Mikroekonomia. O czym dzisiaj?
|
|
- Robert Grzybowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Mikroekonomia Joanna Tyrowicz r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci... Równowaga Nasha Strategie czyste Strategie mieszane Dylemat więźnia Gry niepowtarzalne Gry powtarzalne KARTEL!!! Gry sekwencyjne Powstrzymanie przed wejściem konkurenta na rynek r. Mikroekonomia WNE UW 2
2 Co to znaczy gra? Mamy graczy, czyli tych, którzy podejmują decyzje Możliwe decyzje są znane a priori, a ich zbiór tworzy tzw. dostępne strategie Strategie związane są z jakimiś wynikami dla wszystkich graczy wypłaty (zapisywane, dla wygody, w macierzach) Znając potencjalne wypłaty, można próbować określić, który z wyników jest bardziej korzystny dla graczy => określić tzw. równowagę w grze Grać można równocześnie albo sekwencyjnie Równocześnie: gracze podejmują decyzje w tym samym momencie (jak gra papier-kamień-nożyczki) Sekwencyjnie: jest jakaś kolejność dokonywania wyborów przez graczy i ten, który jest później wie, jakiego wyboru dokonał ten, który jest wcześniej (jak szachy) r. Mikroekonomia WNE UW 3 Macierze wypłat Wyobraźmy sobie grę: student, egzaminator: Student może się nauczyć albo nie. Jeśli się nauczy, to poniesie pewien koszt (uczenie się nie jest przyjemne), ale także dostanie dobrą ocenę. Egzaminator może się przyłożyć do sprawdzania i rzetelnie przeprowadzić egzamin albo podejść do tego z umiarkowanym zaangażowaniem. Sprawdzanie kosztuje go pewien wysiłek, ale lekceważąc sprawdzanie ryzykuje wystawienie dobrej oceny nieprzygotowanemu studentowi, co ktoś może później zweryfikować i ukarać go za niesumienne wykonywanie obowiązków. Jak się Państwu wydaje, co kto zrobi? r. Mikroekonomia WNE UW 4
3 Macierze wypłat GRA (, ) W tej grze: NIE 5,5 4,1 2,5 1,2 Dla studenta zawsze lepiej jest się uczyć (5>1, 5>2) Dla egzaminatora zawsze lepiej jest sprawdzać rzetelnie (5>2 i 4>1) Jaka równowaga? r. Mikroekonomia WNE UW 5 Strategia dominująca Jeśli w jakimś przypadku, jedno ze strategii zawsze daje lepsze rozwiązanie niż inna, to strategia taka dominuje dostępne alternatywy. Wiedza ta jest dostępna dla wszystkich graczy, więc wszyscy wiedzą, że jakieś rozwiązanie jest zawsze preferowane przez któregoś z nich. GRA (, ) NIE 5,5 4,1 2,5 1, r. Mikroekonomia WNE UW 6
4 Co kiedy nie ma strategii zdominowanych? Nie zawsze jest tak, że którekolwiek rozwiązanie jest zawsze zdominowane (i dzięki temu możemy je wyeliminować). Jak wtedy znaleźć równowagę? GRA (, ) NIE 5,5 1,1 1,1 4, r. Mikroekonomia WNE UW 7 Równowaga Nash a Równowaga wzajemnie najlepszych odpowiedzi Jeśli ja zagram X to ty wybierasz Y, ale jeśli ty Y to dla mnie optymalny jest X. GRA (, ) NIE 5,5 1,1 1,1 4,4 Równowag Nash a może być de facto tyle, ile dostępnych strategii (patrz: długość przekątnej), może być jedna, ale może też nie być żadnej r. Mikroekonomia WNE UW 8
5 Co kiedy nie ma równowagi Nash a? GRA (, ) NIE 5,5 0,-5 1,5-1,10 W tej grze nie ma równowagi Nash a, jeśli strategie tzw. czyste (tylko jedna opcja możliwa do końca świata ) Co by było gdyby można było przypisać pewne prawdopodobieństwa do tych strategii z prawdopodobieństwem x% nauczę się, a z prawdopodobieństwem (100-x)% się nie nauczę. z prawdopodobieństwem y% sprawdzam rzetelnie, a z prawdopodobieństwem (100-y)% sprawdzam jak leci r. Mikroekonomia WNE UW 9 Strategie mieszane Przy jakich wartościach dla x oraz dla y w tej grze powstaną równowagi Nash a? GRA (, ) NIE UCZY SIĘ -1,10 Załóżmy x=y=50%. Wtedy każda kratka zdarza się z prawdopodobieństwem 25% i wówczas Oczekiwana wypłata studenta to: 0,25*5 + 0,25*(-5) + 0,25*(5) + 0,25*10 =3,75 Oczekiwana wypłata egzaminatora to: 0,25*5 + 0,25*0 + 0,25*1 + 0,25*(-1) =1,25 Czy możemy znaleźć takie wagi (czyli x oraz y), żeby te wypłaty dawały wzajemnie optymalne rozwiązanie (czyli równowagę Nash a)? r. Mikroekonomia WNE UW 10 5,5 1,5 NIE UCZY SIĘ 0,-5
6 Strategie mieszane Strategie mieszane Szukamy ich wtedy, kiedy nie ma równowagi Nash a w strategiach czystych Celem jest znalezienie takich prawdopodobieństw, żeby możliwa była równowaga Nash a Najczęstszy przykład dydaktyczny: ON, ONA, mecz bokserski i wieczór w operze dobrego rozwiązania nie ma można dzielić czas ileś razy mecz, ale ileś opera (częstotliwości działają tak, jak prawdopodobieństwa) Dlaczego tak się upieramy, by szukać równowagi Nash a? r. Mikroekonomia WNE UW 11 Dylemat więźnia GRA (, ) NIE -5,-5 0,-6-6,0-1,-1 Jeśli przyjrzymy się tej grze, równowagą Nash a jest uczę się sprawdzam rzetelnie (czyli wynik 5,-5). Są to strategie dominujące dla obu graczy. Ale jest coś lepszego dla obu graczy... (efektywność Pareto) r. Mikroekonomia WNE UW 12
7 A gdyby grać w dylemat wiele razy? GRA (, ) NIE -5,-5 0,-6-6,0-1,-1 Załóżmy, że możemy w tę grę grać wiele razy: Skończoną liczbę razy Nieskończoną liczbę razy r. Mikroekonomia WNE UW 13 Rozważmy przypadek kartelu Mamy n firm, które mogą współpracować, albo konkurować Kiedy współpracują, zachowują się jak jedna firma (kartel=monopol z punktu widzenia konsumenta) p=p M, q=1/nq M, Π =1/n Π M Kiedy nie współpracują, konkurują cenami, ciągle się podcinając p=mc, q=1/nq DK, Π =1/n Π DK =0 Jeśli obiecają współpracować, a potem oszukają i ustalą cenę troszkę poniżej ceny monopolu, pozyskują praktycznie cały rynek dla siebie p=p M, q=q M, Π = Π M Zapiszmy to w postaci macierzy wypłat Dla uproszczenia tylko dwie firmy r. Mikroekonomia WNE UW 14
8 Przypadek kartelu GRA (FIRMA1, FIRMA2) OSZUKUJE FIRMA2 WSPÓŁPRACUJE FIRMA1 OSZUKUJE WSPÓŁPRACUJE 0,0 0, Π M Π M,0 1/n Π M, 1/n Π M Równowaga Nasha Optimum w grze (efektywność Pareto) Odpowiedź na to zagadnienie zależy od tego, czy: Gracze grają raz czy wiele razy Skończoną liczbę razy, czy nieskończoną Gracze wystarczająco cenią czas r. Mikroekonomia WNE UW 15 Gry sekwencyjne Do tej pory decyzje graczy równoczesne (trochę jak gra: papier-nożyczki-kamień) W prawdziwym życiu czasem ktoś może cieszyć się luksusem podejmowania decyzji jako pierwszy i następny musi na to reagować: Firmy, które już są na danym rynku i firmy, które dopiero to planują Firmy, które już wdrożyły daną strategię u siebie, pozostałe dopiero mogą zareagować: Obniżka kosztów obniżka cen Nowy produkt, nowy branding, nowa kampania Nowa technologia (lokalizacja) produkcji Itp. Przykład: ktoś już jest na rynku, a ktoś rozważa wejście r. Mikroekonomia WNE UW 16
9 Strategiczne bariery wejścia Straszenie konkurencji - kiedy opłaca się stosować taką strategię? Decyzja nowego Wchodzić Nie wchodzić Decyzja starego Walczyć Nie walczyć Wypłaty: (1,0) (2,1) (9,1) r. Mikroekonomia WNE UW 17 Strategiczne bariery wejścia A co, gdyby stary mógł naprawdę w wiarygodny sposób zagrozić nowemu? Decyzja nowego Wchodzić Nie wchodzić Decyzja starego Walczyć Nie walczyć Wypłaty: (3,0) (2,1) (9,1) r. Mikroekonomia WNE UW 18
10 Do zobaczenia przy oligopolu (nowy temat! ) jtyrowicz@wne.uw.edu.pl r. Mikroekonomia WNE UW 19
2010 W. W. Norton & Company, Inc. Oligopol
2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowoEKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.
Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Bardziej szczegółowoMikroekonomia. Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 17.10.2009r. Mikroekonomia WNE UW 1 Co to jest monopol? Wybór monopolisty Dlaczego nie lubimy monopoli? Dlaczego
Bardziej szczegółowoOligopol. dobra są homogeniczne Istnieją bariery wejścia na rynek (rynek zamknięty) konsumenci są cenobiorcami firmy posiadają siłę rynkową (P>MC)
Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób strategiczny i działają niezależnie od siebie, ale uwzględniają istnienie pozostałych firm. Na decyzję firmy wpływają decyzje
Bardziej szczegółowo1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania
1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoTeoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane
Bardziej szczegółowoTEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii
TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie
Bardziej szczegółowoZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),
Bardziej szczegółowoModele lokalizacyjne
Modele lokalizacyjne Model Hotelling a Konsumenci jednostajnie rozłożeni wzdłuż ulicy Firmy konkurują cenowo Jak powinny ulokować się firmy? N=1 N=2 N=3 Model Salop a Konsumenci jednostajnie rozłożeni
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoGry w postaci normalnej
Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać
Bardziej szczegółowoModelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Bardziej szczegółowoDłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.
Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:
Bardziej szczegółowoEKONOMIA MENEDŻERSKA
oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie
Bardziej szczegółowoGry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoMateriał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Bardziej szczegółowoOligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj
Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i działaj ają niezależnie od siebie, ale uwzględniaj dniają istnienie pozostałych firm. Na decyzję firmy wpływaj
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoLista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.
Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji
Bardziej szczegółowoMetody analizy decyzji
Metody analizy decyzji Wykład o kłamstwie, prawdzie i cwaniactwie Michał Jakubczyk, ZWiAD, IE, SGH Cele dzisiejszego wykładu 2 Miejsce kłamstwa w decydowaniu: czemu należy nie kłamać czemu należy kłamać
Bardziej szczegółowoLista zadań. Równowaga w strategiach czystych
Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)
Bardziej szczegółowoTeoria gier w ekonomii - opis przedmiotu
Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
Bardziej szczegółowoElementy teorii gier
Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia
Bardziej szczegółowoZacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym.
Oligopol Oligopol jest zagadnieniem, którego zrozumienie wymaga dobrej znajomości teorii gier. Modele Oligopolu badane przez ekonomistów koncentrują się bowiem na znalezieniu rozwiązania (równowagi) w
Bardziej szczegółowoPropedeutyka teorii gier
Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII
Bardziej szczegółowoTeoria Gier. Piotr Kuszewski 2018L
Teoria Gier Piotr Kuszewski 2018L Tematyka wykładów plan akcji Wykład I John von Neumann Trochę historii Czym jest gra i strategia Użyteczność Jak wyeliminować niektóre strategie Wykład II John Nash Równowaga
Bardziej szczegółowo13. Teoriogrowe Modele Konkurencji Gospodarczej
13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Bardziej szczegółowoTEORIA GIER WPROWADZENIE. Czesław Mesjasz
TEORIA GIER WPROWADZENIE Czesław Mesjasz 2010 1 GENEZA TEORII GIER Próby budowy matematycznych modeli konfliktów i negocjacji podejmowane były już przez A. Cournota, F. Edgewortha i F. Zeuthena. Koncepcje
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.
TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round
Bardziej szczegółowo(aby była to nauka owocna) 23 lutego, 2016
(aby była to nauka owocna) Uniwersytet Warszawski 23 lutego, 2016 1 / 21 2 / 21 3 / 21 Plan zajęć - etap (1) 1. Technologia 1 (czynniki produkcji, funkcja produkcji, krótki / długi okres, produktywność
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
Bardziej szczegółowo1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2
1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2
Bardziej szczegółowoMikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia
Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F
Bardziej szczegółowoModel Bertranda. np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p 2 jednocześnie
Model Bertranda Firmy konkurują cenowo np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p jednocześnie Jeśli produkt homogeniczny, konsumenci kupują tam gdzie taniej zawsze firmie o wyższej cenie
Bardziej szczegółowour. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton
ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton Przygotowali Ostrowski Damian Ryciak Norbert Ryciuk Wiktor Seliga Marcin Lata młodości ojciec John Forbes
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoEgzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje
Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer
Bardziej szczegółowoKonspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier.
KRAJOWA SZKOŁA ADMINISTRACJI PUBLICZNEJ Ryszard Rapacki EKONOMIA MENEDŻERSKA Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. A. Cele zajęć. 1. Porównanie różnych struktur rynku
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoOligopol wieloproduktowy
Oligopol wieloproduktowy Do tej pory zakładali adaliśmy, że e produkty sąs identyczne (homogeniczne) W rzeczywistości ci produkty sprzedawane przez firmy nie są doskonałymi substytutami. W większo kszości
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoTEORIA GIER - semestr zimowy 2011
TEORIA GIER - semestr zimowy 2011 Przykładowe rozwiązania 4. Gracz I, mąż, wychodzi pod wieczór z domu mówiąc, że idzie jeszcze popracować. W rzeczywistości dopiero zdecyduje, czy naprawdę pójdzie do pracy,
Bardziej szczegółowoGra EGZAMIN. Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH
FOTON 140, Wiosna 2018 41 Gra EGZAMIN Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH Każdy na pewno zadawał sobie pytanie czy warto się uczyć?. Po znalezieniu setek powodów,
Bardziej szczegółowoTemat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe
Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Bardziej szczegółowoSchemat sprawdzianu. 25 maja 2010
Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoOPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie
Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw
Bardziej szczegółowoMikroekonomia II: Kolokwium, grupa II
Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,
Bardziej szczegółowoMikroekonomia B Mikołaj Czajkowski
Mikroekonomia.10-11 Mikołaj Czajkowski Teoria gier Teoria gier Teoria gier analiza strategicznego zachowania uczestników, których decyzje wzajemnie wpływają na wyniki Teoria decyzji decyzje mogą być podejmowane
Bardziej szczegółowoGry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
Bardziej szczegółowoPrzykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna
Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.
Bardziej szczegółowoLEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC.
LEKCJA 8 KOSZTY WEJŚCIA NA RYNEK Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. Na wysokość barier wpływ mają: - korzyści skali produkcji,
Bardziej szczegółowoPODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH
PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia
Bardziej szczegółowoGra TransEdu - instrukcja
Gra TransEdu - instrukcja Gra TransEdu jest symulacją Systemu Trans.eu wykorzystywanego przez specjalistów z branży TSL. Gracze wcielają się w przewoźników i walczą między sobą o jak najlepszą stawkę za
Bardziej szczegółowoMatematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
Bardziej szczegółowoGRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne
GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre
Bardziej szczegółowoModelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Bardziej szczegółowoWprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Bardziej szczegółowoOptymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1
1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00
Bardziej szczegółowoUniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 7
LEKCJA 7 ZDOLNOŚCI PRODUKCYJNE Inwestując w kapitał trwały zwiększamy pojemność produkcyjną (czyli maksymalną wielkość produkcji) i tym samym możemy próbować wpływać na decyzje konkurencyjnych firm. W
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoDane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:
Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną
Bardziej szczegółowoNie przyznawać się wsypać kompana Nie przyznawać się 1 rok 1 rok 10 lat 0 lat Wsypać kompana 0 lat 10 lat 5 lat 5 lat
TEORIA GIER Teoria gier definiowana jako teoria podejmowania decyzji w warunkach interaktywnych (gry strategicznej) lub inaczej matematyczna teoria sytuacji konfliktowych - została stworzona przez J. von
Bardziej szczegółowo1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych.
