Co to jest analiza regresji?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Co to jest analiza regresji?"

Transkrypt

1

2 Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W naukach społecznych, przyrodniczych i ekonomicznych analiza regresji jest szeroko stosowana jako narzędzie badawcze pozwalające opisać i zrozumieć zjawiska wielowymiarowe. Należy też wspomnieć, że w pewnych sytuacjach stworzony model służy do dokonania prognozy (predykcji) wartości zmiennej zależnej dla nowych obiektów lub kolejnych okresów czasowych. W klasycznej analizie regresji wielokrotnej model ma postać: Y i = b 0 + b 1 X b k X k + e i i pozwala odpowiedzieć na pytanie jakie wielkości w najlepszy sposób opisują poziom zmiennej Y. Parametr b 0 interpretujemy jako przeciętny (oczekiwany) poziom zmiennej objaśnianej Y gdy wszystkie zmienne objaśniające przyjmują wartość 0. Wzrost wartości zmiennej objaśniającej X i o jednostkę powoduje zmianę wartości oczekiwanej zmiennej zależnej o b i jednostek, przy założeniu, że pozostałe zmiennej niezależne zachowują stałe wartości.

3 Analiza regresji w analizie szeregów czasowych W przypadku analizy szeregów czasowych, rolę zmiennej objaśniającej pełni zmienna czasowa (oznaczana czasami symbolem t). Model trendu liniowego dla szeregu czasowego przyjmuje więc postać: Y t = b 0 + b 1 t + e t Parametr b 1 interpretować można jako średnioroczny przyrost prognozowanej wartości w jednostce czasu.

4 Jak wyznaczany jest model regresji (MNK)? Wzór modelu regresji jest wyznaczany w taki sposób, by zminimalizować różnicę pomiędzy wartością modelowaną a faktyczną wartością zmiennej zależnej (Y) dla poszczególnych obiektów (w analizie danych czasowych, dla poszczególnych okresów czasowych). W praktyce, najczęściej przedmiotem optymalizacji jest suma kwadratów odchyleń wartości modelowanych o rzeczywistych pomiarów (tzw. suma kwadratów reszt). Taka metoda dopasowywania modelu do danych nosi nazwę METODY NAJMNIEJSZYCH KWADRATÓW (MNK).

5 Sposoby wyznaczania modelu regresji W programie STATISTICA analiza regresji dostępna jest w module REGRESJA WIELORAKA. Możliwość wyznaczenia wybranych modeli liniowych i nieliniowych względem jednej zmiennej niezależnej (a więc na przykład dla szeregów czasowych), udostępniona jest także podczas graficznej analizy danych (za pomocą wykresów liniowych i wykresów rozrzutu). Opis możliwości wykorzystania tych narzędzi do sporządzania prostych prognozo przedstawiono na poprzednim wykładzie. Moduł REGRESJA WIELORAKA pozwala na: wyznaczenie wzoru modelu regresji; ocenę jego dopasowania do danych; ocenę istotności poszczególnych zmiennych; przeprowadzenia tzw. analizy reszt i określenie wpływu na kształt modelu ewentualnych obserwacji odstających; sporządzenie prognozy punktowej i przedziałowej (z określonym poziomem ufności).

6 Czy modele muszą mieć postać liniową? W programie STATISTICA procedura estymacji i weryfikacji modelu liniowego dokonywana jest w module REGRESJA WIELOKROTNA (warto wspomnieć, że możliwość oszacowania parametrów modelu regresji i pewnych podstawowych miar jakości jego dopasowania stwarza także arkusz kalkulacyjny Excel). Chociaż natura modelu podlegającego analizie musi być liniowa to za pomocą formuł arkusza danych bez większych trudności możemy wprowadzać także bardziej skomplikowane typy modeli: np. model kwadratowy, wielomianowy, hiperboliczny (wystarczy w tym celu dodać nową zmienną i nadać jej wartości według interesującej nas formuły). Bardziej wyrafinowanym narzędziem służącym do konstruowania modeli nieliniowych jest moduł ESTYMACJI NIELINIOWEJ, który będzie omawiany na kolejnym wykładzie.

