Drzewka gry. Teoria gier a biznes.
|
|
- Łukasz Skrzypczak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Drzewka gry. Teoria gier a biznes.
2 Drzewka gry Gra jest to sytuacja konfliktowa, w której gracze podejmują decyzję, co do strategii, w sposób sekwencyjny i sukcesywny, w miarę przebiegu gry poznając kolejne ruchy przeciwnika. Takie sytuacje możemy właśnie przedstawić za pomocą drzewek gry. Taką grę, którą da się przedstawić w postaci drzewka, można łatwo sprowadzić również do poznanej wcześniej postaci gry macierzowej.
3 Przykład 1 (uproszczony poker) Gra odbywa się przy użyciu talii ograniczonej do asów i króli.pan Wiersz i Pani Kolumna dostają po jednej karcie i wkładają do puli po 1$. Po otrzymaniu swojej karty Pani Kolumna ma do wyboru dwie opcje: podnieść stawkę o 2$ lub spasować. Jeżeli spasuje, Pan Wiersz zgarnia całą pulę, jeśli jednak podniesie stawkę, wówczas Pan Wiersz może sprawdzić (tzn. zaakceptować grę o wyższą stawkę) lub spasować. Jeżeli Pan Wiersz spasuje, wówczas Pani Kolumna zgarnia pulę, zaś jeśli zdecyduje się sprawdzać, to gracze porównują swoje karty i wygrywa ten, który ma wyższą; jeśli oboje mają taką samą, pula dzielona jest pomiędzy graczy po równo.
4 Aby zbudować model tej gry, musimy opisać ją najpierw jako sekwencję ruchów. Pierwszy ruch, rozdając karty, wykonuje Los. Ma on cztery możliwości: 1. przydzielić obojgu graczom asa (A,A) 2. dać asa Panu Wierszowi i króla Pani Kolumnie (A,K) 3. dać króla Panu Wierszowi i asa Pani Kolumnie (K,A) 4. przydzielić obojgu graczom króla (K,K). Zakładamy przy tym, że prawdopodobieństwo każdego z tych rozdań jest takie samo i wynosi ¼. Po ruchu wykonanym przez Los, kolejny ruch należy do Pani Kolumny, która wybiera pomiędzy podniesieniem stawki a spasowaniem; jeśli podniosła, wówczas Pan Wiersz wybiera pomiędzy sprawdzeniem a spasowaniem. Na koniec obojgu graczom przydzielane są ich wypłaty.
5
6 Drzewka gry mogą być wykorzystywane do opisu sytuacji, w której gracze (min. dwóch) wykonują sekwencyjnie szereg ruchów, jednak każde z nich charakteryzuje się tym samym, tzn.: każdy wewnętrzny węzeł przypisany jest któremuś z graczy (włączając Los), wykonującemu z niego ruch każda z gałęzi wyprowadzona w dół z danego węzła reprezentuje możliwy ruch gracza każdej z gałęzi, odpowiadającej ruchowi Losu przypisane jest p-stwo, z jakim Los wykona odpowiedni ruch każdemu węzłowi końcowemu przypisane są wypłaty obu graczy węzły należące do każdego gracza podzielone są na zbiory informacyjne; wykonując ruch gracz wie, w którym zbiorze informacyjnym się aktualnie znajduje, nie wie jednak, w którym z jego węzłów z każdego z węzłów należących do tego samego zbioru informacyjnego wyprowadzona jest taka sama liczba gałęzi, oznaczanych w taki sam sposób
7 Każda dwuosobowa gra, którą da się przedstawić za pomocą drzewka gry, może być również przedstawiona jako gra macierzowa. To, co łączy ze sobą oba te przedstawienia to idea strategii. W przypadku gry przedstawionej w postaci drzewka, strategią gracza jest dokładny spis ruchów, jakie wykonałby w razie znalezienia się w każdym ze zbiorów informacyjnych, w których mógłby się w przebiegu gry znaleźć.
