Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy
|
|
- Eleonora Kozieł
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wykład7,31III2010,str.1 Gry dzielimy
2 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.),
3 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.)
4 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.)
5 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych)
6 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.)
7 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.); współpracę: kooperacyjne(np. gospodarka)
8 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.); współpracę: kooperacyjne(np. gospodarka), niekooperacyjne(np. ucieczka-pościg, itp.)
9 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.); współpracę: kooperacyjne(np. gospodarka), niekooperacyjne(np. ucieczka-pościg, itp.); rolę losowości: całkiem losowe(np. lotto, ruletka, itp.)
10 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.); współpracę: kooperacyjne(np. gospodarka), niekooperacyjne(np. ucieczka-pościg, itp.); rolę losowości: całkiem losowe(np. lotto, ruletka, itp.), częściowo losowe(np. brydż, itp.)
11 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.); współpracę: kooperacyjne(np. gospodarka), niekooperacyjne(np. ucieczka-pościg, itp.); rolę losowości: całkiem losowe(np. lotto, ruletka, itp.), częściowo losowe(np. brydż, itp.), deterministyczne(np. szachy, itp.)
12 Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną: o sumie zerowej(suma wygranych jest dokładnie równa sumie przegranych), o sumie niezerowej(np. dylemat więźnia, lotto, itp.); współpracę: kooperacyjne(np. gospodarka), niekooperacyjne(np. ucieczka-pościg, itp.); rolę losowości: całkiem losowe(np. lotto, ruletka, itp.), częściowo losowe(np. brydż, itp.), deterministyczne(np. szachy, itp.); wiedzę graczy o stanie.
13 Wykład7,31III2010,str.2 Odróżniać losowość od wiedzy graczy o stanie!
14 Wykład7,31III2010,str.2 Odróżniać losowość od wiedzy graczy o stanie! pełna wiedza niepełna wiedza graczy o stanie graczy o stanie determinizm szachy okręty gryzkostką losowość (np. chińczyk) brydż
15 Wykład7,31III2010,str.2 Odróżniać losowość od wiedzy graczy o stanie! pełna wiedza niepełna wiedza graczy o stanie graczy o stanie determinizm szachy okręty gryzkostką losowość (np. chińczyk) brydż Do opisu gry potrzeba: specyfikacji graczy
16 Wykład7,31III2010,str.2 Odróżniać losowość od wiedzy graczy o stanie! pełna wiedza niepełna wiedza graczy o stanie graczy o stanie determinizm szachy okręty gryzkostką losowość (np. chińczyk) brydż Do opisu gry potrzeba: specyfikacji graczy, określenia ich celów
17 Wykład7,31III2010,str.2 Odróżniać losowość od wiedzy graczy o stanie! pełna wiedza niepełna wiedza graczy o stanie graczy o stanie determinizm szachy okręty gryzkostką losowość (np. chińczyk) brydż Do opisu gry potrzeba: specyfikacji graczy, określenia ich celów, opisu dostępnej informacji
18 Wykład7,31III2010,str.2 Odróżniać losowość od wiedzy graczy o stanie! pełna wiedza niepełna wiedza graczy o stanie graczy o stanie determinizm szachy okręty gryzkostką losowość (np. chińczyk) brydż Do opisu gry potrzeba: specyfikacji graczy, określenia ich celów, opisu dostępnej informacji, specyfikacji ich strategii.