7 Miary jakości modelu (dopasowania do danych) Współczynnik determinacji R 2 - parametr ten interpretowany jest zwykle jako procent zmienności cechy zależnej wyjaśnianej przez model. Tak więc jest to miernik jakości dopasowania modelu do danych i jako taki może służyć do porównywania kilku modeli i wyboru najlepszego. Współczynnik determinacji przyjmuje wartości od 0 do 1 (bywa też wyrażany w procentach), przy czym oczywiście im jego wartość jest większa tym model lepiej dopasowany. Współczynnik korelacji wielorakiej (R) - stopień zależności pomiędzy zmienną zależną, a wszystkimi cechami niezależnymi uwzględnionymi w modelu jest określany poprzez wartość R, zwaną współczynnikiem korelacji wielorakiej. Obliczamy go pierwiastkując współczynnik determinacji, tak więc przyjmuje on wartości z przedziału [0, 1], przy czym 0 oznacza brak korelacji, zaś wartości 1 to idealny związek liniowy. W sytuacji, gdy mamy jedną zmienną objaśniającą dodatkowo możemy ustalić znak współczynnika korelacji, który będzie taki sam jak znak współczynnika regresji b 1. Jeśli zmiennych objaśniających jest więcej, znaku współczynnika korelacji wielorakiej nie da się ustalić, gdyż różne cechy mogą w różny sposób wpływać na zmienną zależną.

8 Co się dzieje, gdy zwiększamy liczbę zmiennych w modelu? Współczynnik R 2 rośnie wraz ze zwiększaniem liczby zmiennych w modelu. Gdybyśmy więc jako jedyne kryterium jakości dopasowania przyjęli jego wartość, wprowadzimy do modelu wszystkie dostępne cechy objaśniające. W ten sposób co prawda otrzymalibyśmy model najlepiej dopasowany, lecz jego złożoność nie pozwoliłaby wyciągnąć sensownych wniosków praktycznych, ponadto wzajemne oddziaływania licznych zmiennych niezależnych zaburzały by ich relację z cechą zależną. W statystyce (i nie tylko) powinna obowiązywać (skądinąd bardzo sympatyczna zasada KISS): Keep It Sophistically Simple. Liczba samochodów używanych sprowadzonych z UE Maj-2004 Cze-2004 Lip-2004 Sie-2004 Wrz-2004 Paź-2004 Lis-2004 Gru-2004 Do zaznaczonych na wykresie siedmiu obserwacji dopasowano dwa modele: liniowy i wielomian stopnia 5-go. Bez trudu można zauważyć, że bardziej złożony model pasuje do danych niemal idealnie. Czy jednak prognoza na kolejne miesiące dokonana na jego podstawie będzie miała jakąkolwiek wartość?

9 Istotność statystyczna zmiennych Prawdopodobieństwo testowe p dla zmiennych występujących w modelu - Każde zjawisko da się wyjaśnić jeżeli przyjmiemy odpowiednio dużo zmiennych objaśniających taki wniosek można wysnuć na podstawie przykładu przedstawionego na poprzednim slajdzie. Włączenie do modelu kolejnych potęg zmiennej czasowej (czyli de facto) wprowadzenie doń kolejnych zmiennych, spowodowało, iż model był optymalnie dopasowany do danych. Jednakże relacja ilości danych do liczby zmiennych, nawet intuicyjnie, była zbyt niska. W praktyce, ocena wzrokowa modelu nie zawsze jest możliwa i nie zawsze wnioski z niej płynące są jednoznaczne. Aby określić, czy poszczególne zmienne w modelu regresji opisują jakąś część zmienności cechy zależnej (Y), przeprowadza się odpowiednie testy statystyczne. W szczególności poddaje się weryfikacji hipotezę, według której wkład danej zmiennej w wyjaśnianie zmienności cechy Y jest nieistotny. Wynikiem testu statystycznego jest prawdopodobieństwo testowe p, którego niskie wartości pozwalają odrzucić nieciekawą hipotezę o braku znaczenia zmiennej objaśniającej w modelu.

