwód tej działki w skali 1:1, a jaki w skali 1:250? szerokość (cm) obwód (m) 1:1 obwód (cm) 1:250

I POLA FIGUR zadania średnie i trudne

I POLA FIGUR zadania średnie i trudne I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka

Bardziej szczegółowo

I POLA FIGUR zadania łatwe i średnie

I POLA FIGUR zadania łatwe i średnie I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość

Bardziej szczegółowo

Klasa 6. Pola wielokątów

Klasa 6. Pola wielokątów Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A

Bardziej szczegółowo

Zadanie 1.1. Zadanie 1.2. Zadanie 1.3. Zadanie 1.4. Zadanie 1.5. Zadanie 1.6. Zadanie 1.7. Zadanie 1.8* Zadanie 1.9. Zadanie 1.10

Zadanie 1.1. Zadanie 1.2. Zadanie 1.3. Zadanie 1.4. Zadanie 1.5. Zadanie 1.6. Zadanie 1.7. Zadanie 1.8* Zadanie 1.9. Zadanie 1.10 Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole narysowanej obok figury wyrażone za pomocą trójkątów Pole narysowanej obok figury wyrażone za pomocą figur A. 10 B. 12 C. 7 D. 11 A. 4 B. 3 C. 2 D. 8 Zadanie

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i działania... 7 Systemy zapisywania liczb... 12 Działania pisemne... 17 Własności liczb naturalnych... 22 Proste, odcinki, kąty...

Bardziej szczegółowo

Kąty, trójkąty i czworokąty.

Kąty, trójkąty i czworokąty. Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

PROSTE, KĄTY, PROSTOKĄTY, KOŁA

PROSTE, KĄTY, PROSTOKĄTY, KOŁA GRUPA A 1. Narysuj prostą prostopadłą do prostej a, przechodzącą przez punkt B i prostą równoległą do prostej a, przechodzącą przez punkt A. a) Punkt D należy do prostej FG. b) Punkt D należy do półprostej

Bardziej szczegółowo

Życzymy powodzenia w rozwiązywaniu zadań!

Życzymy powodzenia w rozwiązywaniu zadań! Kod Ucznia Porąbka Uszewska, 21 maja 2014 r. Test Liczba punktów za zadanie otwarte Zad. 1-13 1 2 3 4 5 6 7 8 9 10 razem POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS V ETAP FINAŁOWY Celem obliczeń nie

Bardziej szczegółowo

1 Pole figury. P 1. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) cm i cm c) 15 cm i 5,2 dm

1 Pole figury. P 1. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) cm i cm c) 15 cm i 5,2 dm 68 Pola figur 6 Pola figur Pole figury P. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) 3 2 cm i 2 7 cm c) 5 cm i 5,2 dm P 2. Oblicz pole prostokąta o podanych bokach. a) 8 cm i 6 cm b) 4

Bardziej szczegółowo

Astr. 1/5. Klasa 5. Figury na płaszczyźnie. 8,5 cm. 7 cm. 4,5 cm. 3,5 cm 7 cm. 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm.

Astr. 1/5. Klasa 5. Figury na płaszczyźnie. 8,5 cm. 7 cm. 4,5 cm. 3,5 cm 7 cm. 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm. Klasa 5. Figury na płaszczyźnie Astr. 1/5... imię i nazwisko...... klasa data 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm. 2. Narysuj sześciokąt o dokładnie dwóch kątach ostrych. 3.

Bardziej szczegółowo

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu? Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm

Bardziej szczegółowo

1 Odległość od punktu, odległość od prostej

1 Odległość od punktu, odległość od prostej 24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE LAMBDA Zespół Szkół w Chełmży ul. Hallera 23, 87 140 Chełmża tel./fax. 675 24 19 Konkurs matematyczny dla uczniów klas III gimnazjum www.lamdba.neth.pl ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Skrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów

Skrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury

Bardziej szczegółowo

SUKCES W NAUCE MATEMATYKA. klasa IV

SUKCES W NAUCE MATEMATYKA. klasa IV SUKCES W NAUCE SPRAWDZIANY MATEMATYKA klasa IV FIGURY GEOMETRYCZNE: WIELOKĄTY, KOŁA I SKALA Zadanie 1. Która z narysowanych figur jest wielokątem? A. B. C. D. Zadanie 2. Wielokąt o 5 wierzchołkach ma:

Bardziej szczegółowo

x Kryteria oceniania

x Kryteria oceniania Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę

Bardziej szczegółowo

Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,

Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...

Bardziej szczegółowo

16 STYCZNIA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 2 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA..

16 STYCZNIA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 2 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA.. GRUPA A 16 STYCZNIA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 2 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA.. KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać

Bardziej szczegółowo

Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne.

Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne. Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 32 Przygotowanie do egzaminu Trójkąty prostokątne

Bardziej szczegółowo

Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 2012/2013. Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta 1 D) 966 1

Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 2012/2013. Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta 1 D) 966 1 Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 0/0 Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta Zadanie Rozwiązanie Kryteria oceniania D) 966 Max. liczba pkt. D) W XIV wieku B) 75

Bardziej szczegółowo

Karta pracy w grupach

Karta pracy w grupach Karta pracy w grupach WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. To jest siatka sześcianu. P

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte

Bardziej szczegółowo

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x

Bardziej szczegółowo

Klasówka gr. A str. 1/3

Klasówka gr. A str. 1/3 Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,

Bardziej szczegółowo

Powtórka przed klasówką nr 4 - pola wielokątów

Powtórka przed klasówką nr 4 - pola wielokątów Powtórka przed klasówką nr 4 - pola wielokątów MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Plakat informujący o zawodach miał kształt prostokąta o wymiarach 50 cm 60 cm. Oblicz pole prostokąta

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 Etap wojewódzki 18 lutego 2017 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 Etap szkolny 20 listopada 2017 r. Godzina 9.00 Imię/ Imiona ucznia - Nazwisko ucznia - klasa - Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 6. Ogród pani Gabrysi ma kształt

Bardziej szczegółowo

Pole trójkata, trapezu

Pole trójkata, trapezu Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI CZERWIEC 20 POZIOM PODSTAWOWY Czas pracy 00 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 6 stron (zadania 9). 2. Arkusz zawiera 3 zadań zamkniętych i

Bardziej szczegółowo

Kąty przyległe, wierzchołkowe i zewnętrzne

Kąty przyległe, wierzchołkowe i zewnętrzne Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa

Bardziej szczegółowo

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

PROBNY EGZAMIN GIMNAZJALNY

PROBNY EGZAMIN GIMNAZJALNY IMIE I NAZWISKO PROBNY EGZAMIN GIMNAZJALNY 25 PAŹDZIERNIKA 2012 CZAS PRACY: 90 MIN. ZADANIE 1 W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest

Bardziej szczegółowo

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa

Bardziej szczegółowo

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV

Bardziej szczegółowo

MATEMATYKA. karty pracy klasa 2 gimnazjum

MATEMATYKA. karty pracy klasa 2 gimnazjum MATEMATYKA karty pracy klasa 2 gimnazjum Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Numer zadania Test Karty pracy Zadania wyrównujące Zadania utrwalające Zadania rozwijające

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,

Bardziej szczegółowo

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile

Bardziej szczegółowo

VIII Warmińsko Mazurskie Zawody Matematyczne

VIII Warmińsko Mazurskie Zawody Matematyczne Zadanie 1. VIII Warmińsko Mazurskie Zawody Matematyczne Szkoła podstawowa 13 maja 2010r. W pewnej szkole, począwszy od 2010 roku, organizowane są: co dwa lata turniej koszykówki, co trzy lata turniej siatkówki,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 14.02.2018 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

2 Figury geometryczne

2 Figury geometryczne Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki lutego 01 r. 90 minut Informacje dla ucznia:

Bardziej szczegółowo

II. III. Scenariusz lekcji. I. Cele lekcji

II. III. Scenariusz lekcji. I. Cele lekcji Scenariusz lekcji I. Cele lekcji 1) Wiadomości i umiejętności sprawdzane w zadaniach testu: Uczeń: zna sumę miar kątów w trójkącie, rozpoznaje proste równoległe, rozpoznaje wielokąty, rozpoznaje figury

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 6.11.2018 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

9. PLANIMETRIA zadania

9. PLANIMETRIA zadania Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..

Bardziej szczegółowo

ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!!

ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!! ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!! LIGA ZADANIOWA KLASA IV Ania przeczytała 6 książek. W tym samym czasie Hania

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 18.11.2016 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 08/09.0.09 R.. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy V szkoły podstawowej. Opracowanie: mgr Władysława Paczesna

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy V szkoły podstawowej. Opracowanie: mgr Władysława Paczesna XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy V szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej Lidze

Bardziej szczegółowo

EGZAMIN Z MATEMATYKI

EGZAMIN Z MATEMATYKI Zespół Społecznych Szkół Ogólnokształcących Bednarska im. Maharadży Jam Saheba Digvijay Sinhji Społeczne Gimnazjum nr 20 NUMER Dysleksja A GRUPA EGZAMIN Z MATEMATYKI Witaj na egzaminie do naszego gimnazjum.

Bardziej szczegółowo

Skrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów

Skrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Figury płaskie Podstawowe figury geometryczne

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 .... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.

