Ogniwa galwaniczne. Ogniwa galwaniczne (2) Ogniwa galwaniczne(3) Alessandro Giuseppe Antonio Anastasio Baron Volta. John Frederic Daniell
|
|
- Michalina Dominika Wróblewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ognwa galwanczne Ognwa galwanczne są to urządzena umożlwające bezpośredną przemanę energ chemcznej (wązań chemcznych) na energę (pracę) elektryczną. Jak wdać, w defncj powyższej ne ma potrzeby odwoływana sę w jakkolwek sposób do konstrukcj ognw, a równocześne ne stwarza ona podstaw do wątplwośc, czy jakeś urządzene jest ognwem galwancznym, czy ne. Chem. Fz. TCH II/15 1 Ognwa galwanczne (2) Alessandro Guseppe Antono Anastaso Baron Volta John Frederc Danell perwsze ognwo galwanczne Unwersytet w Paw, 18 ognwo Danella,, 1836 Kng s College, Londyn Chem. Fz. TCH II/15 2 Ognwa galwanczne(3) roztwór ZnSO 4 blaszka Zn roztwór CuSO 4 blaszka Cu Pt Zn(s) ZnSO 4 (aq) CuSO 4 (aq) Cu Pt Chem. Fz. TCH II/15 3 1
2 Ognwa galwanczne(4) Pt Zn(s) ZnSO 4 (aq) CuSO 4 (aq) Cu Pt konwencja sztokholmska dopuszcza sę: Zn(s) ZnSO 4 (aq) CuSO 4 (aq) Cu Sła elektromotoryczna (SEM) jest to napęce merzone pomędzy przewodnkem dołączonym do elektrody prawej a przewodnkem z tego samego materału dołączonego do elektrody lewej ognwa neobcążonego (tzn. w warunkach bezprądowych). Chem. Fz. TCH II/15 4 Termodynamka ognw galwancznych Ag(s) + ½I 2 (s) = Ag + (aq) + I (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H = H r + + tw, Ag ( aq) tw, I ( aq) Jest ona merzalna ma sens fzyczny. Ne można jednak przeprowadzć reakcj, w których produktem byłby pojedynczy jon w roztworze wodnym (zawsze mus być przecwjon). Zatem: Entalpe tworzena pojedynczych jonów ne są dostępne dośwadczalne. H Chem. Fz. TCH II/15 5 Termodynamka ognw galwancznych (2) Problem ten rozwązano zakładając z defncj, że: H + = ; G + = S + = tw, H ( aq) tw, H ( aq) H ( aq) Jak pamętamy, G reakcj określa nam maksymalną wartość pracy neobjętoścowej, jaką możemy uzyskać z reakcj. W przypadku ognw mamy do czynena z pracą elektryczną: = G Dla P =const,t=const G G r = = ν µ ξ P, T dg = µ dn = ν µ dξ w el, maks Gdze ξ jest lczbą postępu reakcj: dn dξ = ν Chem. Fz. TCH II/15 6 2
3 Termodynamka ognw galwancznych (3) Zatem, można zapsać: dg = G dξ w konsekwencj dw = G dξ r od anody do katody przepływa wtedy vdξ mol elektronów przenoszących ładunek ven Av dξ = vfdξ kulombów Praca elektryczna równa jest loczynow napęca przenesonego ładunku: dw el = νfedξ Po przyrównanu równań: dw el = νfedξ dwel = Grdξ Otrzymujemy: G r = νfe Chem. Fz. TCH II/15 7 el r Termodynamka ognw galwancznych (4) Prawdzwe jest też (w warunkach standardowych): G = νfe (zamast symbolu ν często można spotkać n lub z) Z termodynamk równowag chemcznych pamętamy, że: G = G r r + RT lnq gdze Q jest lorazem reakcj, a wzór ten pokazuje nam zależność G od składu meszanny reagującej, a właścwe jej odchylene od warunków standardowych, kedy to Q=1 a G= G Chem. Fz. TCH II/15 8 Wzór Nernsta G = G r r + RT lnq Dzeląc ostatne równane przez zf, otrzymujemy: E = E RT lnq zf Równane to znane jest jako wzór Nernsta stosuje sę w równym stopnu do ognw, jak półognw (dla reakcj połówkowych też można zapsać loraz reakcj Q). Chem. Fz. TCH II/15 9 3
4 Wzór Nernsta (2) Poneważ w 25 o C RT/F=25,7 [mv], można dla tej temperatury zapsać: E = E 25,7 lnq[mv] z Jeszcze częstszą postacą wzoru Nernsta jest: E = E 59,2 logq[mv] z Chem. Fz. TCH II/15 1 Klka wnosków Na podstawe rozważań na poprzednch stronach można wysnuć następujące wnosk: E og = E kat E an Przy oblczanu SEM trzeba brać potencjały obu reakcj połówkowych jako potencjały redukcj. Gdybyśmy bral potencjały rzeczywste (redukcj dla katody, utlenana dla anody wartośc tego drugego należałoby w stosunku do tablcowej nadać przecwny znak, to trzeba byłoby je sumować, co na jedno wychodz). Jeśl SEM jest dodatna, to reakcja elektrodowa (tak jak jest zapsana) jest