10 Prognozowanie na podstawie modelu regresji Przewidywanie wartości zmiennej zależnej dla konkretnej jednostki z rozpatrywanej populacji jest możliwe jedynie wtedy, gdy model jest dobrze dopasowany, to znaczy wartość współczynnika determinacji daje pożądaną dokładność prognozy. Jak zawsze w statystyce prognoza musi być obarczona pewnym błędem. Miarą jakości prognozy jest tzw. poziom ufności (standardowo przyjmowana jego wartość to 95%=0,95). Przedział dla oceny wartości przeciętnych zmiennej zależnej nazywany jest przedziałem ufności a dla konkretnej jednostki statystycznej przedziałem predykcji. Przedział predykcji jest zawsze szerszy od przedziału ufności.

11 Przykłady zastosowania modeli regresji w analizie zjawisk czasowych Analiza dotyczy danych o liczbie samochodów osobowych, zarejestrowanych w Polsce w latach Celem analizy będzie sporządzenie prognozy tej wielkości na lata Do analizy zastosowane zostaną następujące narzędzia statystyczne: wykresy liniowe (wraz z wizualizacją wybranych modeli regresji); indeksy dynamiki; szczegółowa analiza regresji.

12 Prezentacja graficzna Za pomocą wykresu liniowego wraz z nałożonym nań wykresem słupkowym, przedstawiono informacje o: bezwzględnej liczbie samochodów osobowych dynamice zmian w ujęciu rok do roku. Analiza graficzna pozwala wyodrębnić wyraźny trend wzrostowy. Na tej podstawie można domniemywać, iż w kolejnym roku liczba zarejestrowanych samochodów wzrośnie. Z drugiej strony, w 2009 roku dynamika wzrostu liczby samochodów była bardzo niska, co jednak może być uznane za pewne losowe odchylenie od wyraźnego trendu widocznego we wcześniejszych latach.

13 Graficzna wizualizacja wybranych modeli Wykorzystując możliwość dopasowania pewnych modeli trendu bezpośrednio na wykresie liniowym, sporządzono graficzną prezentację dopasowania do danych rzeczywistych trendu liniowego i kwadratowego. Na wykresie uwidoczniono dopasowany do analizowanego szeregu model liniowy i model kwadratowy trendu. Analiza graficzna pozwala stwierdzić, iż model kwadratowy jest znacznie lepiej dopasowany do danych, co jest szczególnie istotne bardzo dobrze odzwierciedla od zmiany liczby samochodów osobowych w ostatnich okresach objętych badaniem.

14 Analiza regresji przygotowanie danych i wybór zmiennych W module REGRESJA WIELORAKA programu STATISTICA dostępne są liczne miary dopasowania modelu do danych, oceny jego istotności statystycznej. Szczegółowa analiza reszt pozwala na wykrycie obserwacji odstających od modelu, zaś narzędzia predykcji pozwalają na wyznaczenie nie tylko prognozy punktowej ale także zakresu ufności dla prognozy (tak zwanej prognozy przedziałowej). Aby przeprowadzić analizę regresji w arkuszu danych, musi występować explicite zmienna zawierająca informacje o numerze okresu czasowego. W tym celu w arkuszu dodajemy nową kolumnę i wypełniamy ją kolejnymi wartościami. Następnie w oknie wyboru zmiennych wskazujemy zmienną zależną i niezależną.

15 Analiza regresji kluczowe wyniki Po przejściu do WYNIKI REGRESJI WIELORAKIEJ w zakładce PODSTAWOWE znajdujemy PODSUMOWANIE: WYNIKI REGRESJI. Poniżej wskazano najważniejsze informacje zawarte w tym dość obfitym zestawieniu wyników, które pozwalają na ocenę jakości modelu i decyzję o jego ewentualnym wykorzystaniu do procesu prognozowania. Wartość współczynnika determinacji R 2, podawana jest zwyczajowo w procentach. Model liniowy w 96,6% opisuje zmienności liczby samochodów osobowych w latach , a więc jest znakomicie dopasowany do danych Błąd standardowy estymacji pozwala stwierdzić, iż rzeczywista liczba samochodów osobowych odstaje zwykle od wartości prognozowanej o 617 tys. pojazdów W kolumnie B podane są wartości współczynników modelu, który przyjął postać: Y = X Wartości prawdopodobieństwa testowego p pozwalają na stwierdzenie, iż zmienna czasowa jest w statystycznie istotny sposób powiązana z liczbą samochodów osobowych