8 Biorąc pod uwagę wspomniany już przykład, łatwo możemy zauważyć, że każdy z graczy, zarówno Pani Kolumna, jak i Pan Wiersz, mają 4 możliwe strategie w tej grze. Jeżeli wiemy, jakie strategie wybiorą gracze, możemy, z dokładnością do ruchów Losu, wyznaczyć na drzewku gry cały jej przebieg, a dodatkowo ponieważ znamy prawdopodobieństwa poszczególnych ruchów Losu, możemy zatem wyznaczyć oczekiwane wartości wypłat dla obu graczy. Jeśli przypiszemy wierszom i kolumnom macierzy poszczególne strategie Pana Wiersza i Pani Kolumny, a w odpowiednie komórki macierzy wpiszemy wypłaty dla każdej pary strategii, uzyskamy wówczas grę macierzową odpowiadającą grze pierwotnie przedstawionej w postaci drzewka.
9
10 Zadanie 1) Odtwórz rachunki, które dla gry z przykładu 1 pozwoliły wyznaczyć: a) Wypłatę 5/4 b) wypłatę -1/2
11 Przykład 2 (model kubańskiego kryzysu rakietowego) W grze biorą udział: Stany Zjednoczone pod prezydenturą Kennedy ego i ZSRR pod przywództwem Chruszczowa. Rozpoczyna Chruszczow, decydując, czy zainstalować na Kubie pociski rakietowe, mogące razić terytorium USA. Jeżeli zdecyduje się na ich rozmieszczenie, wówczas Kennedy ma trzy możliwości postępowania: nie zrobić nic, ogłosić blokadę Kuby lub zniszczyć rakiety za pomocą precyzyjnego uderzenia z powietrza. Jeśli Kennedy zdecyduje się na działania agresywne, czyli blokadę wyspy lub zniszczenie rakiet, wówczas Chruszczow może albo ustąpić, albo zastosować kroki odwetowe, co mogłoby ostatecznie doprowadzić do wojny nuklearnej.
12
13 W przedstawionej sytuacji Kennedy ma do wyboru trzy strategie, odpowiadające trzem ruchom możliwym do wykonania z jego jedynego węzła: A) nie robić nic, B) zastosować blokadę, C) zniszczyć rakiety, natomiast kwestia strategii Chruszczowa jest bardziej skomplikowana, gdyż ma on do wyboru aż pięć różnych strategii: A)nie rozmieszczać rakiet, B)rozmieścić rakiety; w przypadku jakiejkolwiek agresywnej reakcji Kennedy ego ustąpić, C)rozmieścić rakiety; w przypadku blokady ustąpić, zaś w przypadku zniszczenia rakiet zastosować odwet, D)rozmieścić rakiety; w przypadku blokady zastosować odwet, zaś w przypadku zniszczenia- ustąpić, E)rozmieścić rakiety; w przypadku agresywnej reakcji Kennedy ego zastosować odwet. Ponieważ każdy z graczy zna uprzednie ruchy przeciwnika, zatem wszystkie zbiory informacyjne zawierają tylko po jednym węźle.
14
15 Gra o pełnej informacji O grze o pełnej informacji mówimy wtedy, gdy: żaden z węzłów nie jest przypisany ruchowi Losu każdy węzeł należy do osobnego zbioru informacyjnego o Inaczej mówiąc, w grze nic nie zależy od przypadku- wszyscy gracze znają obowiązujące reguły gry, wszystkie dotychczas wykonane w grze ruchy, a także wypłaty przeciwnika. o Ten rodzaj gry może być analizowany techniką przycinania drzewka, czyli indukcji wstecznej.
16
17 Opis: Mamy tu do czynienia z grą o sumie zerowej. Analizując drzewko metodą przycinania, należy na początku zastanowić się nad ostatnim ruchem Pani Kolumny w grze przedstawionej na pierwszym drzewku. Pani Kolumna zawsze wybierze tę gałąź, która prowadzi do wyniku gorszego dla Pana Wiersza, a zatem możemy przyciąć ostatnie gałązki drzewka, a każdemu spośród powstałych w ten sposób węzłów końcowych gry przypisać najniższą ze znajdujących się pierwotnie poniżej danego węzła wypłatę Pana Wiersza, w ten sposób uzyskując drugie drzewko. Teraz ostatni ruch wykonuje Pan Wiersz, który zawsze wybierze gałąź prowadzącą do najwyższej dla siebie wypłaty, można zatem po raz kolejny zredukować ostatni poziom gałązek i uzyskać w ten sposób ostatnie drzewo gry. Znów teraz decyzję podejmuje Pani Kolumna, zgodnie z opisanymi wcześniej zasadami. W tym przypadku powinna ona wybrać prawą gałąź, a racjonalnym wynikiem gry jest wypłata -2 dla Pana Wiersza. Posuwając się śladem uprzednio odciętych gałęzi, możemy teraz odtworzyć sekwencję prowadzących do tego wyniku ruchów.