samorzutna. Jeśl merzona SEM jest ujemna, to reakcja elektrodowa (tak jak jest zapsana) mus zostać wymuszona. Jeśl jednak zamknemy obwód zewnętrzny skończoną opornoścą, prąd popłyne choć w kerunku przecwnym do przewdywanego. Po prostu samorzutną jest reakcja w kerunku odwrotnym do zapsu. Chem. Fz. TCH II/15 11 Klka wnosków (2) c.d. Gdy reakcja w ognwe jest w równowadze ognwo jest wyczerpane. G=, E=. Gdy merzymy SEM, reakcja w ognwe ne jest w równowadze (choć ne begne), ale każda z reakcj połówkowych z osobna jest. Prowadzene reakcj chemcznej na sposób elektrochemczny (z rozdzelenem na proces katodowy anodowy) charakteryzuje sę szczególną cechą. Podczas gdy w reakcj prowadzonej konwencjonalne przez zmeszane składnków loraz reakcj cągle sę zmena, to w sposób neuchronny, choć zależny od jej knetyk, dopók ne osągne wartośc stałej równowag, to w reakcj prowadzonej w ognwe galwancznym można przerwać beg reakcj podtrzymać stałą wartość Q po prostu otwerając obwód zewnętrzny. Stąd dla trwałośc bater stotna jest jakość cekłego połączena, m dłużej unemożlw skuteczne zajśce reakcj w sposób konwencjonalny (zabezpeczy przed zmeszanem katoltu anoltu) tym dłuższy żywot (shelf lfe) bater. Chem. Fz. TCH II/
5 Rodzaje ognw półognw Wzór Nernsta jest podstawą ne tylko do oblczana SEM ognw potencjałów półognw, ale także do oblczana w oparcu o potencjał odpowednego półognwa wartośc Q, co przy pewnych dodatkowych założenach da sę sprowadzć do wylczena aktywnośc (stężena) jednego z jonów potencjałotwórczych. Jest to podstawa szerokej dzedzny elektroanalzy znanej jako: POTENCJOMETRIA Warto zapoznać sę z klasyfkacją półognw pod tym względem: Chem. Fz. TCH II/15 13 Półognwa I rodzaju Półognwa I rodzaju, są to półognwa, w których metal pozostaje w równowadze ze swom jonam w roztworze (odwracalne względem katonu). Półognwo standardowo traktujemy zawsze jako katodę, o le ne jest wyraźne zaznaczone, że ma być naczej. Cu 2+ (aq) + 2e = Cu (s) Cu (s) Cu 2+ (aq) Ag + (aq) + e = Ag (s) Ag (s) Ag + (aq) Do półognw I rodzaju zalczamy także elektrodę wodorową H + (aq) + e = ½H 2 (g) (konstrukcyjne jest to elektroda gazowa) E = E RT + zf z ln[me + Chem. Fz. TCH II/15 14 ] Elektroda Wodorowa Dla zapewnena wymany elektronów (przenesena ładunku) na powerzchn, mus ona być meć własnośc elektrokataltyczne. Dlatego też elektroda wodorowa wykonana jest z platyny pokrytej czerną platynową, zanurzonej w kwase omywanej gazowym wodorem H + (aq) + e = ½H 2 (g) Pt H 2 (g) H + (aq) W zwązku z tym, że reakcja powyższa jest odwrotnoścą reakcj tworzena jonu wodorowego oraz tym, co powedzano klka slajdów wcześnej na temat G o tw jonu wodorowego, potencjał standardowy elektrody wodorowej wynos w dowolnej temperaturze. Chem. Fz. TCH II/
6 Półognwa II rodzaju Półognwa II rodzaju, są to półognwa, w których metal elektrody pokryty jest trudno rozpuszczalną solą tego metalu anonów w roztworze, z którym pozostaje w równowadze (odwracalne względem anonu). AgCl(s) + e = Ag (s) + Cl (aq) Hg 2 Cl 2 (s) + 2e = 2Hg (l) + 2Cl (aq) E = E RT zf Ag(s) AgCl(s) Cl (aq) Hg(c) Hg 2 Cl 2 (s) Cl (aq) z ln[x Chem. Fz. TCH II/15 16 ] Półognwa II rodzaju (2) Reakcję w półognwe II rodzaju można przedstawć jako sumę dwóch reakcj: Ag + + e = Ag (s) E 1 = +,8 V AgCl(s) = Ag + (aq) + Cl (aq) K IR = 1, AgCl(s) + e = Ag (s) + Cl (aq) E 3 = +,22 V G3 = G1 + G2 = E1 F RT ln KIR = E3 F E1 F + RT ln KIR RT E3 = = E1 + ln KIR F F Chem. Fz. TCH II/15 17 Półognwa III rodzaju Półognwa III rodzaju, są to półognwa, w których metal elektrody pokryty jest dwema trudno rozpuszczalnym solam o wspólnym anone. Są one odwracalne względem katonu, ale ne tego metalu, z którego utworzona jest elektroda. PbC 2 O 4 + Ca 2+ (aq) + 2e = Pb (s) + CaC 2 O 4 (s) Pb(s) PbC 2 O 4 (s) CaC 2 O 4 (s) Ca 2+ (aq) Obecne mają mnejsze znaczene, ze względu na wynalezene elektrod jonoselektywnych Chem. Fz. TCH II/
7 Półognwa tlenkowe Półognwa tlenkowe zbudowane są z metalu pokrytego warstwą tlenku tego metalu. W równowagach potencjałotwórczych, jake ustalają sę na ch powerzchnach, borą udzał jony H + lub OH, w zwązku z czym używane mogą być ( były) do pomaru ph. HgO(s) + H 2 O(c) +2e = Hg(c) + 2OH (aq) Hg(c) HgO(s) OH (aq) Sb 2 O 3 (s) + 3H 2 O(c) + 6e = Sb(c) + 6OH (aq) Sb(s) Sb 2 O 3 (s) OH (aq) E = E RT ln[oh F Chem. Fz. TCH II/15 19 ] Elektroda szklana Elektroda szklana (Klemensewcz 197), jest współczesną podstawową elektrodą służącą do pomaru ph (elektroda wodorowa jest trudna w użycu nebezpeczna, elektrody tlenkowe mogą dzałać tylko w zakrese obojętnych alkalcznych ph. Jest to elektroda membranowa wykonana w postac (najczęścej) bańk szklanej, we wnętrzu której umeszczony jest 1M kwas solny, w którym zanurzona jest elektroda Ag AgCl. Szkło ma zdolność wymany jonowej protonów. Po obu stronach membrany ustala sę równowaga, przy czym wewnątrz zawsze jest taka sama, zaś na zewnątrz zależy od ph roztworu, w którym zanurzona jest elektroda. Merzymy różncę skoków potencjału po obu stronach membrany Chem. Fz. TCH II/15 2 Półognwa redoks Półognwa redoks są zbudowane z obojętnego przewodnka elektronowego (Pt, C) zanurzonego w roztworze zawerającym parę redoks Ce 4+ (aq) + e = Ce 3+ (aq) Pt Ce 4+ (aq),ce 3+ (aq) MnO 4 (aq) + 8H + (aq) + 5e = Mn 2+ (aq) + 4H 2 O(c) Pt MnO 4 (aq),mn 2+ (aq),h + (aq) Chem. Fz. TCH II/
8 Półognwa gazowe Półognwa gazowe zbudowane są z przewodnka elektronowego o właścwoścach adsorpcyjnych/elektrokataltycznych względem gazu, omywanego przez dany gaz zanurzonego w roztworze zawerającym jony równowagowe (poza elektrodą wodorową są to anony). ½O 2 (g) + 2H + (aq) + 2e = H 2 O(c) Pt O 2 (g) H + (aq) ½Cl 2 (g) + e = Cl (aq) C Cl 2 (g) Cl (aq) Chem. Fz. TCH II/15 22 Elektrody jonoselektywne Elektrody jonoselektywne (najczęścej membranowe, patrz elektroda szklana) są odwracalne względem welu katonów anonów. Wykorzystuje sę w nch wele zjawsk (typów równowag): rozpuszczalność trudnorozpuszczalnych sol wymana jonowa kompleksowane (kalksereny) Ich potencjał opsuje wzór Nkolskego: RT E = const + ln a + Kja nf j n / z j j Chem. Fz. TCH II/15 23 Ognwa stężenowe Do tej pory omawalśmy ognwa galwanczne chemczne, tzn. take, w których otrzymuje sę pracę elektryczną kosztem przebegającej w ognwe samorzutnej ( G<) reakcj chemcznej. Rozpatrzmy jednak ognwo: Cu (s) Cu 2+ (aq,c 1 ) Cu 2+ (aq,c 2 ) Cu (s) Jeżel c 1 <c 2 to na elektrodze prawej będze zachodzć redukcja, a na lewej utlenane. Choć na każdej z elektrod zachodz reakcja połówkowa, to w całym ognwe zachodz jedyne proces wyrównywana stężeń. RT c2 E og = ln 2F c 1 Chem. Fz. TCH II/
9 Ognwa odwracalne neodwracalne Całą termodynamkę ognw omawalśmy przy założenu odwracalnośc procesów w nch zachodzących, tzn. że: neskończene mały ładunek dq przepuszczony w kerunku odwrotnym do samorzutnego przebegu procesu, powoduje proces dokładne odwrotny Ne zawsze jest to prawdzwe, np. w stose Volty Zn NaCl(aq) Cu(s) Samorzutne Wymuszone Pr: H 2 O(c) + e = ½H 2 (g) + OH (aq) Cu(s) = Cu 2+ (aq) + 2e L: Zn(s) = Zn 2+ (aq) + 2e H 2 O(c) + e = ½H 2 (g) + OH (aq) Chem. Fz. TCH II/15 25 Ognwa bez cekłego połączena Czasam cekłe połączene (mostek solny) pomędzy katoltem anoltem jest zbędne, np. w ognwe Katoda: AgCl(s) + e = Ag (s) + Cl (aq) Anoda: Zn (s) = Zn 2+ (aq) + 2e Zn (s) ZnCl 2 (aq) AgCl(s) Ag (s) Łączne: Zn (s) + 2AgCl(s) = Ag (s) + Zn 2+ (aq) +2Cl (aq) Zauważmy, że właścwe dochodz tutaj do redukcj stałego AgCl stałym Zn (reakcja trudna do realzacj sposobem konwencjonalnym). Chem. Fz. TCH II/15 26 Potencjometra Jeżel jako elektrodę prawą podłączymy wybraną elektrodę w jej warunkach standardowych, a jako elektrodę lewą standardową elektrodę wodorową, to zgodne z konwencją zmerzymy E wybranej elektrody Chem. Fz. TCH II/