16 Analiza regresji prognoza W zakładce RESZTY, ZAŁOŻENIA, PREDYKCJA znajdują się narzędzia umożliwiające wyznaczenie punktowej i przedziałowej prognozy zmiennej Y dla zadanych wartości zmiennej X (w rozważanym przykładzie liczby samochodów osobowych dla kolejnych lat. Aby wyznaczyć prognozę dla roku 2010 sprawdzamy w arkuszu danych jaki numer miała obserwacja z roku Na tej podstawie wprowadzamy w pole X wartość 21. W wynikowej tabeli podawana jest wartość przewidywana analizowanej zmiennej (czyli prognoza punktowa). W rozważanym przypadku prognoza dla roku 2010 wynosi tys. samochodów osobowych. W kolejnych dwóch wierszach podany jest przedział, w którym wartość prognozowana winna się znaleźć z 95% procentową ufnością. Podczas wyznaczania tej wartości uwzględniany jest fakt, iż model nie opisywał w 100% danych, odchylenia od modelu dla danych historycznych traktowane są jako wielkości losowe i na tej podstawie szacowany jest błąd prognozy a następnie prognoza przedziałowa. Na podstawie przeprowadzonych analiz przypuścić można, iż liczba samochodów będzie zawarta pomiędzy: a tys. pojazdów.

17 Merytoryczna weryfikacja prognozy Wyznaczona dla roku 2010 wartość prognozowana liczby samochodów osobowych jest znacząco niższa od poziomu tej cechy dla roku 2009 a nawet Trudno w tej sytuacji uznać ją za wiarygodną, gdyż analizowane zjawisko ma tę specyfikę, iż raczej trudno spodziewać się wystąpienia w jego przebiegu tak wyraźnego spadku. Powodem uzyskania tak nielogicznego wyniku jest znacząca niezgodność pomiędzy poziomem badanego zjawiska wynikającym z przyjęcia modelu liniowego a jego rzeczywistym poziomem w ostatnich latach objętych analizą. Uzyskaną prognozę należy odrzucić, decyzję o nieuwzględnianiu liniowego modelu rozwoju badanego zjawiska można było podjąć już na etapie graficznej analizy danych. Jak widać, nie zawsze model dobrze dopasowany (w sensie istotności statystycznej i wartości współczynnika determinacji) pozwala na uzyskanie dobrej prognozy.

18 Model kwadratowy Moduł REGRESJA WIELORAKA umożliwia wprowadzenie do analizy wielu zmiennych objaśniających. W szczególności, dodając w arkuszu danych odpowiednie kolumny, możliwe jest zbadanie własności modelu kwadratowego, czy dowolnego wielomianu. Każdy model postaci: Y t = b 0 + f 1 (t) b f k (t) b k + e t jest łatwo sprowadzalny do modelu liniowego.

19 Statystyczna weryfikacja modelu kwadratowego W tabeli PODSUMOWANIE WYNIKÓW REGRESJI znajdujemy podstawowe informacje o szacowanym modelu. Model paraboliczny jest lepiej dopasowany do danych niż model liniowy (R 2 = 99,0%). Należy jednak pamiętać, iż jest to rzecz oczywista, gdyż model bardziej złożony (a funkcja kwadratowa zawiera w sobie funkcję liniową, zawsze będzie się charakteryzował lepszym dopasowaniem do danych. Aby znaleźć rozsądny kompromis pomiędzy złożonością modelu i jego dopasowaniem do danych, należy wziąć pod uwagę istotność zmiennych niezależnych. Parametry modelu nie mają tak łatwej interpretacji praktycznej, jak w przypadku modelu liniowego. Zarówno komponent liniowy jak i kwadratowy w analizowanym modelu są istotne statystycznie. Ze statystycznego punktu widzenia, model można wykorzystać do prognozy.

20 Prognoza na podstawie modelu kwadratowego Podstawiają odpowiednie wartości za zmienne X oraz X 2 dokonujemy prognozy liczby samochodów na rok Do modelu podstawiamy numer odpowiadający kolejnemu rokowi, czyli wartość 21. Oczywiście za zmienną X 2 podstawiamy 441 (21 2 ) Na podstawie modelu kwadratowego, otrzymujemy prognozę punktową liczby samochodów osobowych zarejestrowanych w Polsce w roku 2010 na poziomie tys. pojazdów, przy 95% przedziale ufności na poziomie tys. pojazdów.