19 Wykład7,31III2010,str.3 Prosta gra macierzowa, 2-osobowa, o sumie zerowej
20 Wykład7,31III2010,str.3 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: gracze wykonują ruchy jednocześnie
21 Wykład7,31III2010,str.3 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: gracze wykonują ruchy jednocześnie; macierz wypłat dla A(skoro suma zerowa, wystarczy podać, ile wygrywa jeden gracz, drugi przegrywa tyle samo)
22 Wykład7,31III2010,str.3 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: gracze wykonują ruchy jednocześnie; macierz wypłat dla A(skoro suma zerowa, wystarczy podać, ile wygrywa jeden gracz, drugi przegrywa tyle samo): ruchy gracza B b 1 b 2... b k ruchy gracza A a2 a1... an u 11 u u 1k u 21 u u 2k u n1 u n2... u nk u ij R dla i,j [1..n] [1..k]
23 Wykład7,31III2010,str.4 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: PAPIER, KAMIEŃ, NOŻYCE
24 Wykład7,31III2010,str.4 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: PAPIER, KAMIEŃ, NOŻYCE gracze wykonują ruchy jednocześnie
25 Wykład7,31III2010,str.4 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: PAPIER, KAMIEŃ, NOŻYCE gracze wykonują ruchy jednocześnie; macierzwypłatdlaa: A B papier kamień nożyce papier kamień nożyce
26 Wykład7,31III2010,str.4 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: PAPIER, KAMIEŃ, NOŻYCE gracze wykonują ruchy jednocześnie; macierzwypłatdlaa: A B papier kamień nożyce papier 0 kamień 0 nożyce 0
27 Wykład7,31III2010,str.4 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: PAPIER, KAMIEŃ, NOŻYCE gracze wykonują ruchy jednocześnie; macierzwypłatdlaa: A B papier kamień nożyce papier kamień 0 1 nożyce 0
28 Wykład7,31III2010,str.4 Prosta gra macierzowa, 2-osobowa, o sumie zerowej: PAPIER, KAMIEŃ, NOŻYCE gracze wykonują ruchy jednocześnie; macierzwypłatdlaa: A B papier kamień nożyce papier kamień nożyce 1 1 0
29 Wykład7,31III2010,str.5 Prosta gra macierzowa, 2-osobowa, o sumie niezerowej: DYLEMAT WIĘŹNIA
30 Wykład7,31III2010,str.5 Prosta gra macierzowa, 2-osobowa, o sumie niezerowej: DYLEMAT WIĘŹNIA gracze wykonują ruchy jednocześnie
31 Wykład7,31III2010,str.5 Prosta gra macierzowa, 2-osobowa, o sumie niezerowej: DYLEMAT WIĘŹNIA gracze wykonują ruchy jednocześnie; macierz wypłat: A B współpraca zdrada współpraca zdrada
32 Wykład7,31III2010,str.5 Prosta gra macierzowa, 2-osobowa, o sumie niezerowej: DYLEMAT WIĘŹNIA gracze wykonują ruchy jednocześnie; macierz wypłat: A B współpraca zdrada współpraca 3 3 zdrada Strategia optymalna: zawsze zdradzać.
33 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.6
34 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.6 Mantra liberalna: Niech każdy dba o swój interes, wtedy interes wspólny sam o siebie zadba.
35 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.6 Mantra liberalna: Niech każdy dba o swój interes, wtedy interes wspólny sam o siebie zadba. W sytuacji dylematu więźnia(np. w sprawach globalnych, jak wpływ na klimat) interesy jednostkowe nie składają się w interes wspólny...
36 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.6 Mantra liberalna: Niech każdy dba o swój interes, wtedy interes wspólny sam o siebie zadba. W sytuacji dylematu więźnia(np. w sprawach globalnych, jak wpływ na klimat) interesy jednostkowe nie składają się w interes wspólny... Problem ewolucjonistów: Skąd w przyrodzie biorą się zachowania altruistyczne?
37 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.6 Mantra liberalna: Niech każdy dba o swój interes, wtedy interes wspólny sam o siebie zadba. W sytuacji dylematu więźnia(np. w sprawach globalnych, jak wpływ na klimat) interesy jednostkowe nie składają się w interes wspólny... Problem ewolucjonistów: Skąd w przyrodzie biorą się zachowania altruistyczne? Geny osobnika, który poświęca się dla bliźniego/grupy/społeczności, powinnyzanikać,botojestgorszastrategiagryniżegoizm...
38 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia:
39 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach.
40 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach. Jeśli liczba rozgrywek nie jest z góry ograniczona, to strategią lepszą od pełnego egoizmu jest wet za wet
41 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach. Jeśli liczba rozgrywek nie jest z góry ograniczona, to strategią lepszą od pełnego egoizmu jest wet za wet : na początku współpracować
42 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach. Jeśli liczba rozgrywek nie jest z góry ograniczona, to strategią lepszą od pełnego egoizmu jest wet za wet : na początku współpracować, w następnych turach robić tak, jak poprzednio zrobił przeciwnik
43 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach. Jeśli liczba rozgrywek nie jest z góry ograniczona, to strategią lepszą od pełnego egoizmu jest wet za wet : na początku współpracować, w następnych turach robić tak, jak poprzednio zrobił przeciwnik; cojakiśczas(losowo) darowaćwinę pójśćnawspółpracęmimo że przeciwnik zdradził.
44 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach. Jeśli liczba rozgrywek nie jest z góry ograniczona, to strategią lepszą od pełnego egoizmu jest wet za wet : na początku współpracować, w następnych turach robić tak, jak poprzednio zrobił przeciwnik; cojakiśczas(losowo) darowaćwinę pójśćnawspółpracęmimo że przeciwnik zdradził. Być może liberalny ład społeczny może działać na zasadzie iterowanego dylematu więźnia...
45 Dygresja polityczno-ewolucyjna Wykład7,31III2010,str.7 Hipotetyczna odpowiedź: Iterowany dylemat więźnia: Gramy wiele razy i w każdej rozgrywce bierzemy pod uwagę zachowanie przeciwnika/partnera w poprzednich rozgrywkach. Jeśli liczba rozgrywek nie jest z góry ograniczona, to strategią lepszą od pełnego egoizmu jest wet za wet : na początku współpracować, w następnych turach robić tak, jak poprzednio zrobił przeciwnik; cojakiśczas(losowo) darowaćwinę pójśćnawspółpracęmimo że przeciwnik zdradził. Być może liberalny ład społeczny może działać na zasadzie iterowanego dylematu więźnia... Być może altruizm powstaje z iterowanego dylematu więźnia...
46 Wykład7,31III2010,str.8 Gra w zapałki(minimax)
47 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: 0.
48 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: 0.
49 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego:
50 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego:
51 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku.
52 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
53 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
54 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
55 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
56 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
57 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
58 Wykład7,31III2010,str.8 Gra w zapałki(minimax): Gracze kolejno biorą zkupkipo1lub2 zapałki. Kto weźmie ostatnią przegrywa. Wygrana czerwonego: 1; zielonego: Czerwony zainteresowany jest maksymalizacją wyniku. Zielony zainteresowany jest minimalizacją wyniku
59 Wykład7,31III2010,str.9 Strategia minimax
60 Wykład7,31III2010,str.9 Strategia minimax : minimax stosuje się do gier 2-osobowych, w których gracze wykonują ruchy na przemian; jeden z nich zainteresowany jest minimalizacją a drugi maksymalizacją wyniku
61 Wykład7,31III2010,str.9 Strategia minimax : minimax stosuje się do gier 2-osobowych, w których gracze wykonują ruchy na przemian; jeden z nich zainteresowany jest minimalizacją a drugi maksymalizacją wyniku
62 Wykład7,31III2010,str.9 Strategia minimax : minimax stosuje się do gier 2-osobowych, w których gracze wykonują ruchy na przemian; jeden z nich zainteresowany jest minimalizacją a drugi maksymalizacją wyniku; oceniasięwszystkiepozycjewpełnymdrzewiegry począwszyod liści i skończywszy na korzeniu
63 Wykład7,31III2010,str.9 Strategia minimax : minimax stosuje się do gier 2-osobowych, w których gracze wykonują ruchy na przemian; jeden z nich zainteresowany jest minimalizacją a drugi maksymalizacją wyniku; oceniasięwszystkiepozycjewpełnymdrzewiegry począwszyod liści i skończywszy na korzeniu: najpierw na liściach wpisuje się wyniki zakończonych rozgrywek
64 Wykład7,31III2010,str.9 Strategia minimax : minimax stosuje się do gier 2-osobowych, w których gracze wykonują ruchy na przemian; jeden z nich zainteresowany jest minimalizacją a drugi maksymalizacją wyniku; oceniasięwszystkiepozycjewpełnymdrzewiegry począwszyod liści i skończywszy na korzeniu: najpierw na liściach wpisuje się wyniki zakończonych rozgrywek; potem na każdym wierzchołku wewnętrznym wpisuje się minimum lub maximum(zależnie od tego, który gracz ma ruch) ocen dzieci tego wierzchołka
65 Wykład7,31III2010,str.9 Strategia minimax : minimax stosuje się do gier 2-osobowych, w których gracze wykonują ruchy na przemian; jeden z nich zainteresowany jest minimalizacją a drugi maksymalizacją wyniku; oceniasięwszystkiepozycjewpełnymdrzewiegry począwszyod liści i skończywszy na korzeniu: najpierw na liściach wpisuje się wyniki zakończonych rozgrywek; potem na każdym wierzchołku wewnętrznym wpisuje się minimum lub maximum(zależnie od tego, który gracz ma ruch) ocen dzieci tego wierzchołka; w każdej pozycji gracz powinien wykonać ruch prowadzący do pozycji o najniższej lub najwyższej(zależnie od tego, który z nich) ocenie.
