DRZEWA REGRESYJNE I LASY LOSOWE JAKO
|
|
- Kamil Woźniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska VI spotkanie Polskiej Grupy Badawczej Systemów Uczących się Częstochowa, r.
2 PROBLEM PREDYKCJI SZEREGU CZASOWEGO Predykcja szeregu czasowego z wieloma cyklami wahań sezonowych w horyzoncie τ na podstawie przebiegu historycznego. 2 P, GW Rok P, GW zima wiosna lato jesień 2 pn 24 wt 48 śr 72 cz 96 pt 2 sb 44 nd 68 Godzina Obciążenie system elektroenergetycznego z cyklami rocznymi, tygodniowymi i dobowymi 2
3 IDEA 3
4 IDEA 4
5 5 Definicja obrazów cykli dobowych Obrazy wejściowe i = [ i, i,2 i,n ] odwzorowują wyrazy poprzedzające moment prognozy obciążenia doby i: P i = [P i, P i,2 P i,n ] = = = n j i j i i t i t i t i P P P P P g 2,,,, Obrazy i są unormowanymi wersjami wektorów P i Ich długość jest jednostkowa, średnia zerowa, a wariancja jednakowa REPREZENTACJA SZEREGÓW CZASOWYCH
6 REPREZENTACJA SZEREGÓW CZASOWYCH Obrazy wyjściowe y i = [y i, y i,2 y i,n ] odwzorowują wyrazy w okresie prognozowanym w kolejnych chwilach doby prognozy i+τ: P i+τ = [P i+τ, P i+τ,2 P i+τ,n ] y i, t = h P i+ τ, t = n P j= i+ τ, t P i, j P i P i 2 Inne definicje obrazów: Dudek G.: Systemy uczące się oparte na podobieństwie obrazów do prognozowania szeregów czasowych obciążeń elektroeneregtycznych. EXIT, Warszawa 22 Dudek G.: Pattern Similarity-based Methods for Short-term Load Forecasting Part : Principles. Applied Soft Computing, vol. 37, pp , 25 6
7 REPREZENTACJA SZEREGÓW CZASOWYCH Cel Odfiltrowanie trendu i cykli dłuższych niż podstawowy dobowy, sprowadzenie szeregu do stacjonarności 4 2 Zima P.5 Lato Godziny Obrazy Obrazy y.5 y
8 IDEA MODELI PROGNOSTYCZNYCH OPARTYCH NA REPREZENTACJA PODOBIEŃSTWIE SZEREGÓW CZASOWYCH OBRAZÓW MODEL Model prognostyczny f : X Y Wyjściem modelu jest prognoza obrazu y lub jego składowej Prognoza wyrazów szeregu czasowego P + P n 2 i+ τ, t = h Pi + τ, t = yi, t Pi, j Pi j= i 8
9 DRZEWO REGRESYJNE CART Cechy Reprezentacja drzewiasta lub zbiór reguł decyzyjnych jeśli to Działanie na zmiennych ilościowych i jakościowych Podział przestrzeni cech na hiper-prostopadłościany Lokalna aproksymacja funkcji stałą wewnątrz hiperprostopadłościanu aproksymacja dyskretna Zależnie od funkcji docelowej drzewo decyzyjne może pełnić rolę klasyfikatora lub modelu regresyjnego 9
10 DRZEWO REGRESYJNE CART T <2. N T N T N <. <3.5 y=3. y=2.6 y=3.2 T <4 N y=4. y=4.2 y
11 DRZEWO REGRESYJNE Z ROZMYTYMI WĘZŁAMI Sposób konstrukcji drzewa regresyjnego z rozmytymi węzłami jest taki sam jak drzewa w wariancie podstawowym Testy przeprowadzanie w węzłach pośrednich zmieniają postać:, jeśli i > θi T = T =,, jeśli i θi Lewa gałąź Prawa gałąź -2 - θ 2,5, jeśli i θi a,5 =, jeśli i θi + a, 5,5 a i θ +,5, jeśli θi > i > θi + a a Lewa gałąź Prawa gałąź -2 - θ 2 = + ep a i θ i = Dudek G.: Prognozowanie krótkoterminowe obciążeń systemów elektroenergetycznych z wykorzystaniem rozmytych drzew regresyjnych. Przegląd Elektrotechniczny, r. 9, nr 4, s. 8-, 24.