Bardziej szczegółowo

Zespół Placówek Oświatowych im. Jana Pawła II w Gościeradowie. autorki: Zuzanna Olech i Wiktoria Błachnio

Zespół Placówek Oświatowych im. Jana Pawła II w Gościeradowie. autorki: Zuzanna Olech i Wiktoria Błachnio Zespół Placówek Oświatowych im. Jana Pawła II w Gościeradowie autorki: Zuzanna Olech i Wiktoria Błachnio Popatrz na rysunek obok. Narysowana figura została podzielona na 17 jednakowych kwadratów. Mówimy,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Skrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.

Skrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych. Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

matematyka Nie tylko przed sprawdzianem szkoła podstawowa klasa 6 część 1 Karty pracy

matematyka Nie tylko przed sprawdzianem szkoła podstawowa klasa 6 część 1 Karty pracy matematyka Nie tylko przed sprawdzianem szkoła podstawowa klasa 6 część 1 Karty pracy Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2015 Copyright by Wydawnictwa Szkolne i Pedagogiczne

Bardziej szczegółowo

Podział czworokątów wynika z wymagań jakie im stawiamy. Jeśli nie mamy żadnych wymagań to nasz czworokąt może wyglądać dowolnie, np.

Podział czworokątów wynika z wymagań jakie im stawiamy. Jeśli nie mamy żadnych wymagań to nasz czworokąt może wyglądać dowolnie, np. Każdy z nas czworokąt widział: to figura geometryczna, która ma cztery boki, cztery kąty. Ponieważ jedną przekątną można dowolny czworokąt podzielić na dwa trójkąty to suma miar kątów wewnętrznych czworokąta

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 01/019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

matematyka Nie tylko przed sprawdzianem szkoła podstawowa klasa 6 część 1 Karty pracy

matematyka Nie tylko przed sprawdzianem szkoła podstawowa klasa 6 część 1 Karty pracy matematyka Nie tylko przed sprawdzianem szkoła podstawowa klasa 6 część 1 Karty pracy opyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2015 opyright by Wydawnictwa Szkolne i Pedagogiczne

Bardziej szczegółowo

Klasa 3.Graniastosłupy.

Klasa 3.Graniastosłupy. Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................

Bardziej szczegółowo

Odcinki, proste, kąty, okręgi i skala

Odcinki, proste, kąty, okręgi i skala Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta

Bardziej szczegółowo

3.1. Obliczanie obwodu koła.

3.1. Obliczanie obwodu koła. #3. Należy wykonać zestaw komponentów pozwalających na wyliczenia: obwodu, pola powierzchni dla figur geometrycznych: koło, kwadrat, prostokąt, trójkąt równoramiennego. 3.1. Obliczanie obwodu koła. Jako

Bardziej szczegółowo

P o w o d z e n i a!

P o w o d z e n i a! Powiatowy Konkurs Matematyczny Dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 17 zadań masz 75 minut.

Bardziej szczegółowo

Ćwiczenia otwierające Pola, ary i hektary

Ćwiczenia otwierające Pola, ary i hektary Ćwiczenia otwierające Pola, ary i hektary Exercise. The area of square (2 points) The quadrangle CD is a square and the point M is a middle of the side. n area of the shadowed figure is equal to 9cm².

Bardziej szczegółowo

PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE

PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE ZADANIE 1 Jeżeli wysokość trójkata równobocznego wynosi 2, to długość jego boku jest równa A) 6 B) 4 3 3 C) 2 3 D) 4 3 ZADANIE 2 Pole trójkata o bokach a = 4 cm

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Data urodzenia ucznia dzień miesiąc rok Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 10 stron. Ewentualny

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Praca klasowa nr 2 - figury geometryczne (klasa 6)

Praca klasowa nr 2 - figury geometryczne (klasa 6) Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka

Bardziej szczegółowo

II. Działania na liczbach naturalnych. Uczeń:

II. Działania na liczbach naturalnych. Uczeń: TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2011/2012

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2011/2012 Etap wojewódzki 25 lutego 2012 r. M Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 2. Sprawdź, czy zestaw

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz

Bardziej szczegółowo

Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA

Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Konkurs Matematyczny dla uczniów szkół podstawowych województwa zachodniopomorskiego w roku szkolnym 2014/2015 Etap wojewódzki SCHEMAT PUNKTOWANIA Rozwiązania zadań zostały ocenione w sposób holistyczny.

Bardziej szczegółowo

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych.

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. KONSPEKT DO LEKCJI MATEMATYKI W KL.V TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. CELE LEKCJI: kształcenie umiejętności stosowania zdobytych wiadomości w różnych sytuacjach rzeczywistych utrwalenie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 13.04.2018 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY V

WYMAGANIA EGZAMINACYJNE DLA KLASY V TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje

Bardziej szczegółowo

Karta pracy do doświadczeń

Karta pracy do doświadczeń Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I

KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I Odpowiedzi Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I Imię i nazwisko:..............................................

Bardziej szczegółowo