66 Wykład7,31III2010,str.10 Funkcja oceny pozycji w strategii minimax : int ocena(stan_planszy pl, int czyj_ruch){ if(gra_zakonczona(pl, czyj_ruch)) return wielkosc_wyplaty(pl, czyj_ruch); else{ int i, min, max, oc; Stan_planszy pl1; min=infty;max=-infty; for(i in zbior_mozliwych_ruchow(pl,czyj_ruch)){ wykonaj_ruch(&pl1, pl, i); oc=ocena(pl1,(czyj_ruch==max?min:max)); if(oc>max) max=oc; if(oc<min) min=oc; if(czyj_ruch == MAX) return max; else return min; } } }
67 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
68 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
69 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
70 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
71 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
72 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
73 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
74 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
75 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
76 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
77 Wykład7,31III2010,str.11 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
78 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Wykład7,31III2010,str.11 Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
79 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Wykład7,31III2010,str.11 Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
80 Wygrana krzyżyka: 1; kółka:-1. Krzyżyk zainteresowany jest maksymalizacją. Kółko zainteresowane jest minimalizacją. Wykład7,31III2010,str.11 Drzewa nawet prostych gier są na ogół olbrzymie, a minimax trzeba zacząć od liści, więc wydaje się, że potrzebne jest całe drzewo.
81 Wykład7,31III2010,str.12 Heurystyczna ocena pozycji
82 Wykład7,31III2010,str.12 Heurystyczna ocena pozycji: budujemy fragment drzewa gry o takiej wysokości, na jaką nas stać; liście tego fragmentu są wewnętrznymi węzłami całego drzewa, więc niemapewności,ktownichwygrywa
83 Wykład7,31III2010,str.12 Heurystyczna ocena pozycji: budujemy fragment drzewa gry o takiej wysokości, na jaką nas stać; liście tego fragmentu są wewnętrznymi węzłami całego drzewa, więc niemapewności,ktownichwygrywa; stosujemy jakąś heurystyczną ocenę pozycji na liściach tego fragmentu
84 Wykład7,31III2010,str.12 Heurystyczna ocena pozycji: budujemy fragment drzewa gry o takiej wysokości, na jaką nas stać; liście tego fragmentu są wewnętrznymi węzłami całego drzewa, więc niemapewności,ktownichwygrywa; stosujemy jakąś heurystyczną ocenę pozycji na liściach tego fragmentu; propagujemy na cały fragment ocenę z liści stosując zwykły minimax
85 Wykład7,31III2010,str.12 Heurystyczna ocena pozycji: budujemy fragment drzewa gry o takiej wysokości, na jaką nas stać; liście tego fragmentu są wewnętrznymi węzłami całego drzewa, więc niemapewności,ktownichwygrywa; stosujemy jakąś heurystyczną ocenę pozycji na liściach tego fragmentu; propagujemy na cały fragment ocenę z liści stosując zwykły minimax; wybieramy ruch wg minimaxu
86 Wykład7,31III2010,str.12 Heurystyczna ocena pozycji: budujemy fragment drzewa gry o takiej wysokości, na jaką nas stać; liście tego fragmentu są wewnętrznymi węzłami całego drzewa, więc niemapewności,ktownichwygrywa; stosujemy jakąś heurystyczną ocenę pozycji na liściach tego fragmentu; propagujemy na cały fragment ocenę z liści stosując zwykły minimax; wybieramy ruch wg minimaxu; usuwamy oceny; przy następnym ruchu budujemy nowy fragment drzewa sięgający głębiej i oceniamy jak wyżej.