12 2,75,2,7,9,2,7,26,2,83,2,8, = = = y y y y y DRZEWO REGRESYJNE Z ROZMYTYMI WĘZŁAMI
13 LAS LOSOWY. Powtarzaj dla każdego drzewa dla k = do K.. Wylosuj ze zbioru uczącego próbę bootstrapową o rozmiarze N.2. Zbuduj drzewo T k na próbie bootstrapowej, powtarzając dla każdego węzła, jeśli jego rozmiar jest większy od m.2.. Wylosuj F n składowych obrazu.2.2. Znajdź składową i i wartość progową θ i przegląd zupełny.2.3. Rozdziel węzeł na dwa węzły potomne 2. Zwróć drzewa {T k } k=, 2,, K Wyznaczenie prognozy dla obrazu : f = K K T k k= Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer 29 3
14 BADANIA SYMULACYJNE Dane Szereg czasowy obciążeń krajowego systemu elektroenergetycznego w okresie Problem prognostyczny Prognoza obciążeń godzinowych w kolejnych dniach stycznia i lipca 24, τ = Zbiór uczący Zbiór uczący zawierał przykłady reprezentujące te same typy dni tygodnia, co przykład testowy Błąd prognozy MAPE = M M j= P P j P j j 4
15 BADANIA SYMULACYJNE Drzewo regresyjne CART Parametr - m przegląd zupełny, local leave-one-out.6636 <.2544 >= < < >= >= < >= < < < < < < >= < >= < >= >= >= >= >= >= Drzewo regresyjne utworzone w zadaniu prognozy obciążenia dn r. o godz. 2, m = 8 N u m e r p ró b k i t e s t o w e j Godzina Optymalne wartości m 5
16 BADANIA SYMULACYJNE Drzewo regresyjne z rozmytymi węzłami Fuzzy CART Parametr - kąt nachylenia funkcji przynależności α przegląd zupełny, local leave-one-out Wariant drzewa Parametry MAPE wal MAPE tst CART m = var,27,42 Fuzzy CART m = m CART, α = var,2,33 Fuzzy CART m = 3, α = var,22,36 Fuzzy CART m =, α = var,22,33 Fuzzy CART m = m CART, α = var,3,3 Fuzzy CART m = 3, α = var,23,42 Częstość α Histogram optymalnych kątów nachylenia funkcji przynależności Fuzzy CART m =, α = var,23,35 Fuzzy CART m = m CART, α,, α m = var,74,37 6
17 BADANIA SYMULACYJNE Las losowy Parametry - liczba drzew K, liczba składowych F, m przegląd zupełny, out-of-bag MSE F = 8 m = MSE K = m = Frequency MSE K F m 3 Dudek G.: Short-Term Load Forecasting using Random Forests. In: Filev D. et al. eds.: Intelligent Systems 24, Advances in Intelligent Systems and Computing 323, pp , 25. 7
18 BADANIA SYMULACYJNE Las losowy Ważność składowych Importance Forecast for: January 5, hour July, hour.5 Importance Forecast for: January 5, hour 2 July, hour Importance Forecast for: January 5, hour 24 July, hour 24 2 Variable Variable Variable 8
19 BADANIA SYMULACYJNE Wyniki Model Styczeń Lipiec Średni MAPE tst IQR MAPE tst IQR MAPE tst IQR Las losowy CART Fuzzy CART ARIMA Wygładzanie wykładnicze Sieć neuronowa Prognoza naiwna
20 BADANIA SYMULACYJNE Rozkład błędów Number of observations 2 RF 2 CART 2 Fuzzy CART -5 5 PE ARIMA 2 ES 2 ANN
21 WNIOSKI Reprezentacja szeregów czasowych za pomocą obrazów cykli sezonowych ułatwia prognozowanie szeregów niestacjonarnych z trendem i wieloma cyklami wahań sezonowych Model prognostyczne oparte na drzewach regresyjnych wyróżnia prosta i zrozumiała budowa oraz niewielka liczba parametrów Rozmyta wersja drzew regresyjnych pozwala sterować równowagą między obciążeniem i wariancją modelu Lasy losowe jako komitet słabych uczniów pozwalają zredukować błąd prognozy i uzyskać stabilniejsze rezultaty 2
22 Dziękuję za uwagę 22
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Prognozowanie krótkoterminowe w procesie planowania zasobów
Analiza danych Data mining Sterowanie jakością Analityka przez Internet Prognozowanie krótkoterminowe w procesie planowania zasobów Marzena Imiłkowski,, GE Money Bank Andrzej Sokołowski, StatSoft Polska
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W
KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO
Problemy Inżynierii Rolniczej nr 3/2007 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie KRÓTKOTERMINOWE PROGNOZOWANIE
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING
PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Jednym z ważnych obszarów analizy danych jest prognozowanie szeregów czasowych. Któż nie chciałby znać przyszłości
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH
Inżynieria Rolnicza 9(107)/2008 WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki, Uniwersytet
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
XGBOOST JAKO NARZĘDZIE PROGNOZOWANIA SZEREGÓW CZASOWYCH
XGBOOST JAKO NARZĘDZIE PROGNOZOWANIA SZEREGÓW CZASOWYCH Filip Wójcik Objectivity Digital Transformation Specialists Doktorant na Uniwersytecie Ekonomicznym we Wrocławiu filip.wojcik@outlook.com Agenda
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza 5(114)/2009 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ I. ALGORYTMY WYZNACZANIA MODELI ROZMYTYCH Jerzy
PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM
"DIALOG 0047/2016" PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM WYDZIAŁ ELEKT RYCZ N Y Prof. dr hab. inż. Tomasz Popławski Moc zamówiona 600 Rynek bilansujący Moc faktycznie pobrana Energia zakupiona
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Metody konstrukcji oraz symulacyjne badanie właściwości jednorodnych i niejednorodnych komitetów klasyfikatorów
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Zuzanna Branicka Nr albumu: 214711 Metody konstrukcji oraz symulacyjne badanie właściwości jednorodnych i niejednorodnych komitetów klasyfikatorów
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
PROGNOZOWANIE W ZARZĄDZANIU
Politechnika Białostocka Wydział Zarządzania Katedra Informatyki Gospodarczej i Logistyki Redaktor naukowy joanicjusz Nazarko PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM Cz. III Prognozowanie na podstawie
Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych
Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych prof. zw. dr hab. inż. Stanisław Osowski dr inż. Krzysztof Siwek Politechnika Warszawska Kontynuacja prac Prace prowadzone w roku
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej
µ(x) x µ(x) µ(x) x x µ(x) µ(x) x x µ(x) x µ(x) x Rozmyte drzewa decyzyjne Łukasz Ryniewicz Metody inteligencji obliczeniowej 21.05.2007 AGENDA 1 Drzewa decyzyjne kontra rozmyte drzewa decyzyjne, problemy
WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH
Inżynieria Rolnicza 1(110)/2009 WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Małgorzata Trojanowska Katedra Energetyki
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Analiza obciążenia stacji elektroenergetycznych WN/SN z różną strukturą odbiorców
Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Wydział Telekomunikacji, Informatyki i Elektrotechniki Zakład Elektroenergetyki Analiza obciążenia stacji elektroenergetycznych WN/SN z różną strukturą
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
ANALIZA MODELU KRÓTKOTERMINOWEGO PROGNOZOWANIA OBCIĄŻEŃ SYSTEMÓW ELEKTROENERGETYCZNYCH OPARTEGO NA KLASTERYZACJI ROZMYTEJ**
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 007 Grzegorz DUDEK* ANALIZA MODELU KRÓTKOTERMINOWEGO PROGNOZOWANIA OBCIĄŻEŃ SYSTEMÓW ELEKTROENERGETYCZNYCH OPARTEGO NA KLASTERYZACJI ROZMYTEJ** Zaprezentowano
TWORZENIE I STOSOWANIE MODELU PROGNOSTYCZNEGO Z WYKORZYSTANIEM STATISTICA ENTERPRISE
TWORZENIE I STOSOWANIE MODELU PROGNOSTYCZNEGO Z WYKORZYSTANIEM STATISTICA ENTERPRISE Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Badanie przebiegu rozmaitych wielkości w czasie w celu znalezienia