10 Szereg elektrochemczny E = E E = E = og pr lew pr E pr Dokonując podobnych pomarów dla różnych półognw, można je następne uszeregować wg potencjału redukcj względem wodoru, tworząc tzw. szereg elektrochemczny. Reakcje połówkowe (pary redoks) o najwyższym potencjale redukcj (najwyższej tendencj do samorzutnej redukcj) reprezentują najslnejsze utlenacze, zaś pary redoks o dużych ujemnych potencjałach redukcj najslnejsze reduktory (np. metale alkalczne). Perwotne szereg ten obejmował tylko elektrody I rodzaju znany był jako szereg napęcowy metal. Chem. Fz. TCH II/15 28 Elektrody odnesena NasEK Zamast stosować standardową elektrodę wodorową, można używać nnych elektrod o stałym, odtwarzalnym znanym potencjale względem SEW. Są to tzw. elektrody odnesena. Hg(c) Hg 2 Cl 2 (s) KCl(aq,nas) E=+,241 V Nas Ag AgCl Ag(s) AgCl(s) KCl(aq,nas) E=+,197 V,18V wzgl SEW? wzgl NasEK NasEK E Chem. Fz. TCH II/15 29 Potencjometra (2) Jeżel zestawmy ognwo złożone z elektrody odwracalnej względem wybranego jonu (czułej na dany jon) jako prawej wybranej elektrody odnesena jako lewej, to otrzymujemy tzw. ognwo pomarowe. W odpowednej wersj wzoru Nernsta wszystke aktywnośc oprócz aktywnośc wybranego jonu są ustalone, zatem merząc SEM możemy ustalć (aktywność/stężene) tego jonu. Najczęścej najperw wykonuje sę kalbrację ognwa pomarowego poprzez wyznaczene zależnośc E=f(log[X]), która pownna być lnowa, a potem w oparcu o tę krzywą kalbracyjną dokonuje sę pomarów w neznanych roztworach (T=const). Resztę pozostawam chem analtycznej. Chem. Fz. TCH II/15 3 1
11 Akumulatory R mv akumulator ołowowy E =2,14V Gaston Planté, 1859 Pb PbO 2 H SO ; 36% 2 4 Chem. Fz. TCH II/15 31 Akumulatory (2) rozladowane 4 Pb + H2SO PbSO4 + 2H ladowane rozladowane + - PbO2 + H2SO4 + 2H + 2e PbSO 4 + 2H2O ladowane rozladowane PbO2 + Pb + 2H2SO4 2PbSO4 + 2H2O ladowane + + 2e Chem. Fz. TCH II/15 32 Akumulatory (3) akumulator nklowo-kadmowy E =1,26V 2NOOH + Cd + 2H O Thomas Alva Edson rozladowane 2 2N(OH) 2 + Cd(OH) 2 ladowane akumulator ltowy (newodny) E < 4V nl + MO rozladowane 2 LnMO 2 ladowane Chem. Fz. TCH II/
12 Ognwa palwowe Wllam Robert Grove perwsze ognwo palwowe The London Insttuton, 1839 Chem. Fz. TCH II/15 34 Ognwa palwowe (2) Nemal każda reakcja może być przeprowadzona w ognwe!!! Np. Anoda( ): Anoda( ): CH 2HZn =Zn 2+ 2e 2 (g) 4H + + 4e 3 OH + H 2 O = CO 2 + 6H + + 6e Katoda(+): Katoda(+): 1½O O Cu 2+ 2e =Cu 2 (g) 4e +4H H + + 6e = 3H= 2 O2H 2 O Łączne: Łączne: CH Cu 2H e =Cu 3 OH 2 + (g) 1½O +O 2 (g) = CO = 2H H O 2 O Chem. Fz. TCH II/15 35 Ognwa palwowe (3) Model najprostszego ognwa palwowego (tlenowo-wodorowego) E = 1,23 V R mv mostek elektroltyczny H 2 O 2 p=1 P=PAtm p=1 P=PAtm Pt Pt H2SO4 H2SO4 Chem. Fz. TCH II/
13 Ognwa palwowe (4) Jak dzała wygląda ognwo palwowe? obwód elektryczny palwo katalzator anodowy membrana (elektrolt polmerowy) katalzator katodowy spalny Chem. Fz. TCH II/15 37 Chem. Fz. TCH II/15 38 Metanol Konwerter Trudne nowa kataltyczny DMFC nadzeja 2 Chem. Fz. TCH II/
Ogniwa galwaniczne. Chem. Fiz. TCH II/15 1
Ogniwa galwaniczne Ogniwa galwaniczne są to urządzenia umożliwiające bezpośrednią przemianę energii chemicznej (wiązań chemicznych) na energię (pracę) elektryczną. Jak widać, w definicji powyższej nie
Ogniwa galwaniczne. Chem. Fiz. TCH II/15 1
Ogniwa galwaniczne Ogniwa galwaniczne są to urządzenia umożliwiające bezpośrednią przemianę energii chemicznej (wiązań chemicznych) na energię (pracę) elektryczną. Jak widać, w definicji powyższej nie
Współczynniki aktywności w roztworach elektrolitów
Współczynnk aktywnośc w roztworach elektroltów Ag(s) + ½ 2 (s) = Ag + (aq) + (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H r Przypomnene! = H tw, Ag + + ( aq) Jest ona merzalna ma sens
Współczynniki aktywności w roztworach elektrolitów. W.a. w roztworach elektrolitów (2) W.a. w roztworach elektrolitów (3) 1 r. Przypomnienie!
Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ (s) Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H H H r Przypomnene! tw, Ag ( aq) tw, ( aq) Jest ona merzalna ma sens fzyczny.
Współczynniki aktywności w roztworach elektrolitów
Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ 2 (s) = Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H r Przypomnene! = H tw, Ag ( aq) Jest ona merzalna ma sens fzyczny.
1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia,
Potencjometria Potencjometria instrumentalna metoda analityczna, wykorzystująca zaleŝność pomiędzy potencjałem elektrody wzorcowej, a aktywnością jonów lub cząstek w badanym roztworze (elektrody wskaźnikowej).
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu.
ELEKTRODY i OGNIWA Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. Me z+ + z e Me Utl + z e Red RÓWNANIE NERNSTA Walther H. Nernst
K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au
WSTĘP DO ELEKTROCHEMII (opracowanie dr Katarzyna Makyła-Juzak Elektrochemia jest działem chemii fizycznej, który zajmuje się zarówno reakcjami chemicznymi stanowiącymi źródło prądu elektrycznego (ogniwa
wykład 6 elektorochemia
elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona
PODSTAWY KOROZJI ELEKTROCHEMICZNEJ
PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz
Fe +III. Fe +II. elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji)
Elektrochemia przedmiotem badań są m.in. procesy chemiczne towarzyszące przepływowi prądu elektrycznego przez elektrolit, którym są stopy i roztwory związków chemicznych zdolnych do dysocjacji elektrolitycznej
TŻ Wykład 9-10 I 2018
TŻ Wykład 9-10 I 2018 Witold Bekas SGGW Elementy elektrochemii Wiele metod analitycznych stosowanych w analityce żywnościowej wykorzystuje metody elektrochemiczne. Podział metod elektrochemicznych: Prąd
Elektrochemia - szereg elektrochemiczny metali. Zadania
Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości
OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA
1 OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA PRZEMIANY CHEMICZNE POWODUJĄCE PRZEPŁYW PRĄDU ELEKTRYCZNEGO. PRZEMIANY CHEMICZNE WYWOŁANE PRZEPŁYWEM PRĄDU. 2 ELEKTROCHEMIA ELEKTROCHEMIA dział
Schemat ogniwa:... Równanie reakcji:...
Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat
Podstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
Karta pracy III/1a Elektrochemia: ogniwa galwaniczne
Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu
ELEKTROCHEMIA. Podstawy
ELEKTROCHEMIA Podstawy 1 Reakcje przenoszenia Przenoszenie atomu HCl (g) + H 2 OCl - (aq) + H 3 O + (aq) Przenoszenie elektronu Cu (s) +2Ag + (aq) Cu 2+ (aq) +2Ag (s) utlenianie -2e - +2e - redukcja 3
Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia
--6. Reakcje redoks (reakcje utlenienia-redukcji) - stopień utlenienia - bilansowanie równań reakcji. Ogniwa (galwaniczne) - elektrody (półogniwa) lektrochemia - schemat (zapis) ogniwa - siła elektromotoryczna
Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.
Ćwiczenie nr 1: Reakcje redoks Autorki: Katarzyna Kazimierczuk, Anna Dołęga 1. WSTĘP Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami. Utlenianie jest to utrata elektronów,
Co to jest elektrochemia?
Co to jest elektrochea? Dzał che zajujący sę reakcja checzny, który towarzyszy przenesene ładunku elektrycznego. Autoatyczne towarzyszą teu take zjawska, jak: Przepływ prądu elektrycznego, Powstawane gradentu
Reakcje utleniania i redukcji. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego
Reakcje utleniania i redukcji Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Utlenianie i redukcja Utlenianiem nazywamy wszystkie procesy chemiczne, w których atomy lub jony tracą elektrony.
Elektrochemia. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Elektrochemia Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Elektrochemia Dział chemii fizycznej zajmujący się procesami jakie zachodzą w roztworze elektrolitu, związanymi: 1. z powstawaniem potencjału
Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella.
Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 9 listopada 2005r Temat lekcji: Ogniwa jako źródła prądu. Budowa ogniwa Daniella. Cel ogólny lekcji:
ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.
Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -
Elementy Elektrochemii
Elementy Elektrochemii IV.: Ogniwa galwaniczne przykłady Ogniwa Pierwotne - nieodwracalne - ogniwo Volty (A.G.A.A. Volta 1800r.) - ogniwo Daniela (John Daniell 1836 r.) - Ogniwo cynkowo-manganowe (Leclanche,
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część V Wydział Chemii UAM Poznań 2011 POJĘCIA PODSTAWOWE Reakcjami utleniania i redukcji (oksydacyjno-redukcyjnymi) nazywamy reakcje,
Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach
HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 6 Nadnapięcie wydzielania wodoru na metalach WPROWADZENIE ażdej elektrodzie, na której przebiega reakcja elektrochemiczna typu: x Ox + ze y Red (6.1)
ELEKTROCHEMIA. Wykład I
LKTROCHMIA Wykład I 1 Prof. dr hab. inż. Marta Radecka, B-6, III p. 306, tel (12) (617) 25-26 e-mail: radecka@agh.edu.pl Strona www: http://galaxy.uci.agh.edu.pl/~radecka/ http://www.agh.edu.pl/ Pracownicy
Wykład z Chemii Ogólnej i Nieorganicznej
Wykład z Chemii Ogólnej i Nieorganicznej Część VI ELEMENTY ELEKTOCHEMII Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem. Piotr
MA M + + A - K S, s M + + A - MA
ROZPUSZCZANIE OSADU MA M + + A - K S, s X + ; Y - M + ; A - H + L - (A - ; OH - ) jony obce jony wspólne protonowanie A - kompleksowanie M + STRĄCANIE OSADU M + + A - MA IS > K S czy się strąci? przy jakim
Elektrochemia. Jak pozyskać energię z reakcji redoksowych?