87 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu
88 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu
89 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu
90 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu
91 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu
92 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu Z pktu widzenia Czerwonego: 1.biorę2zapałki;isadzę,żeZielonyweźmie2
93 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu. Z pktu widzenia Czerwonego: 1.biorę2zapałki;isadzę,żeZielonyweźmie
94 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu. Z pktu widzenia Czerwonego: 1.biorę2zapałki;isadzę,żeZielonyweźmie
95 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu. Z pktu widzenia Czerwonego: 1.biorę2zapałki;isadzę,żeZielonyweźmie2; 2.biorę1zapałkę;isadzę,żeZielonyweźmie
96 Wykład7,31III2010,str.13 Gra w zapałki: Heureza: (liczba zapałek) mod 3 Czerwony: jak najwyższa ocena Zielony: jak najniższa ocena Uwaga: Dlatejgrytakaheurezaniema sensu; to tylko taka sobie ilustracja działania algorytmu. Z pktu widzenia Czerwonego: 1.biorę2zapałki;isadzę,żeZielonyweźmie2; 2.biorę1zapałkę;isadzę,żeZielonyweźmie2;
97 Wykład7,31III2010,str.14 Przycinanie α-β: ruch ma kółko, zainteresowany minimalizacją; topoddrzewoniebędziegrało,bo ma wyższą ocenę niż sąsiednie. W takiej sytuacji tego poddrzewa można w ogóle nie rozpatrywać.
98 Wykład7,31III2010,str.14 Przycinanie α-β: -1 ruch ma kółko, zainteresowany minimalizacją; topoddrzewoniebędziegrało,bo ma wyższą ocenę niż sąsiednie. W takiej sytuacji tego poddrzewa można w ogóle nie rozpatrywać
99 Wykład7,31III2010,str.14 Przycinanie α-β: -1 ruch ma kółko, zainteresowany minimalizacją; topoddrzewoniebędziegrało,bo ma wyższą ocenę niż sąsiednie. W takiej sytuacji tego poddrzewa można w ogóle nie rozpatrywać
100 Wykład7,31III2010,str.14 Przycinanie α-β: -1 ruch ma kółko, zainteresowany minimalizacją; topoddrzewoniebędziegrało,bo ma wyższą ocenę niż sąsiednie. W takiej sytuacji tego poddrzewa można w ogóle nie rozpatrywać
101 Wykład7,31III2010,str.14 Przycinanie α-β: -1 ruch ma kółko, zainteresowany minimalizacją; topoddrzewoniebędziegrało,bo ma wyższą ocenę niż sąsiednie. W takiej sytuacji tego poddrzewa można w ogóle nie rozpatrywać
102 Wykład7,31III2010,str.15 Przycinanie α-β: min max A B C
103 Wykład7,31III2010,str.15 Przycinanie α-β: a min max A B C
104 Wykład7,31III2010,str.15 Przycinanie α-β: a b min max A B C
105 Wykład7,31III2010,str.15 Przycinanie α-β: a b? min max A B C
106 Wykład7,31III2010,str.15 Przycinanie α-β: a b b? min max A B C
107 Wykład7,31III2010,str.15 Przycinanie α-β: a b b? min max A B C Jeślia b,todrzewacnietrzebaprzeglądać, bo gracz min nie pozwoli tam wejść, wybierze poddrzewo A.
Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!
Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:
Bardziej szczegółowoWyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Bardziej szczegółowoAlgorytmy dla gier dwuosobowych
Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoMetody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoTEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoAlgorytmiczne Aspekty Teorii Gier Rozwiązania zadań
Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem
Bardziej szczegółowoWprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowo3. MINIMAX. Rysunek 1: Drzewo obrazujące przebieg gry.
3. MINIMAX. Bardzo wygodną strukturą danych pozwalającą reprezentować stan i przebieg gry (szczególnie gier dwuosobowych) jest drzewo. Węzły drzewa reprezentują stan gry po wykonaniu ruchu przez jednego
Bardziej szczegółowoWPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 6. GRY POSZUKIWANIA W OBECNOŚCI PRZECIWNIKA Gry Pokażemy, w jaki
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoTemat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe
Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu
Bardziej szczegółowoSztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią
Bardziej szczegółowoRegionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 5, grupa zaawansowana (7..009) Gry matematyczne.
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoMateusz Topolewski. Świecie, 8 grudnia 2014
woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Świecie, 8 grudnia 2014 Plan działania Przykład 1. Negocjacje Właściciele dwóch domów negocjują w którym miejscu
Bardziej szczegółowoTeoria gier. Katarzyna Koman Maria Koman. Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej
Teoria gier Katarzyna Koman Maria Koman Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej GRA NIM HISTORIA Pochodzenie gry NIM nie jest do końca znane. Najprawdopodobniej powstała
Bardziej szczegółowoDłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.
Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:
Bardziej szczegółowoWykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach
(4g) Wykład 7 i 8 w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach P. Kobylański Wprowadzenie do Sztucznej Inteligencji 177 / 226 (4g) gry optymalne decyzje w grach algorytm
Bardziej szczegółowoAlgorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Bardziej szczegółowo5.9 Modyfikacja gry Kółko i krzyżyk
274 5.9 Modyfikacja gry Kółko i krzyżyk Zajmiemy się obecnie grą, której plansza jest widoczna na rys. 5.17 (aplikacja Do15.bpr). Rysunek 5.17: Plansza do gry śuma do 15 Jej celem jest zaznaczenie cyfr,
Bardziej szczegółowoModelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Bardziej szczegółowoZASADY GRY. Zawartość:
ZASADY GRY Gra dla 2 do 6 graczy w wieku 6+ Czas rozgrywki 30 minut Ponad 30 milionów graczy nie może się mylić! Teraz oldschoolowi drwale z popularnej aplikacji przenoszą się do świata gier bez prądu!
Bardziej szczegółowoKażdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.
Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoPartition Search i gry z niezupełną informacją
MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]
Bardziej szczegółowoAlgorytmy z powrotami. Algorytm minimax
Algorytmy z powrotami. Algorytm minimax Algorytmy i struktury danych. Wykład 7. Rok akademicki: 2010/2011 Algorytm z powrotami rozwiązanie problemu budowane jest w kolejnych krokach, po stwierdzeniu (w
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Bardziej szczegółowoPrzykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna
Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.
Bardziej szczegółowoSID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW
SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiazanie jest strategia specyfikujac a posunięcie dla każdej
Bardziej szczegółowoLuty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Bardziej szczegółowoMetody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Bardziej szczegółowoTeoria gier. Jakub Cisło. Programowanie z pasją maja 2019
Teoria gier Jakub Cisło Programowanie z pasją http://programowaniezpasja.pl jakub@programowaniezpasja.pl 10 maja 2019 Jakub Cisło (Programowanie z pasją) Teoria gier 10 maja 2019 1 / 18 Plan wykładu 1
Bardziej szczegółowoElementy teorii gier
Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia
Bardziej szczegółowoGra planszowa stwarza jeszcze więcej możliwości!
Gra planszowa stwarza jeszcze więcej możliwości! Steffen Benndorf Reinhard Staupe Gracze: 2-4 osób Wiek: powyżej 8 lat Czas trwania: ok.20 minut Uwaga: W przypadku, gdy Państwo znają już wielokrotnie nagradzaną
Bardziej szczegółowoTeoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:
Bardziej szczegółowoKonkurencja i współpraca w procesie podejmowania decyzji
Konkurencja i współpraca w procesie podejmowania woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Dzień liczby π, Toruń, 12 marca 2015 Plan działania Przykład
Bardziej szczegółowoCZYM JEST SZTUCZNA INTELIGENCJA? REPREZENTACJA WIEDZY SZTUCZNA INTELIGENCJA PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI CZYM JEST SZTUCZNA INTELIGENCJA? Jak działa ludzki mózg? SZTUCZNA INTELIGENCJA Jak zasymulować ludzki mózg? Co to kogo obchodzi zróbmy coś pożytecznego
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowoElementy teorii gier. Badania operacyjne
2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie
Bardziej szczegółowo-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.
TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round
Bardziej szczegółowoAdam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
Bardziej szczegółowoTEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).
TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące
Bardziej szczegółowoSztuczna inteligencja
Filip Graliński Sztuczna inteligencja i kmputery Histria Histria Teria Teria Histria Algrytmy Teria planszwe Histria Algrytmy Senet Teria planszwe Histria Algrytmy Tryktrak Senet Teria planszwe Histria
Bardziej szczegółowoGry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Bardziej szczegółowoAlgorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Bardziej szczegółowoFilogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami.
181 Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 3. D T(D) poprzez algorytm łączenia sąsiadów 182 D D* : macierz łącząca sąsiadów n Niech TotDist i = k=1 D i,k Definiujemy
Bardziej szczegółowoWysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoLista zadań. Równowaga w strategiach czystych
Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)
Bardziej szczegółowoDrzewo binarne BST. LABORKA Piotr Ciskowski
Drzewo binarne BST LABORKA Piotr Ciskowski zadanie 1. drzewo binarne - 1 Zaimplementuj drzewo binarne w postaci: klasy Osoba przechowującej prywatne zmienne: liczbę całkowitą to będzie klucz, wg którego
Bardziej szczegółowoSkowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Bardziej szczegółowoWybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Bardziej szczegółowoRuletka czy można oszukać kasyno?
23 stycznia 2017 Ruletka czy można oszukać kasyno? M. Dworak, K. Maraj, S. Michałowski Plan prezentacji Podstawy ruletki System dwójkowy (Martingale) Czy system rzeczywiście działa? 1/22 Podstawy ruletki
Bardziej szczegółowoInternetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
Bardziej szczegółowoAlgorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Bardziej szczegółowoMarcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoHeurystyczne przeszukiwanie grafów gier dwuosobowych
Heurystyczne przeszukiwanie grafów gier dwuosobowych Wykład Informatyka Studia InŜynierskie Teoria gier w dziedzinie SI Liczba graczy jednoosobowe, dwuosobowe oraz wieloosobowe Suma wypłat gry o sumie
Bardziej szczegółowoEKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.
Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna
Bardziej szczegółowoModelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Bardziej szczegółowoDrzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Bardziej szczegółowoMateriał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Bardziej szczegółowoELEMENTY GRY. 26 kart (2 talie, w każ dej z nich znajduje się po jednym z trzynastu duchów). 17 żetonów punktów
ELEMENTY GRY 26 kart (2 talie, w każ dej z nich znajduje się po jednym z trzynastu duchów). 1 2 3 4 5 Wykonaj działanie jednej z odkrytych kart Podaj numer kryjówki rywali. albo Do następnej swojej tury
Bardziej szczegółowoSCENARIUSZE ZAJĘĆ KLASA 1 DIDASKO Ewa Kapczyńska, Krystyna Tomecka
TEMAT: Spotkanie z liczbą 12 Miesiąc: luty Tydzień nauki: 21 Kształtowanie umiejętności: edukacja matematyczna ( 7.2; 7.3; 7.4. ;7.5; 7.8), edukacja społeczna (5.4) Materiały i środki dydaktyczne: kartoniki
Bardziej szczegółowoPora na gry planszowe
Mirosław Dąbrowski Pora na gry planszowe Dzieci lubią gry i zabawy, dorośli na ogół zresztą też. To wspólne upodobanie może być bardzo dobrym punktem wyjścia do miłego i pożytecznego spędzenia czasu. Proponujemy
Bardziej szczegółowoAlgorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoZagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Bardziej szczegółowoDwaj gracze na przemian kładą jednakowe monety na stole tak, aby na siebie nie nachodziły Przegrywa ten, kto nie może dołożyć monety
Mateusz Lewandowski Krótka filozofia Ciekawość gier Poziomy rozwiązania gier Synchroniczne wykonywanie ruchów w GGP Podejścia do końcówek gier Wykrywanie symetrii Związki z innymi dziedzinami KONSPEKT
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoEGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka
Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest
Bardziej szczegółowoGry w postaci normalnej
Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać
Bardziej szczegółowoDane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:
Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną
Bardziej szczegółowooperacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Bardziej szczegółowoDrzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Bardziej szczegółowoWprowadzenie do teorii gier Ryszard Paweł Kostecki
Wprowadzenie do teorii gier Ryszard Paweł Kostecki 1. Wstęp Obszarem zainteresowania teorii gier są problemy związane z decyzjami w układach z wieloma uczestnikami (agentami, graczami), z których każdy
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Oligopol
2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu
Bardziej szczegółowoPODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoGra: Partnerstwo biznesowe
Gra: Partnerstwo biznesowe Opis: Gra uczy partnerstwa biznesowego. Pokazuje jakie są jego zalety i wady. Pozwala uczestnikom szkolenia odkryć główny powód, dla którego firmy tworzą partnerstwa biznesowe.
Bardziej szczegółowoProcesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 8 Przekształcenia wiedzy generalizacja/specjalizacja; abstrakcja/konkretyzacja; podobieństwo/kontrastowanie; wyjaśnianie/predykcja. Przetwarzanie danych Przetwarzanie wstępne
Bardziej szczegółowo