Rozdział 4 Uczenie się w grach Na dzisiejszym wykładzie robimy krok w tył w stosunku do tego, o czym mówiliśmy przez ostatnie tygodnie. Dotychczas mówiliśmy o dowolnych grach wieloetapowych, dziś opowiem
Bardziej szczegółowoSkowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
Bardziej szczegółowoTeoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1
Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w
Bardziej szczegółowoAukcje groszowe. Podejście teoriogrowe
Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].
Bardziej szczegółowoCzym jest użyteczność?
Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,
Bardziej szczegółowoGry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik
Bardziej szczegółowoStochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Bardziej szczegółowoKażde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa.
Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. 1. Możliwości finansowe konsumenta opisuje równanie: 2x + 4y = 1. Jeżeli dochód konsumenta
Bardziej szczegółowoGry wieloosobowe. Zdzisław Dzedzej
Gry wieloosobowe Zdzisław Dzedzej 2012 2013-01-16 1 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,-1 2013-01-16 2 Diagram przesunięć 2013-01-16
Bardziej szczegółowoPrzyk ladowe Kolokwium II. Mikroekonomia II. 2. Na lożenie podatku na produkty produkowane przez monopol w wysokości 10 z l doprowadzi do
Przyk ladowe Kolokwium II Mikroekonomia II Imi e i nazwisko:...... nr albumu:... Instrukcje. Bez oszukiwania. Jeżeli masz pytanie podnieś r ek e. Cz eść I. Test wyboru. 1. W zmonopolizowanej branży cena
Bardziej szczegółowo-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Bardziej szczegółowoPartition Search i gry z niezupełną informacją
MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]
Bardziej szczegółowoSTRUKTURY RYNKU I ICH REGULACJE. Wykład 4: Oligopol. Wrocław
STRUKTURY RYNKU I ICH REGULACJE Wykład 4: Oligopol Prowadzący zajęcia: dr inŝ. Edyta Ropuszyńska Surma Politechnika Wrocławska Wydział Informatyki i Zarządzania Instytut Organizacji i Zarządzania E-mail:
Bardziej szczegółowoKonkurencja i współpraca w procesie podejmowania decyzji
Konkurencja i współpraca w procesie podejmowania woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Dzień liczby π, Toruń, 12 marca 2015 Plan działania Przykład
Bardziej szczegółowoMIKROEKONOMIA Struktury rynku
MIKROEKONOMIA Struktury rynku Katedra Mikroekonomii Wydział Nauk Ekonomicznych i Zarządzania Slajd nr 2 3 Struktura wykładu 1. Struktura rynku definicja 2. Podział struktur rynkowych 3. Determinanty podziału
Bardziej szczegółowoPunkty równowagi w grach koordynacyjnych
Uniwersytet Śląski w Katowicach, Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec 9 grudnia 2014, Chorzów 1 Motywacja 2 3 4 5 6 Wnioski i dalsze badania Motywacja 1 są klasą gier, w których istnieje
Bardziej szczegółowoMikroekonomia. Zadanie
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 18.11.2007r. Mikroekonomia WNE UW 1 Funkcję produkcji pewnego produktu wyznacza wzór F(K,L)=2KL 1/2. Jakim wzorem
Bardziej szczegółowoTEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).
TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące
Bardziej szczegółowoStrategie kwantowe w teorii gier
Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie
Bardziej szczegółowoElementy teorii gier. Badania operacyjne
2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoLEKCJA 1. Konkurencja doskonała (w całej gospodarce nie jest możliwa, lecz na wybranych rynkach):
Uniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 1 MODELE RYNKOWE Konkurencja doskonała (w całej gospodarce nie jest możliwa, lecz na wybranych rynkach): - Typowa
Bardziej szczegółowo5. Utarg krańcowy (MR) można zapisać jako: A)
1. Na rynku pewnego dobra działają dwie firmy, które zachowują się zgodnie z modelem Stackelberga. Firmy ponoszą stałe koszty krańcowe równe 24. Odwrócona linia popytu na tym rynku ma postać: P = 480-0.5Q.
Bardziej szczegółowo