Elektrochemia Jak pozyskać energię z reakcji redoksowych? 1 Ogniwo galwaniczne to urządzenie, w którym wytwarzany jest prąd elektryczny strumień elektronów w przewodniku dzięki przebiegowi samorzutnej
(1) Przewodnictwo roztworów elektrolitów
(1) Przewodnictwo roztworów elektrolitów 1. Naczyńko konduktometryczne napełnione 0,1 mol. dm -3 roztworem KCl w temp. 298 K ma opór 420 Ω. Przewodnictwo właściwe 0,1 mol. dm -3 roztworu KCl w tej temp.
ELEKTROCHEMIA ZAKŁAD CHEMII MEDYCZNEJ POMORSKI UNIWERSYTET MEDYCZNY
ELEKTROCHEMIA ZAKŁAD CHEMII MEDYCZNEJ POMORSKI UNIWERSYTET MEDYCZNY Co to jest elektrochemia? Dział chemii fizycznej zajmujący się procesami jakie zachodzą w roztworze elektrolitu, związanymi: 1. z powstawaniem
10. OGNIWA GALWANICZNE
10. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod
Al 2 O 3 anodowe utlenianie folii Al. TiO 2 nanotubes deliver drugs HRSEM nanotechweb.org. a. kotarba Zakład Chemii Nieorganicznej
PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH Al 2 O 3 anodowe utlenianie folii Al TiO 2 nanotubes deliver drugs HRSEM nanotechweb.org a. kotarba Zakład Chemii Nieorganicznej reakcje syntezy reakcje analizy reakcje
10. OGNIWA GALWANICZNE
10. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA. 1. Potencjał elektrochemiczny metali. Każdy metal zanurzony w elektrolicie
Elektrochemia. potencjały elektrodowe. Wykład z Chemii Fizycznej str. 4.2 / 1. Elektrochemia potencjały elektrochemiczne
lektrochemia potencjały elektrodowe Wykład z Chemii Fizycznej str. 4. / 1 4..1. Ogniwa elektrochemiczne - wprowadzenie lektryczna warstwa podwójna przykład Wykład z Chemii Fizycznej str. 4. / 4..1. Ogniwa
Sem nr. 10. Elektrochemia układów równowagowych. Zastosowanie
Sem nr. 10. lektrochemia układów równowaowych. Zastosowanie Potencjometryczne wyznaczanie ph a utl + νe a red Substrat produkt a-aktywność formy utlenionej, b-aktywnośc ormy zredukowanej = o RT νf ln a
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych
Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.
Ćwiczenie nr 1: Reakcje redoks Autorki: Katarzyna Kazimierczuk, Anna Dołęga 1. WSTĘP Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami. Utlenianie jest to utrata elektronów,
ĆWICZENIE 16 Potencjały równowagowe elektrod siła elektromotoryczna ogniw.
ĆWICZENIE 16 Potencjały równowagowe elektrod siła elektromotoryczna ogniw. Wprowadzenie: Przewodnik elektronowy (np. metal, grafit) zanurzony w elektrolicie (np. wodne roztwory soli, kwasów, zasad; stopiona
Podstawy elektrochemii i korozji
Podstawy elektrochemii i korozji wykład dla III roku kierunków chemicznych Wykład I Zakład lektroanalizy i lektrochemii Uniwersytet Łódzki Dr Paweł Krzyczmonik luty 216 1 Plan dzisiejszego wykładu 1. Wstęp
Przetwarzanie energii: kondensatory
Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE
SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA. 1. Potencjał elektrochemiczny metali. Każdy metal zanurzony w elektrolicie
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Reakcje utleniania i redukcji
Reakcje utleniania i redukcji Stopień utlenienia Stopniem utlenienia pierwiastka, wchodzącego w skład określonej substancji, nazywamy liczbę dodatnich lub ujemnych ładunków elementarnych, jakie przypisalibyśmy
Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII
Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII O G N I W A Zadanie 867 (2 pkt.) Wskaż procesy, jakie zachodzą podczas pracy ogniwa niklowo-srebrowego. Katoda Anoda Zadanie 868* (4 pkt.) W wodnym roztworze
PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH
PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH anodowe utlenianie folii tytanowej a. kotarba Zakład Chemii Nieorganicznej Nanoporous TiO 2 M. Golda-Cepa et al. Mat. Sci. Eng. C (2016) reakcje syntezy reakcje analizy
Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.
Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia
BIOTECHNOLOGIA. Materiały do ćwiczeń rachunkowych z chemii fizycznej kinetyka chemiczna, 2014/15
Zadanie 1. BIOTECHNOLOGIA Materiały do ćwiczeń rachunkowych z chemii fizycznej kinetyka chemiczna, 014/15 W temperaturze 18 o C oporność naczyńka do pomiaru przewodności napełnionego 0,0 M wodnym roztworem
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt
Materiały elektrodowe
Materiały elektrodowe Potencjał (względem drugiej elektrody): różnica potencjałów pomiędzy elektrodami określa napięcie możliwe do uzyskania w ogniwie. Wpływa na ilość energii zgromadzonej w ogniwie. Pojemność
NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające
Ćwiczenie nr 37 NAPIĘCIE ROZKŁADOWE I. Cel ćwiczenia Celem ćwiczenia jest: przebadanie wpływu przemian chemicznych zachodzących na elektrodach w czasie elektrolizy na przebieg tego procesu dla układu:
Podstawy elektrochemii i korozji
Podstawy elektrochem korozj wykład dla III roku kerunków chemcznych Wykład V Dr Paweł Krzyczmonk Pracowna Elektrochem Korozj Unwersytet Łódzk marzec 015 1 Podstawy korozj Krzywa polaryzacyjna Dagram Pourbx
( liczba oddanych elektronów)
Reakcje utleniania i redukcji (redoks) (Miareczkowanie manganometryczne) Spis treści 1 Wstęp 1.1 Definicje reakcji redoks 1.2 Przykłady reakcji redoks 1.2.1 Reakcje utleniania 1.2.2 Reakcje redukcji 1.3
Katedra Inżynierii Materiałowej
Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej
Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej opracowanie: dr Jadwiga Zawada Cel ćwiczenia: poznanie podstaw teoretycznych i praktycznych metody
Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. ( 3 pkt ) Zadanie 2. (4 pkt) Zadanie 3. (2 pkt) Zadanie 4. (2 pkt) Zadanie 5.
Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. (3 pkt) Uzupełnij podane równanie reakcji: dobierz odpowiednie środowisko oraz dobierz współczynniki, stosując metodę bilansu elektronowego. ClO 3
IV A. Reakcje utleniania i redukcji. Metale i niemetale
IV A. Reakcje utleniania i redukcji. Metale i niemetale IV-A Elektrochemia IV-A.1. Porównanie aktywności chemicznej metali IV-A.2. Ogniwo jako źródło prądu elektrycznego a) ogniwo Daniella b) ogniwo z
IV. Reakcje utleniania i redukcji. Metale i niemetale
IV-A Elektrochemia IV. Reakcje utleniania i redukcji. Metale i niemetale IV-A.1. Porównanie aktywności chemicznej metali IV-A.2. Ogniwo jako źródło prądu elektrycznego a) ogniwo Daniella b) ogniwo z produktów
Metody Badań Składu Chemicznego
Metody Badań Składu Chemicznego Wydział Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa (NIESTACJONARNE) Ćwiczenie 5: Pomiary SEM ogniwa - miareczkowanie potencjometryczne. Pomiary
Stechiometria w roztworach. Woda jako rozpuszczalnik
Stechiometria w roztworach Woda jako rozpuszczalnik Właściwości wody - budowa cząsteczki kątowa - wiązania O-H O H kowalencyjne - cząsteczka polarna δ + H 2δ O 105 H δ + Rozpuszczanie + oddziaływanie polarnych
Elektrochemia - prawa elektrolizy Faraday a. Zadania
Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q
WPROWADZENIE DO ANALIZY INSTRUMENTALNEJ POTENCJOMETRIA
WPROWADZENIE DO ANALIZY INSTRUMENTALNEJ POTENCJOMETRIA Metody potencjometryczne wykorzystują zależność między stężeniem (a ściślej aktywnością) oznaczanego jonu w roztworze i potencjałem elektrycznym odpowiedniej
I 2 + H 2 S 2 HI + S Wielkością charakteryzującą właściwości redoksowe jest potencjał redoksowy E dany wzorem Nernsta. red
7. REAKCJE UTLENIANIA I REDUKCJI Reakcje redoksowe są to takie reakcje chemiczne, podczas których następuje zmiana stopni utlenienia atomów lub jonów w wyniku wymiany elektronów. Wymiana elektronów zachodzi
Elektrochemia. (opracowanie: Barbara Krajewska)
Elektrochemia (opracowanie: Barbara Krajewska) 1. Wprowadzenie Elektrochemia to dział chemii zajmujący się przemianami chemicznymi zachodzącymi z udziałem prądu elektrycznego. Badane tu przemiany to zasadniczo:
Przetwarzanie energii: kondensatory
Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia
Akademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1.
2.1.1. Budowa ogniwa galwanicznego Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1. Rysunek 1. Budowa ogniwa galwanicznego na przykładzie
Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji
Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych
Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)
Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach
Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie.
Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki. Elektrolizery. Rafinacja. Elektroosadzanie. Szereg elektrochemiczny (standardowe potencjały półogniw
Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem
Hospitacja diagnozująca Źródła informacji chemicznej Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem Opracowała: mgr Lilla Zmuda Matyja Arkusz Hospitacji Diagnozującej nr
Stechiometria w roztworach
Stechiometria w roztworach Woda jako rozpuszczalnik Właściwości wody - budowa cząsteczki kątowa. k - wiązania O-H O H kowalencyjne. - cząsteczka polarna. δ H 2δ O 105 H δ Rozpuszczanie rozpuszczalnik (solvent)
n liczba moli elektronów E siła elektromotoryczna ogniwa F = en A stała Faradaya C/mol
Zmiana entalpii swobodnej G podczas reakcji w której zachodzi przepływ elektronów jest pracą nieobjętościową i może być wyrażona jako iloczyn napięcie i ładunku. na przykład procesy oksydo-redukcyjne zachodzące
Ogniwa elektrochemiczne wprowadzenie Klasyfikacja półogniw Termodynamika ogniwa galwanicznego; równanie Nernsta
lektrochemia ogniwa galwaniczne 5..1. Ogniwa elektrochemiczne wprowadzenie 5... Klasyfikacja półogniw 5..3. Termodynamika ogniwa galwanicznego; równanie Nernsta 5..4. Pomiar SM ogniw galwanicznych; zastosowania
POWTÓRKA Z ELEKTROCHEMII
POWTÓRKA Z ELEKTROCHEMII Podstawowe pojęcia Zanim sprawdzisz swoje umiejętności i wiadomości z elektrochemii, przypomnij sobie podstawowe pojęcia: Stopień utlenienia pierwiastka to liczba elektronów, jaką
Fizykochemiczne podstawy elektrochemicznych metod analizy
Fizykochemiczne podstawy elektrochemicznych metod analizy Robert Piech Elektroanalityczne metody analizy stanowią liczną grupę metod instrumentalnych, przydatnych szczególnie w analizie próbek ciekłych
Elektrochemia. 2 Mg (s) + O 2 (g) 2MgO (s)
Elektrochemia Takie nie mające na pozór nic wspólnego procesy jak spalanie, oddychanie, fotosynteza czy korozja, są w istocie blisko ze sobą powiązane. W każdym z nich można wyróżnić etap, w którym następuje
WYBRANE TECHNIKI ELEKTROANALITYCZNE
WYBRANE TECHNIKI ELEKTROANALITYCZNE seminarium dr inż. Piotr Konieczka, mgr inż. Agnieszka Kuczyńska Katedra Chemii Analitycznej, Wydział Chemiczny, Politechnika Gdańska Techniki elektroanalityczne: 1.pomiar
Me a X b a Me b+ + b X a- + SO 4. =. W danej
Ćwiczenie 5 Wyznaczanie iloczynu rozpuszczalności trudno rozpuszczalnych soli srebra metodą potencjometryczną przy użyciu elektrody jonoselektywnej. Ogniwa galwaniczne. Iloczyn rozpuszczalności. Każda
Chemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
ĆWICZENIE 10. Szereg napięciowy metali
ĆWICZENIE 10 Szereg napięciowy metali Szereg napięciowy metali (szereg elektrochemiczny, szereg aktywności metali) obrazuje tendencję metali do oddawania elektronów (ich zdolności redukujących) i tworzenia
λ = Ćwiczenie 5K Wyznaczanie liczb przenoszenia oraz ruchliwości jonów w polu elektrycznym.
1 Ćwiczenie 5K Wyznaczanie liczb przenoszenia oraz ruchliwości jonów w polu elektrycznym. 1. Przewodnictwo elektryczne roztworów Elektrochemia zajmuje się relacjami między zjawiskami chemicznymi, a przepływem
Nazwy pierwiastków: ...
Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20
Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej
Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na
Wyznaczanie stałej i stopnia dysocjacji kwasu octowego i chlorooctowego
Wyznaczanie stałej i stopnia dysocjacji kwasu octowego i chlorooctowego (opracowanie: Barbara Krajewska) Celem ćwiczenia jest: 1) wyznaczenie stałych dysocjacji K a dwóch słabych kwasów: octowego CH 3
VI Podkarpacki Konkurs Chemiczny 2013/2014
VI Podkarpacki Konkurs Chemiczny 01/01 ETAP I 1.11.01 r. Godz. 10.00-1.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Znając liczbę masową pierwiastka można określić liczbę:
Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony
Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Jony dodatnie - kationy: atomy pozbawione elektronów walencyjnych, np. Li +, Na +, Ag +, Ca 2+,
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
ELEKTROCHEMIA CIAŁA STAŁEGO
ELEKTROCHEMIA CIAŁA STAŁEGO Wykład Ogniwa galwaniczne 1 2015-04-25 HISTORIA Prawdopodobnie pierwsze ogniwa galwaniczne były znane już w III w p.n.e. Pierwszym odkrytym ogniwem było znalezisko z 1936 r.
Jak pozyskać energię z reakcji redoksowych? Ogniwa galwaniczne
Elektrchemia Jak pzyskać energię z reakcji redkswych? 1 Ogniw galwaniczne t urządzenie, w którym wytwarzany jest prąd elektryczny strumień elektrnów w przewdniku dzięki przebiegwi samrzutnej reakcji chemicznej.
Podział metod elektrochemicznych
Podział metod elektrochemicznych 1. potencjometryczne mierzymy potencjał elektrody, który jest funkcją aktywności analitu(ów) w roztworze 1. potencjometria bezpośrednia 2. miareczkowanie potencjometryczne
Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1
Elektrochemia elektroliza Wykład z Chemii Fizycznej str. 4.3 / 1 ELEKTROLIZA POLARYZACJA ELEKTROD Charakterystyka prądowo-napięciowa elektrolizy i sposób określenia napięcia rozkładu Wykład z Chemii Fizycznej