18 Zadanie 2) Załóżmy, że w kryzysie kubańskim gracze w następujący sposób porządkują wyniki od najlepszego dla danego gracza do najgorszego: Kennedy: w, y, u, v, x, z Chruszczow: v, u, w, y, z, x Zastosuj technikę indukcji wstecznej ( przycinania ) do drzewka gry z rysunku 7.2, aby znaleźć jej racjonalne rozwiązanie.
19 Zadanie 3) Dla gry z rysunku: a) znajdź rozwiązanie techniką indukcji wstecznej ( przycinania ) b) wypisz wszystkie strategie Pani Kolumny c) wypisz wszystkie strategie Pana Wiersza d) zapisz macierz gry e) Rozwiąż grę macierzową i sprawdź, czy uzyskane rozwiązanie jest takie samo jak w podpunkcie a
20 Teoria gier a biznes: podejmowanie decyzji w warunkach konkurencji
21 W świecie biznesu przedsiębiorstwa często podejmują decyzje w warunkach strategicznej niepewności co do działań, które podejmują inne firmy. Dodatkowymi czynnikami niepewności mogą być przy tym przyszła koniunktura gospodarcza, wielkość rynku dla nowego produktu, koszty oraz wiele innych zmiennych. Możemy więc powiedzieć, że przedsiębiorstwa biorą udział w grach z udziałem zarówno innych graczy, jak i losu. W tego typu grach szczególnego znaczenia nabiera informacja, zarówno dotycząca działań konkurentów, jak i czynników ogólnie określanych mianem losu.
22 Przykład Rozważmy dwie firmy: Zeus Music, będącą liderem w produkcji nowoczesnego sprzętu audio oraz Atena Acoustics, będącą firmą mniejszą, lecz cenioną ze względu na innowacyjność i wysoką jakość produktów. Obie firmy opracowały nowy, obiecujący heksafoniczny system dźwiękowy, polegający na zawieszeniu słuchacza na pewnej wysokości, tak aby z każdej strony był otoczony muzyką i mógł słuchać jej z sześciu głośników, umieszczonych z przodu, tyłu, lewej, prawej, góry i dołu. Czynnikiem niepewności jest tutaj wielkość rynku na tego typu urządzenia: mały (zysk około 24 mln $) lub duży (zysk około 40 mln $)szanse istnienia obu są takie same i wynoszą 50%. Obie firmy muszą zatem zdecydować, jakiego typu produkt wypuścić najlepiej na rynek: najwyższej jakości system adresowany do audiofilów (NJ) czy też system tańszy, skierowany do odbiorców poszukujących nowości, ale o mniejszych wymaganiach co do jakości dźwięku (T) Jeżeli rynek jest mały, lepiej będzie się sprzedawać system wyższej jakości, jeżeli jednak byłby duży, wówczas większym powodzeniem cieszyłby się system tańszy.
23 Uwzględniając wszystkie czynniki, analitycy Zeusa oszacowali udziały w rynku obu firm w różnych sytuacjach (zakładamy, że analitycy Ateny ocenili sytuację podobnie, bowiem do obliczeń wykorzystano informacje powszechnie dostępne):
24 Przypadek 1 Obie firmy trzymają w tajemnicy swoje decyzje co do kierunku produkcji- żadna nie zna decyzji drugiej; nie zna także decyzji Losu. Obie firmy mają tu po dwie strategie: produkować sprzęt najwyższej jakości (NJ), bądź też tańszy (T).
25 Przypadek 2 Zeus, jako firma wiodąca na rynku, musi podjąć decyzję co do wyboru produktu wcześniej, a Atena- firma mniejsza i bardziej elastyczna- może zdecydować się na tyle późno, by poznać najpierw decyzję podjętą przez konkurenta. Firma Zeusa ma w tym przypadku dwie możliwości strategii, zaś firma Ateny- cztery.
26 Przypadek 3 Zeus wykonuje ruch jako pierwszy, ale zanim go wykona, przeprowadza dokładne badania rynku, które pozwolą mu określić, czy rynek jest duży, czy też mały. Atena nie będzie znać wyniku badań, będzie jednak wiedzieć, że miały one miejsce. Obie firmy mają tu po cztery strategie.
27 Przypadek 4 Obie firmy, zarówno Zeus, jak i Atena przeprowadzają badania rynku, pozwalające określić czy rynek jest mały, czy duży; Atena wykonuje swój ruch znając już decyzje zarówno Zeusa, jak i Losu. Firma Zeusa ma w tym przypadku cztery strategie, zaś firma Ateny- aż szesnaście.
28 Przypadek 5 Zeus wykonuje badania rynku, ale ukrywa ten fakt przed Ateną, stąd też ma ona błędne wyobrażenie o grzegrze- według niej mamy do czynienia z grą z przypadku 2, dlatego będzie grać strategią optymalną dla tego przypadku, czyli NJ/T. Zeus wiedząc o tym, jak zagra Atena i wiedząc, że ma do czynienia z grą z przypadku 3, zagra więc strategią optymalną dla tego też przypadku, czyli NJ/T, dzięki czemu uzyska wypłatę 24 (zysk o 2, w porównaniu z przypadkiem 3) Wniosek: posiadanie informacji może pozwolić graczowi na zapewnienie sobie lepszego wyniku gry gry-- dotyczy to także informacji o tym, co który z graczy wie o informacjach posiadanych przez drugiego, a więc o tym, jaka gra jest w rzeczywistości rozgrywana.
29 Ćwiczenie Załóżmy, że obaj gracze wykonują ruchy jednocześnie, ale uprzednio Zeus przeprowadza badania rynku, o czym Atena wie, ale nie zna ich wyników. Wskaż zbiory informacyjne w tej grze. Zapisz i rozwiąż odpowiednią grę 4x2. Co by się zmieniło, gdyby Atena nie wiedziała o przeprowadzonych badaniach rynku?
TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja
TEORIA GIER W NAUKACH SPOŁECZNYCH Drzewka gry, indukcja wsteczna, informacja Czym się dzisiaj zajmiemy? Rozwiązywaniem gier w postaci ekstensywnej (drzewka) Historią najnowszą Indukcją wsteczną Preferencjami
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoDłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.
Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:
Bardziej szczegółowoTemat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe
Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Bardziej szczegółowoEgzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje
Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer
Bardziej szczegółowo13. Teoriogrowe Modele Konkurencji Gospodarczej
13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca
Bardziej szczegółowo-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Bardziej szczegółowoTEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4 dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Zadanie 1 Dwie konkurencyjne firmy X i Y są dealerami dobrze znanej marki
Bardziej szczegółowoNie przyznawać się wsypać kompana Nie przyznawać się 1 rok 1 rok 10 lat 0 lat Wsypać kompana 0 lat 10 lat 5 lat 5 lat
TEORIA GIER Teoria gier definiowana jako teoria podejmowania decyzji w warunkach interaktywnych (gry strategicznej) lub inaczej matematyczna teoria sytuacji konfliktowych - została stworzona przez J. von
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoDaria Sitkowska Katarzyna Urbaniak
Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu i kooperacji; bada jak gracze racjonalnie powinni rozgrywać grę.
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoGry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Oligopol
2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu
Bardziej szczegółowoModel Bertranda. np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p 2 jednocześnie
Model Bertranda Firmy konkurują cenowo np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p jednocześnie Jeśli produkt homogeniczny, konsumenci kupują tam gdzie taniej zawsze firmie o wyższej cenie
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoModelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
Bardziej szczegółowoOligopol. dobra są homogeniczne Istnieją bariery wejścia na rynek (rynek zamknięty) konsumenci są cenobiorcami firmy posiadają siłę rynkową (P>MC)
Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób strategiczny i działają niezależnie od siebie, ale uwzględniają istnienie pozostałych firm. Na decyzję firmy wpływają decyzje
Bardziej szczegółowoRachunek prawdopodobieństwa w grach losowych.
Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoDane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:
Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną
Bardziej szczegółowo1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania
1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,
Bardziej szczegółowoEKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.
Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna
Bardziej szczegółowoMikroekonomia II: Kolokwium, grupa II
Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,
Bardziej szczegółowoUszereguj dla obydwu firm powyższe sytuacje od najkorzystniejszej do najgorszej. Uszereguj powyższe sytuacje z punktu widzenia konsumentów.
Strategie konkurencji w oligopolu: modele Bertranda, Stackelberga i lidera cenowego. Wojna cenowa. Kartele i inne zachowania strategiczne zadania wraz z rozwiązaniami Zadanie 1 Na rynku działają dwie firmy.
Bardziej szczegółowo; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Bardziej szczegółowoMikroekonomia. O czym dzisiaj?
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...
Bardziej szczegółowoZagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Bardziej szczegółowoMateriał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowo3. MINIMAX. Rysunek 1: Drzewo obrazujące przebieg gry.
3. MINIMAX. Bardzo wygodną strukturą danych pozwalającą reprezentować stan i przebieg gry (szczególnie gier dwuosobowych) jest drzewo. Węzły drzewa reprezentują stan gry po wykonaniu ruchu przez jednego
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoMetody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Bardziej szczegółowoUniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 7
LEKCJA 7 ZDOLNOŚCI PRODUKCYJNE Inwestując w kapitał trwały zwiększamy pojemność produkcyjną (czyli maksymalną wielkość produkcji) i tym samym możemy próbować wpływać na decyzje konkurencyjnych firm. W
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane
Bardziej szczegółowo02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.
TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round
Bardziej szczegółowoGra EGZAMIN. Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH
FOTON 140, Wiosna 2018 41 Gra EGZAMIN Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH Każdy na pewno zadawał sobie pytanie czy warto się uczyć?. Po znalezieniu setek powodów,
Bardziej szczegółowoUkłady równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Bardziej szczegółowoLEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC.
LEKCJA 8 KOSZTY WEJŚCIA NA RYNEK Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. Na wysokość barier wpływ mają: - korzyści skali produkcji,
Bardziej szczegółowoNa poniższym rysunku widać fragment planszy. Pozycja pionka jest oznaczona przez. Pola, na które może dojść (w jednym ruchu), oznaczone są.
Dwuwymiarowy Nim VII OIG zawody indywidualne, etap I. 8 XI 0-7 I 0 Dostępna pamięć: 6 MB. Jaś i Małgosia grają w nietypową grę. Odbywa się ona na planszy ograniczonej z dołu i z lewej, a nieskończonej
Bardziej szczegółowoTeoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!
Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:
Bardziej szczegółowoWyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Bardziej szczegółowoTeoria gier. Wykład7,31III2010,str.1. Gry dzielimy
Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry
Bardziej szczegółowoCzym jest użyteczność?
Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,
Bardziej szczegółowoPrzedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 1
Przedsiębiorczość i Podejmowanie Ryzyka Zajęcia 1 Zaliczenie Obecność Reguły gry: - Obecność obowiązkowa - kartkówki tylko w nagłych wypadkach (w wypadku niepożądanej aktywności) - Prace domowe (oddawane
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoW. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania
Bardziej szczegółowoOptymalizacja decyzji
Optymalizacja decyzji Dr hab. inż Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć będa dostępne na stronie www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowo1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
Bardziej szczegółowoSkowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
Bardziej szczegółowoMikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia
Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F
Bardziej szczegółowoLista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoTeoria gier. Katarzyna Koman Maria Koman. Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej
Teoria gier Katarzyna Koman Maria Koman Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej GRA NIM HISTORIA Pochodzenie gry NIM nie jest do końca znane. Najprawdopodobniej powstała
Bardziej szczegółowoPropedeutyka teorii gier
Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowo3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoTEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii
TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie
Bardziej szczegółowoŁyżwy - omówienie zadania
Komisja Regulaminowa XVI Olimpiady Informatycznej 1 UMK Toruń 12 luty 2009 1 Niniejsza prezentacja zawiera materiały dostarczone przez Komitet Główny Olimpiady Informatycznej. Treść zadania Wejście Wyjście
Bardziej szczegółowoModele lokalizacyjne
Modele lokalizacyjne Model Hotelling a Konsumenci jednostajnie rozłożeni wzdłuż ulicy Firmy konkurują cenowo Jak powinny ulokować się firmy? N=1 N=2 N=3 Model Salop a Konsumenci jednostajnie rozłożeni
Bardziej szczegółowoSchemat sprawdzianu. 25 maja 2010
Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,
Bardziej szczegółowoRozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Bardziej szczegółowoOdmiany Gry. Rozpoczęcie gry
Odmiany Gry Limit: każda runda ma określony wcześniej limit podbicia, Pot-Limit: w każdej rundzie gracz nie może postawić więcej niż wartość puli znajdującej się na stole, No-Limit: w każdej chwili można
Bardziej szczegółowoPODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
Bardziej szczegółowoIII. Wstęp: Elementarne równania i nierówności
III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny
Bardziej szczegółowoRozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
Bardziej szczegółowoSTRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną.
STRATEGIA PRZYBLIŻONA Ogólna strategia rozwiązywania gier NxN może być trudna obliczeniowo. Np. sprawdzenie otrzymanej mieszanej strategii wyrównującej : czy wszystkie strategie przeciwnika dają te same
Bardziej szczegółowoRozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26
Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak
Bardziej szczegółowoAnaliza cen duopolu Stackelbera
Na samym początku odpowiedzmy na pytanie czym jest duopol. Jest to forma rynku w której kontrolę nad nim posiadają 2 przedsiębiorstwa, które konkurują pomiędzy sobą wielkością produkcji lub ceną. Ze względu
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH
TEORIA GIER W NAUKACH SPOŁECZNYCH Teoria gier a wojskowość: Partyzanci, Policjanci i Rakiety. Teoria gier a filozofia: Problem Newcombe a i wolna wola Przypomnienie Strategie mieszane Kryterium wartości
Bardziej szczegółowoĆwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
Bardziej szczegółowo5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych
Bardziej szczegółowoPrzykładowe rozwiązania
Przykładowe rozwiązania Poniższy dokument zawiera przykładowe rozwiązania zadań z I etapu I edycji konkursu (2014 r.). Rozwiązania w formie takiej jak przedstawiona niżej uzyskałyby pełną liczbę punktów
Bardziej szczegółowoInwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia.
Opcje na GPW (II) Wbrew ogólnej opinii, inwestowanie w opcje nie musi być trudne. Na rynku tym można tworzyć strategie dla doświadczonych inwestorów, ale również dla początkujących. Najprostszym sposobem
Bardziej szczegółowo1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoELEMENTY GRY. 26 kart (2 talie, w każ dej z nich znajduje się po jednym z trzynastu duchów). 17 żetonów punktów
ELEMENTY GRY 26 kart (2 talie, w każ dej z nich znajduje się po jednym z trzynastu duchów). 1 2 3 4 5 Wykonaj działanie jednej z odkrytych kart Podaj numer kryjówki rywali. albo Do następnej swojej tury
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowo7. Pętle for. Przykłady
. Pętle for Przykłady.1. Bez użycia pętli while ani rekurencji, napisz program, który wypisze na ekran kolejne liczby naturalne od 0 do pewnego danego n. 5 int n; 6 cin >> n; 8 for (int i = 0; i
Bardziej szczegółowoBadania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Bardziej szczegółowoRozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Bardziej szczegółowoTeoria gier w ekonomii - opis przedmiotu
Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
Bardziej szczegółowoOPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie
Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw
Bardziej szczegółowoWymagania edukacyjne przedmiotu: Ekonomia w praktyce Temat Wymagania - ocena dopuszczająca
Wymagania edukacyjne przedmiotu: Ekonomia w praktyce Temat Wymagania - ocena dopuszczająca 1.1. Etapy projektu 1.2. Projekt badawczy, przedsięwzięcie wie na czym polega metoda projektu? wymienia etapy
Bardziej szczegółowoFUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Bardziej szczegółowoPrzykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A
Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Zadanie. (3 pkt.) Rozwiąż równanie:. Zadanie 2. (3 pkt.) Zadanie 3. (3 pkt.) Obok, na wykresie kołowym, przedstawiono procentowy udział
Bardziej szczegółowo