21 Bardziej skomplikowane modele Z technicznego punktu widzenia, nic nie stoi na przeszkodzie, by do modelu wprowadzić kolejne potęgi zmiennej czasowej. Poniżej zamieszczono przykładowe wyniki dla modelu, w którym uwzględniono zmienne X, X 2 oraz X 4. Zmienna X 2 okazała się być nieistotna statystycznie po wprowadzeniu do modelu zmiennej X 4, a więc należy ją wykluczyć z analizy i ponownie dokonać obliczeń. Po wyeliminowaniu zmiennej X 2 pozostałe czynniki są istotne statystycznie. Jakość dopasowania modelu jest bardzo wysoka współczynnik determinacji wynosi aż 99,5%.

22 Ponieważ GUS udostępnia już informację o liczbie samochodów zarejestrowanych na koniec 2010 r. ( tys.) możliwa jest weryfikacja prognoz dla tego okresu. Poniżej zestawiono błąd procentowy poszczególnych prognoz : model liniowy 8,2% model kwadratowy 0,8% model X i X 4-3,2% Zestawienie prognoz Poniżej zestawiono prognozy liczby samochodów osobowych na lata uzyskane za pomocą modelu liniowego, kwadratowego i zredukowanego wielomianu stopnia czwartego. Rok Model liniowy Model kwadratowy Model X i X Jak widać, zdecydowanie najlepsze przewidywania dał model kwadratowy, którego prognozę należałoby jedynie nieznacznie zwiększyć w celu otrzymania faktycznie zaobserwowanej wielkości. Model liniowy dał prognozy zdecydowanie zaniżone (była już o tym mowa wcześniej), zaś model X i X 4 mimo najlepszego dopasowania do danych, przeszacowuje liczbę samochodów o 3,2%, co wynika niewątpliwie z matematycznej własności szybko rosnącej funkcji wielomianowej 4. stopnia.

23 Uwagi końcowe Analizując otrzymane wyniki, należy pamiętać, iż zostały one uzyskane jedynie na podstawie informacji zawartych w wyjściowym szeregu czasowym nie uwzględniono żadnych czynników zewnętrznych. Tymczasem prognozując sytuację na rynku motoryzacyjnym należałoby wziąć pod uwagę jeszcze wiele innych czynników. Dla przykładu: możliwości kredytowe Polaków w kolejnych okresach - w tym kontekście istotne mogą być też zmiany wynagrodzeń, sytuacja na rynku pracy i działalność banków; zmiany demograficzne spadek liczności populacji i jej starzenie się; nasycenie rynku motoryzacyjnego - porównanie wskaźnika liczby samochodów na 1 tys. mieszk. z innymi państwami europejskimi; przewidywania odnośnie cen paliw; atrakcyjność konkurencyjnych środków transportu (w szczególności transportu kolejowego).

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1

W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1 Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Wykład 5: Analiza dynamiki szeregów czasowych

Wykład 5: Analiza dynamiki szeregów czasowych Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu

Bardziej szczegółowo

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y). Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Wykład 4: Wnioskowanie statystyczne Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

Analiza współzależności dwóch cech I

Analiza współzależności dwóch cech I Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: nnehrebecka@wne.uw.edu.pl - strona internetowa: www.wne.uw.edu.pl/nnehrebecka - dyżur: wtorek 18.30-19.30 sala 302 lub 303 - 80% oceny: egzaminy -

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40

Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40 Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych. Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński

Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych. Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński Streszczenie. W uprawach szklarniowych sałaty pojawia się następujący problem: kiedy

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY

MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY WYKORZYSTANIU METOD STATYSTYCZNYCH mgr Małgorzata Pelczar 6 Wprowadzenie Reforma służby zdrowia uwypukliła problem optymalnego ustalania kosztów usług zdrowotnych.

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Wprowadzenie do analizy dyskryminacyjnej

Wprowadzenie do analizy dyskryminacyjnej Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo