1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania
|
|
- Elżbieta Góra
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę, natomiast sprzątanie jej niesie ze sobą koszt. Naturalnie skorzystanie z czystej toalety przynosi wyższą wypłatę niż skorzystanie z brudnej. Ponieważ jednak prawdopodobieństwo skorzystania z tej samej toalety jest bardzo małe, nie opłaca nam się jej sprzątać. Nie sprzątając unikamy także kosztu związanego ze sprzątaniem. Z tego wynika, że nie sprzątać jest strategią dominującą względem sprzątać. Zadanie 2 Udział w wyborach niesie ze sobą koszt, np. należało gdzieś dojechać lub nie udało się pójść w tym czasie z dziećmi do Zoo, albo nawet trzeba było się czegoś dowiedzieć na temat kandydatów zanim zagłosujemy. Naturalnie z głosowaniem może wiązać się pozytywna wypłata jeśli kandydat przez nas preferowany zostanie wybrany. Jeśli jednak w głosowaniu bierze udział wiele osób korzyść z wzięcia udziału w głosowaniu jest bliska zeru. Jeśli większość osób głosuje na naszego kandydata to nasz głos nic nie zmienia. Z drugiej strony, gdy większość osób głosuje na drugiego kandydata nasz głos również nic nie zmienia. Jedyny przypadek, gdy nasz głos faktycznie przynosi korzyść to sytuacja, w której dokładnie tyle samo osób głosuje na naszego i tego drugiego kandydata. Wtedy nasz głos faktycznie się liczy. Dlatego, wyłączając przypadek dokładnie równego poparcia dla kandydatów, udział w głosowaniu jest strategią zdominowaną. Fakt ten tłumaczy obserwowaną niską frekwencję wyborczą. Belgia jest krajem, gdzie konstytucyjnie postanowiono zmienić wypłaty i głosowanie jest obligatoryjne pod groźbą kary. Jak długo kara za niegłosowanie jest wyższa niż koszt głosowania, udział w głosowaniu będzie strategią dominującą. Zakładając racjonalne zachowanie się głosujących, udział w wyborach należy tłumaczyć faktem, że głosujący otrzymują użyteczność z samego faktu głosowania, np. mają poczucie spełnienia obowiązku obywatelskiego. Zadanie 3 Przykładowa macierz gry podana jest poniżej. Ta gra ma równowagę w strategiach dominujących, gdy spełnione są warunki: W > 0, H > 0 oraz W/6 > H. Zawodnik 2 Bez dopingu Doping Zawodnik 1 Bez dopingu (W/2 ; W/2) (W/3 ; 2W/3 - H) Doping (2W/3 - H ; W/3) (W/2 - H ; W/2 - H)
2 2 S t r o n a Zadanie 4 Przykładowa macierz gry podana jest poniżej. Zauważcie, że przy takiej postaci wypłat potrzebne są warunki W>0 i H>0 oraz W > 5H, aby zapewnić równowagę w strategiach dominujących typu Dylemat Więźnia. Zawodnik 2 Bez dopingu Doping Zawodnik 1 Bez dopingu (6/10 W ; 4/10 W) (4/10 W ; 6/10 W - H) Doping (8/10 W - H ; 2/10 W) (6/10 W - H ; 4/10 W - H) Zadanie 5 Dla każdej liczby wymienionej przez jednego z graczy, najlepsza odpowiedź drugiego gracza podana jest w tabeli: Liczba wymieniona przez jednego z graczy Zbiory najlepszych odpowiedzi drugiego gracza {10} {9, 10} {8, 9, 10} {7, 8, 9, 10} {6, 7, 8, 9, 10} {5, 6, 7, 8, 9, 10} {5, 6} {6} {7} {8} {9} G G1 Najlepsze odpowiedzi zilustrowane są na wykresie. Z wykresu jasno wynika, że mamy cztery równowagi Nasha w strategiach czystych, które dają następujące wyniki gry: (5, 5), (5, 6), (6, 5), and (6, 6).
3 3 S t r o n a Zadanie 6 Cournot Wypłata firmy 1: Π 1 ( q 1,q 2 ) = (120 q 1 q 2 )q 1 12q 1 Firma 1 (firma 2 postępuje analogicznie) maksymalizuje swoją wypłatę za pomocą biorąc pod uwagę co robi frirma dwa. Warynki pierwszego rzędu dają: Π = 120 2q 1 - q 2 12 = 0 Po rozwiązaniu tego równania i symetrycznego równania dla firmy 2 otrzymujemy parę najlepszych odpowiedzi czyli funkcji reakcji: Rozwiązując powyższy układ równań otrzymamy: q 1 * = q 2 * = 36. Zyski firm wynoszą: Π i ( q 1 *,q 2 * ) = 1296 Stackleberg Rozwiązujemy za pomocą indukcji wstecznej. Firma 2 rusza się druga, zatem rozwiązuje problem taki sam jak w modelu Cournot. Jej funkcja reakcji dana jest wzorem: 54. Firma 1 (lider), korzystając z doskonałej informacji bierze pod uwagę 54 i rozwiązuje następujący problem: Π 1 ( q 1,q 2 ) = [120 q 1 ( - q )]q 1 12q 1 Warunek pierwszego rzędu: Π = -q = 0, spełniony dla W równowadze doskonałej firma 2 będzie produkować: Zyski obu firm: q 1 * = 54. q 2 * = = 27 Π 1 (54, 27) = ( )*54 12*54 = 1458 Π 2 (54, 27) = ( )*27 12*27 = 729
4 4 S t r o n a Zadanie 7 Równowaga Nasha w grze jednoczesnej to profil strategii: ś ś firma 2 firma 1 25, 9 33, 10 30, 13 36,12 Wersja dynamiczna gry: F1 F2-1 F ; 9 33 ; ; ; 12 Forma strategiczna gry sekwencyjnej: Firma 2 i jeśli Firma1 25,9 33,10 25,9 33,10 SPNE 30,13 36,12 36,12 30,13 Równowaga doskonała to profil strategii: ś ś
5 5 S t r o n a Druga równowaga Nasha w grze sekwencyjnej: jest najlepszą odpowiedzią gracza 1 na strategię równowagi gracza 2 dlatego, że w odpowiedzi na gracz 2 wybiera. Ta równowaga nie jest równowagą doskonałą ponieważ nie bierze pod uwagę sekwencyjnej natury gry. Jeśli gracz drugi, korzystając z doskonałej informacji, wie w którym punkcie decyzyjnym się znajduje, w F2-1 nigdy nie wybierze.
Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Oligopol
2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane
Bardziej szczegółowoEgzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje
Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoTeoria Gier. Piotr Kuszewski 2018L
Teoria Gier Piotr Kuszewski 2018L Tematyka wykładów plan akcji Wykład I John von Neumann Trochę historii Czym jest gra i strategia Użyteczność Jak wyeliminować niektóre strategie Wykład II John Nash Równowaga
Bardziej szczegółowoModel Bertranda. np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p 2 jednocześnie
Model Bertranda Firmy konkurują cenowo np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p jednocześnie Jeśli produkt homogeniczny, konsumenci kupują tam gdzie taniej zawsze firmie o wyższej cenie
Bardziej szczegółowoOligopol. dobra są homogeniczne Istnieją bariery wejścia na rynek (rynek zamknięty) konsumenci są cenobiorcami firmy posiadają siłę rynkową (P>MC)
Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób strategiczny i działają niezależnie od siebie, ale uwzględniają istnienie pozostałych firm. Na decyzję firmy wpływają decyzje
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoMikroekonomia. O czym dzisiaj?
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...
Bardziej szczegółowoModele lokalizacyjne
Modele lokalizacyjne Model Hotelling a Konsumenci jednostajnie rozłożeni wzdłuż ulicy Firmy konkurują cenowo Jak powinny ulokować się firmy? N=1 N=2 N=3 Model Salop a Konsumenci jednostajnie rozłożeni
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoModelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Bardziej szczegółowoEKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.
Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna
Bardziej szczegółowoUniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 9
LEKCJA 9 Oligopol równoczesnej konkurencji cenowej przy wyborze zdolności produkcyjnych (model Kreps a) Jeżeli zdolności produkcyjne co najmniej jednej z firm są ograniczone, to na rynku będziemy obserwować
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoPropedeutyka teorii gier
Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII
Bardziej szczegółowoGry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Bardziej szczegółowoZacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym.
Oligopol Oligopol jest zagadnieniem, którego zrozumienie wymaga dobrej znajomości teorii gier. Modele Oligopolu badane przez ekonomistów koncentrują się bowiem na znalezieniu rozwiązania (równowagi) w
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoMateriał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Bardziej szczegółowo13. Teoriogrowe Modele Konkurencji Gospodarczej
13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca
Bardziej szczegółowoMikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia
Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F
Bardziej szczegółowoDłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.
Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:
Bardziej szczegółowoTEORIA GIER - semestr zimowy 2011
TEORIA GIER - semestr zimowy 2011 Przykładowe rozwiązania 4. Gracz I, mąż, wychodzi pod wieczór z domu mówiąc, że idzie jeszcze popracować. W rzeczywistości dopiero zdecyduje, czy naprawdę pójdzie do pracy,
Bardziej szczegółowoTEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii
TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie
Bardziej szczegółowoTemat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe
Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoGry w postaci normalnej
Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoTeoria gier w ekonomii - opis przedmiotu
Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
Bardziej szczegółowoMikroekonomia II: Kolokwium, grupa II
Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Bardziej szczegółowoAlgorytmiczne Aspekty Teorii Gier Rozwiązania zadań
Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem
Bardziej szczegółowoTeoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoLista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.
Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji
Bardziej szczegółowoUniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 7
LEKCJA 7 ZDOLNOŚCI PRODUKCYJNE Inwestując w kapitał trwały zwiększamy pojemność produkcyjną (czyli maksymalną wielkość produkcji) i tym samym możemy próbować wpływać na decyzje konkurencyjnych firm. W
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoSkowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
Bardziej szczegółowoLista zadań. Równowaga w strategiach czystych
Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)
Bardziej szczegółowoCzym jest użyteczność?
Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,
Bardziej szczegółowoOligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj
Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i działaj ają niezależnie od siebie, ale uwzględniaj dniają istnienie pozostałych firm. Na decyzję firmy wpływaj
Bardziej szczegółowoAukcje groszowe. Podejście teoriogrowe
Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Bardziej szczegółowoTEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).
TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące
Bardziej szczegółowoPlan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha
Plan Przypomnienie: Dominacja oraz równowaga Nasha Model konkurencji ilościowej Cournot Model konkurencji cenowej Bertranda jednakowe produkty produkty zróżnicowane Prosty model aukcji: Aukcja drugiej
Bardziej szczegółowoOligopol wieloproduktowy
Oligopol wieloproduktowy Do tej pory zakładali adaliśmy, że e produkty sąs identyczne (homogeniczne) W rzeczywistości ci produkty sprzedawane przez firmy nie są doskonałymi substytutami. W większo kszości
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
Bardziej szczegółowoPODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH
PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.
TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoMikroekonomia B Mikołaj Czajkowski
Mikroekonomia.10-11 Mikołaj Czajkowski Teoria gier Teoria gier Teoria gier analiza strategicznego zachowania uczestników, których decyzje wzajemnie wpływają na wyniki Teoria decyzji decyzje mogą być podejmowane
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoOPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie
Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw
Bardziej szczegółowoStochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Bardziej szczegółowo(aby była to nauka owocna) 23 lutego, 2016
(aby była to nauka owocna) Uniwersytet Warszawski 23 lutego, 2016 1 / 21 2 / 21 3 / 21 Plan zajęć - etap (1) 1. Technologia 1 (czynniki produkcji, funkcja produkcji, krótki / długi okres, produktywność
Bardziej szczegółowo-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Bardziej szczegółowob) [3 punkty] Jaka jest oczekiwana wartość doskonałej informacji? 0,875 (=3,625 2,75)
Imię Metody Analizy Decyzji Nazwisko II termin: 7.9. (7:) Nr indeksu Wykładowca: dr M. Lewandowski Zadanie [ punktów] Michał L. wyjeżdża na weekend do Chałup, gdzie chciałby popływać na desce windsurfingowej.
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Bardziej szczegółowoWyższa frekwencja w drugiej turze?
Warszawa, 22.05.2015 Wyższa frekwencja w drugiej turze? Frekwencja podczas I tury wyborów była najniższa spośród wszystkich wyborów prezydenckich po 1990 roku - do urn poszło zaledwie 48,8% wyborców. Jest
Bardziej szczegółowoWprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Bardziej szczegółowoOptymalizacja decyzji
Optymalizacja decyzji Dr hab. inż Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć będa dostępne na stronie www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowoStochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Bardziej szczegółowoNazwa przedmiotu. pierwsza
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu Teoria gier UTH/I/O/MT//C/ST/1(i)/ 6L /C1B.6a Game theory Język wykładowy polski Wersja przedmiotu
Bardziej szczegółowoLEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC.
LEKCJA 8 KOSZTY WEJŚCIA NA RYNEK Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. Na wysokość barier wpływ mają: - korzyści skali produkcji,
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja
TEORIA GIER W NAUKACH SPOŁECZNYCH Drzewka gry, indukcja wsteczna, informacja Czym się dzisiaj zajmiemy? Rozwiązywaniem gier w postaci ekstensywnej (drzewka) Historią najnowszą Indukcją wsteczną Preferencjami
Bardziej szczegółowoNie przyznawać się wsypać kompana Nie przyznawać się 1 rok 1 rok 10 lat 0 lat Wsypać kompana 0 lat 10 lat 5 lat 5 lat
TEORIA GIER Teoria gier definiowana jako teoria podejmowania decyzji w warunkach interaktywnych (gry strategicznej) lub inaczej matematyczna teoria sytuacji konfliktowych - została stworzona przez J. von
Bardziej szczegółowoTeoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1
Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w
Bardziej szczegółowoAnaliza cen duopolu Stackelbera
Na samym początku odpowiedzmy na pytanie czym jest duopol. Jest to forma rynku w której kontrolę nad nim posiadają 2 przedsiębiorstwa, które konkurują pomiędzy sobą wielkością produkcji lub ceną. Ze względu
Bardziej szczegółowoTeoria gier. Łukasz Balbus Anna Jaśkiewicz
Teoria gier Łukasz Balbus Anna Jaśkiewicz Teoria gier opisuje sytuacje w których zachodzi konflikt interesów. Znajduje zastosowanie w takich dziedzinach jak: Ekonomia Socjologia Politologia Psychologia
Bardziej szczegółowoPrzyk ladowe Kolokwium II. Mikroekonomia II. 2. Na lożenie podatku na produkty produkowane przez monopol w wysokości 10 z l doprowadzi do
Przyk ladowe Kolokwium II Mikroekonomia II Imi e i nazwisko:...... nr albumu:... Instrukcje. Bez oszukiwania. Jeżeli masz pytanie podnieś r ek e. Cz eść I. Test wyboru. 1. W zmonopolizowanej branży cena
Bardziej szczegółowoPrzykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna
Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.
Bardziej szczegółowoMetody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Bardziej szczegółowoTEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej
TEORIA GIER- semestr zimowy 2011 ZADANIA 3. Gry w postaci ekstensywnej 1. Jaś i Małgosia dostali do podziału między siebie cztery zabawki, z których każda jest niepodzielna: dwie identyczne lalki, misia
Bardziej szczegółowoElementy teorii gier
Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia
Bardziej szczegółowoEkonomia. Wykład dla studentów WPiA
Ekonomia Wykład dla studentów WPiA Wykład 7: Struktury niedoskonale konkurencyjne i ich skutki dla wielkości produkcji i poziomu cen. Konkurencja niedoskonała a oligopol. Teoria gier. Decyzje firmy o wielkości
Bardziej szczegółowo1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2
1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2
Bardziej szczegółowoKonspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier.
KRAJOWA SZKOŁA ADMINISTRACJI PUBLICZNEJ Ryszard Rapacki EKONOMIA MENEDŻERSKA Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. A. Cele zajęć. 1. Porównanie różnych struktur rynku
Bardziej szczegółowoPojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki?
Pojęcia podstawowe Teoria zbiorów przybliżonych i teoria gier Decision Support Systems Mateusz Lango 5 listopada 16 problem decyzyjny decydent analityk model preferencji (3 rodzaje) zbiór wariantów/alternatyw
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00
Bardziej szczegółowoTEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4 dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Zadanie 1 Dwie konkurencyjne firmy X i Y są dealerami dobrze znanej marki
Bardziej szczegółowoOptymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1
1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje
Bardziej szczegółowoGry z naturą 1. Przykład
Gry z naturą 1 Gry z naturą to gry dwuosobowe, w których przeciwnikiem jest natura. Przeciwnik ten nie jest zainteresowany wynikiem gry, a więc grę rozwiązuje się z punktu widzenia jednego z graczy. Optymalną
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoStrategie kwantowe w teorii gier
Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie
Bardziej szczegółowoDaria Sitkowska Katarzyna Urbaniak
Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu i kooperacji; bada jak gracze racjonalnie powinni rozgrywać grę.
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoBisymulacja. Niezawodność systemów współbieżnych i obiektowych. Grzegorz Maj Grzegorz Maj Bisymulacja
Niezawodność systemów współbieżnych i obiektowych 11.03.2009 Czym będziemy się zajomwać? Plan prezentacji Silna bisymulacja i silna równoważność Plan prezentacji Silna bisymulacja i silna równoważność
Bardziej szczegółowoElementy teorii wyboru publicznego. Marek Oramus
Elementy teorii wyboru publicznego Marek Oramus Prowadzący Marek Oramus marek.oramus@uek.krakow.pl tel. 12 293 58-40 Konsultacje: Czwartki 10:00-11:00 + do ustalenia Rakowicka 16, pok. 22 Wprowadzenie
Bardziej szczegółowo1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy...
Spis treœci Streszczenie... 11 Summary... 13 1. S³owo wstêpne... 15 1.1. Geologia gospodarcza g³ówne aspekty problematyki badawczej... 16 1.2. Zakres, treœæ i cel rozprawy... 17 2. Zarys teorii decyzji...
Bardziej szczegółowoKurs z NetLogo - część 4.
Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada
Bardziej szczegółowoGRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
Bardziej szczegółowoEKONOMIA MENEDŻERSKA
oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie
Bardziej szczegółowo