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA
Centrum Informatyczne TASK Politechnika Gdańska Instytut Oceanologii Polskiej Akademii Nauk (IO PAN) INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Gdańsk Sopot,
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Spis treści. Przedmowa
Spis treści Przedmowa 1.1. Magazyn i magazynowanie 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości 1.1.2. Funkcje i zadania magazynów 1.1.3. Rodzaje magazynów 1.1.4. Rodzaje zapasów 1.1.5. Warunki
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Zastosowanie rozmytych map kognitywnych do badania scenariuszy rozwoju jednostek naukowo-dydaktycznych
Konferencja Systemy Czasu Rzeczywistego 2012 Kraków, 10-12 września 2012 Zastosowanie rozmytych map kognitywnych do badania scenariuszy rozwoju jednostek naukowo-dydaktycznych Piotr Szwed AGH University
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH
Joanna Trzęsiok Uniwersytet Ekonomiczny w Katowicach WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH Wprowadzenie Nieparametryczne metody regresji można
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
WYKORZYSTANIE MODELU ARIMA DO ANALIZY SZEREGU CZASOWEGO
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 292, Elektrotechnika 34 RUTJEE, z. 34 (3/2015), lipiec-wrzesień 2015, s. 23-30 Wiesława MALSKA 1 Henryk WACHTA 2 WYKORZYSTANIE MODELU ARIMA DO ANALIZY SZEREGU
Po co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Organizacja i monitorowanie procesów magazynowych / Stanisław
Organizacja i monitorowanie procesów magazynowych / Stanisław KrzyŜaniak [et al.]. Poznań, 2013 Spis treści Przedmowa 11 1.1. Magazyn i magazynowanie 13 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości
Statystyka Małych Obszarów w badaniach próbkowych
Statystyka Małych Obszarów w badaniach próbkowych Łukasz Wawrowski l.wawrowski@stat.gov.pl Urząd Statystyczny w Poznaniu SKN Estymator, UEP 5.03.2012 1 Wprowadzenie Podstawowe pojęcia Badanie 2 Estymator
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Prognozowanie liczby pacjentów poradni ortopedycznej
Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 876 Kraków 2011 Studia Doktoranckie Wydziału Zarządzania Prognozowanie liczby pacjentów poradni ortopedycznej 1. Wprowadzenie W
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
ZASTOSOWANIE TECHNIK DATA MINING W BADANIACH NAUKOWYCH
ZASTOSOWANIE TECHNIK DATA MINING W BADANIACH NAUKOWYCH Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Zakres zastosowań analizy danych w różnych dziedzinach badań naukowych stale się poszerza. Wynika to
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY
Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
DATA MINING W PROGNOZOWANIU ZAPOTRZEBOWANIA
DATA MINING W PROGNOZOWANIU ZAPOTRZEBOWANIA NA NOŚNIKI ENERGII Andrzej Sokołowski, Agnieszka Pasztyła StatSoft Polska Sp. z o. o.; Akademia Ekonomiczna w Krakowie, Katedra Statystyki Wprowadzenie Metody
OD POJEDYNCZYCH DRZEW DO LOSOWEGO LASU
OD POJEDYNCZYCH DRZEW DO LOSOWEGO LASU Tomasz Demski, StatSoft Polska Sp. z o.o. Zgłębianie danych (data mining) Obecnie coraz częściej dysponujemy dużą liczbą danych opisujących interesujące nas zjawisko
Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie
Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.
PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN
PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN Tomasz Demski, StatSoft Polska Sp. z o.o. Przewidywanie właściwości produktu na podstawie składu surowcowego oraz parametrów przebiegu
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna