Ekonometria. Robert Pietrzykowski.
|
|
- Gabriel Gajewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ekonometria Robert Pietrzykowski
2 Na dziś Sprawy bieżące Prowadzący Zasady zaliczenia Konsultacje Inne 2
3 Sprawy ogólne czyli co nas czeka Zaliczenie przedmiotu Zaliczenie części ćwiczeniowej (50%) Zaliczenie części wykładowej (50%) Obecność na zajęciach Dopuszczalna liczba nieobecność na zajęciach wynosi 20% z całości. Powyżej tej liczby student zostaje skreślony z listy studentów i jest nie klasyfikowany. (8 zjazdów czyli 20% to 1,6 zjazdu, a zatem uznajemy 1 nieobecność na zajęciach jako dopuszczalną)
4 Literatura G.S. Maddala Ekonometria, PWN, Warszawa 2008 Redakcja K. Kukuła, Wprowadzenie do ekonometrii, PWN, Warszawa 2009 Strahl D., Sobczak E., Markowska M., Bal-Domańska B. Modelowanie ekonometryczne z excelem, Wydawnictwo AE we Wrocławiu, Wrocław 2004 Piłatowska M. (2006): Repetytorium ze statystyki, PWN Aczel A. D. (2006): Statystyka w zarządzaniu, PWN materiały wykładowe
5 Wiedza potrzebna Statystyka Współczynnik korelacji Pearsona Rozkład normalny Metoda MNK Przedziały ufności Weryfikacja hipotez Ekonomia Podstawowe wiadomości
6 6
7 7
8 MODEL EKONOMICZNY (wiedza podstawowa) MODEL EKONOMETRYCZNY Badanie poprawności modelu: 1. Wyznaczenie parametrów 2. Analiza resztowa TAK Czy udało się określić poprawny model? NIE Wykorzystanie modelu do prognozowania i odpowiedzi na postawione hipotezy badawcze
9 Wybór modelu Oszacowanie parametrów modelu Zbadanie istnienia zależności Ocena jakości dopasowania modelu Sprawdzenie poprawności modelu Prognoza, predykcja i etc.
10 10
11 11
12
13 13
14 14
15 Cena Popyt 1 10, ,16 1 9, , , , , , , , , , , , , , , , , , , , , , , , , , , , y = 3,1385x + 21,04 R² = 0,
16
17 Cena Popyt 1 10, ,16 1 9, , , , , , , , , , , , , , , , , , , , , , , , , , , ,37 Sumy kw. Stopnie swob. Średnie kwad. Femp Fkryt Model 13790, ,38069 Błąd 3679, , Ogółem 17469, H 0 : 1 =0 104,94 > 4, ,94 4,196 Hipotezę o braku zależności opisywaną modelem liniowym regresji należy odrzucić
18 Analiza reszt Badanie normalności rozkładu reszt Badanie stabilności wariancji reszt Badanie losowości reszt Badanie autokorelacji reszt Badanie poprawności zastosowanego modelu
19 Test RESET (Regression Specification Error Test) Test błędu specyfikacji postaci równania regresji Ramsey a czyli jest to test niewłaściwej specyfikacji modelu TEST RESET oparty jest na regresji rozszerzonej o zbiór zmiennych powstałych z oszacowania zmiennej objaśnianej y w postaci jej potęg. Test RESET jest testem dużej mocy. Nie wykazuje jaki czynnik powoduje, że model jest niepoprawny. Inne testy: White a, test adekwatności Błędy sprawdzane tym testem: Błąd poprawnej specyfikacji matematycznej równania regresji. Oznacza to, że jedna lub wszystkie zmienne równania regresji powinny być transformowane, do postaci funkcji potegowej, logarytmiczne lub innej. Błąd pominiętych zmiennych. Występuje jeżeli w zmiennych objaśnianych pominiemy istotne zmienne. Błąd korelacji miedzy zmiennych objaśniających i błędów losowych. Powoduje to niepoprawność działania testów ze względu na uzyskanie metodą MNK estymatorów obciążonych i niezgodnych.
20 Test RESET (Procedura testowania.) 1. Wyznaczamy wartości ŷ rozwiązując wyjściowe równanie regresji y = x + 2. Wartość ŷ podnosimy do drugiej i trzeciej potęgi ŷ 2, ŷ 3 3. Szacujemy nowe równanie regresji powiększone o sztucznie utworzone zmienne y = x + 2 ŷ ŷ Dla obu funkcji regresji (pkt 1 i 3) wyznaczamy współczynniki determinacji D 1 i D 2 5. Stawiamy hipotezę zerową, że równanie regresji jest poprawnie wyspecyfikowane H0: 2 = 3 = 0 6. Statystyka testowa: F = [(D 2 D 1 )/2]/[(1- D 2 )/(n-k)] 7. Wartość krytyczna F( ; 2; n-k) gdzie k liczba zmiennych objaśnianych w równaniu rozszerzonym 8. Weryfikujemy hipotezę zerowa. Jeśli obliczone F jest większe od wartości krytycznej, to odrzucamy hipotezę zerowa o poprawności wyspecyfikowania równania wyjściowego.
21
22
23 Test Goldfelda-Quandta Test sprawdzający jednorodność wariancji reszt homoskedastyczność. Zastosowanie tego testu wymaga wyodrębnienie dwóch podgrup {A, B} takich, w których możemy podejrzewać różnic między wariancjami w tych grupach. Weryfikujemy hipotezę: H 0 : 2 A = 2 B alt. H 1 : 2 A 2 B Test Godfelda-Quandta sprawdza się w przypadku kiedy zróżnicowanie składnika losowego zależy od jednej zmiennej objaśniającej. Inne testy: Serii, Breuscha-Pagana, White a, Harveya-Godfreya Błędy sprawdzane tym testem: Heteroskedastyczność czyli brak jednorodności wariancji reszt jest często obserwowana dla danych przekrojowych np. model kosztów całkowitych w zależności od wielkości produkcji. Model opisujacy wydatki gospodarstw domowych w zależności od dochodu. Wariancja wielkości wydatków w rodzinach o niskich dochodach jest niższa niż w gospodarstwach o dochodach wyższych.
24 Test Goldfelda-Quandta 1. Porządkujemy reszty niemalejąco według zmiennej objaśniającej którą podejrzewamy o powodowanie heteroskedastyczności. 2. Wybieramy dwie skrajne podpróby. Pominięta liczba obserwacji nie powinna być większa niż 1/3N. 3. Dla każdej podpróby szacujemy wariancje resztowe S 2 1 i S Jeżeli badana hipoteza jest prawdziwa to S 2 1/S 2 2 ma rozkład F (w liczniku umieszczamy zawsze wiekszą wariancję) 5. Hipotezę odrzucamy jeżeli F(emp) jest większe od F( ; n 1 -k-1; n 2 -k-1)
25 Normalność rozkładu reszt Hipoteza: reszty maja rozkład normalny Test Shapiro-Wilka Inne testy: Jarque-Bera, Kołomogorowa-Lilieforsa, 2 Hipotezę odrzucamy jeżeli:
26 Cena Popyt Y(X=x) ei 1 10,91 10,91-13, ,16 13,16-11,02 1 9,86 9,86-14, ,66 17,66-6, ,89 12,89-11, ,87 31,87-4, ,21 39,21 2, ,11 32,11-4, ,78 34,78-1, ,09 34,09-2, ,02 65,02 15, ,83 62,83 13, ,52 61,52 12, ,84 62,84 13, ,61 58,61 9, ,39 67,39 5, ,63 69,63 7, ,71 74,71 12, ,33 73,33 11, ,05 79,05 17, ,62 75,62 1, ,82 79,82 5, ,74 80,74 6, ,17 77,17 2, ,1 84,1 9, ,75 69,75-17, ,44 67,44-19, ,22 70,22-16, ,2 77,2-9, ,37 73,37-13,58 i ai:n ei:n ei:n 0,41 (17,21 ( 19,51)) 1 0,41 17,21-19,51 15, ,28 15,73-17,20 9, ,24 13,55-16,73 7, ,21 13,54-14,32 5, ,19 12,87-13,58 4, ,17 12,23-13,27 4, ,15 11,49-11,29 3, ,13 9,71-11,02 2, ,12 9,32-9,75 2, ,10 7,79-6,52 1, ,09 6,35-4,86 0, ,07 5,55-4,62 0, ,06 5,43-2,64 0, ,05 2,78-1,95 0, ,04 2,48 1,23 0,0452 ( ) ,5961 = > HIPOTEZY NIE ODRZUCAM
27 Test Durbina-Watsona Hipoteza: brak autokorelacji reszty rzędu pierwszego Statystyka d=[0, 4] ponieważ Postać testu: Hipoteza H 0 : 1 = 0; H 1 : 1 > 0; d < 2 Hipoteza H 0 : 1 = 0; H 1 : 1 < 0; d > 2 (d =4 - d) Wartości tablicowe d L (K, ); d U (K, )
28 Badanie autokorelacji d > d U (K, ) brak podstaw do odrzucenia hipotezy o braku autokorelacji rzędu pierwszego d < d L (K, ) hipotezę o braku autokorelacji rzędu pierwszego odrzucamy d L (K, ) d d U (K, ) nie można przesądzić o braku lub istnieniu autokorelacji rzędu pierwszego
29 Test Durbina-Watsona Inne testy: Breuscha-Godfrey a (test mnożników Lagrange a LM) Wady testu Durbina-Watsona: Częsta sytuacja kiedy występuje brak możliwości rozstrzygnięcia testu. Test wykrywa tylko autokorelację pierwszego rzędu. W danych kwartalnych możemy oczekiwać autokorelacji równej cyklom sezonowym. Zaufanie do testu można mieć gdy zmienne objaśniające są stałe w powtarzalnych próbach, a nie losowych. Test jest bardzo czuły gdy niespełnione jest założenie o normalności zaburzeń losowych.
30 ei ei-1 (ei-ei-1) (ei-ei-1)^2 ei^2-13, ,04-11,02-13,27 2,25 5,06 121,40-14,32-11,02-3,30 10,89 205,01-6,52-14,32 7,80 60,84 42,49-11,29-6,52-4,77 22,75 127,42-4,86-11,29 6,43 41,29 23,64 2,48-4,86 7,34 53,88 6,14-4,62 2,48-7,10 50,41 21,37-1,95-4,62 2,67 7,13 3,81-2,64-1,95-0,69 0,48 6,98 d = 0, = 0,7387 d L = 1,3520; d U = 1,4894 0,5269 < 1,3520; Hipotezę o braku autokorelacji rzędu pierwszego odrzucamy, a zatem stwierdzamy istnienie autokorelację rzędu pierwszego. Współczynnik d jest mniejszy od 2 mamy autokorelację dodatnią (H 0 : 1 = 0; H 1 : 1 > 0; d < 2)
31 Badanie stabilności wariancji reszt Hipoteza: reszty mają stabilną wariancję (homoskedastyczność) Test Serii, Test Goldfelda-Quandta Hipotezę odrzucamy jeżeli
32 A Z Xi ei Serie ,27 B ,02 B ,32 B 0 1 6,52 A ,29 B 1 5 4,86 A 1 5 2,48 A 0 5 4,62 A 0 5 1,95 A 0 5 2,64 A ,73 B 1 =JEŻELI(D40<>D39;1;0) Me 10,38 Liczba elementów A 15 Liczba elementów B 15 r(15,15, 0.025) r(15,15, 0.975) brak podstaw do odrzucenia hipotezy
33 Badanie losowości reszt Hipoteza: reszty są losowe Test Serii Hipotezę odrzucamy jeżeli
34 Xi ei Serie ,27 A 1 A 1-11,02 A ,32 A 0 1-6,518 A ,29 A 0 5-4,862 A 0 5 2,4778 B 1 5-4,622 A 1 =JEŻELI(D40<>D39;1;0) Liczba elementów A 14 Liczba elementów B 16 r(14,16, 0.025) r(14,16, 0.975) Z 5-1,952 A 0 5-2,642 A ,734 B 1 Hipotezę odrzucamy
35 Badamy model liniowy: WYNIKI ANALIZY RESZT normalność rozkładu reszt + stabilność wariancji reszt + losowość reszt autokorelacja reszt WNIOSEK warunek niespełniony warunek niespełniony Model liniowy nie powinien być stosowany do opisu tej zależności.
36 36
37 37
38 Inne funkcje 38
39 Funkcja Törnquista I 39
40 średnie zyski ze sprzedaży = 50,1680-0,2025 liczba reklamowanych produktów
41 41
42 42
43 Cena Popyt 1 10, ,16 1 9, , , , , , , , , , , , , , , , , , , , , , , , , , , , y = 3,1385x + 21,04 R² = 0,
44 Cena Popyt 1 10, ,16 1 9, , , , , , , , , , , , , , , , , , , , , , , , , , , ,37 Sumy kw. Stopnie swob. Średnie kwad. Femp Fkryt Model 13790, ,38069 Błąd 3679, , Ogółem 17469, H 0 : 1 =0 104,94 > 4, ,94 4,196 Hipotezę o braku zależności opisywaną modelem liniowym regresji należy odrzucić
45 Wykres reszt
46 Niepoprawny wykres reszt
47 PYTANIA 1 1. Kiedy do badania zależności można zastosować współczynnik korelacji Pearsona. 2. Podaj używane zamiennie nazwy: zmiennej zależnej, niezależnej i błędu losowego. 3. Podaj podział modeli ekonometrycznych 4. Narysuj na oddzielnych wykresach uwzględniając prostą regresji, przypadek 1 = 0, 1 > 0 i 1 < Podaj interpretację współczynnika regresji. 6. Wyjaśnij na czym polega metoda MNK. 7. Wyjaśnij co mierzy współczynnik determinacji. 8. Zapisz postać liniowego modelu funkcji regresji. 9. Jakim testem można zweryfikować hipotezę H 0 1 = Czy klasyczną teorię Keynesa dotyczącą konsumpcji można próbować przybliżyć stosując liniowe równanie regresji. Odpowiedź uzasadnij. 11. Jak zinterpretować 1 w równaniu liniowym regresji, w którym y to wydatki konsumpcyjne, a x to dochód? 47
48 PYTANIA Wyjaśnij pojęcie reszta. 13. W jakim celu przeprowadza się analizę residualną. 14. Wymień znane ci testy wykorzystywane w analizie resztowej. 15. Narysuj niepoprawny wykres reszt. Opisz jego osie. 16. Wykorzystując metodę MNK, dla modelu liniowego otrzymano następujące reszty [ 1, 2, 0, 2, 1, 1]. Czy w oparciu o otrzymane reszty można stwierdzić, ze wybrany model jest poprawny? Odpowiedz uzasadnij 17. Zapisz postać hipotezy dla testu Goldfelda Quandta. 18. Wyjaśnij jaką hipotezę weryfikuje test RESET 19. Jaką hipotezę weryfikuje test Jarque-Bera 20. Narysuj wykres reszt dla modelu w którym dla małych wartości zmiennej niezależnej wartości zmiennej zależnej są systematycznie zawyżane w stosunku do wartości rzeczywistych, a dla dużych wartości zmiennej niezależnej zachodzi sytuacja odwrotna. 21. Narysuj wykres reszt na którym można zaobserwować jak wraz ze wzrostem wartości zmiennej niezależnej zwiększa się zakres zmienności reszt. 48
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Przykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006
Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Proces modelowania zjawiska handlu zagranicznego towarami
Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.
Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF
Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania
Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:
Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
przedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007
Weryfikacja modelu Paweł Cibis pawel@cibis.pl 12 maja 2007 1 Badanie normalności rozkładu elementu losowego Test Hellwiga dla małej próby Test Kołmogorowa dla dużej próby 2 Testy Pakiet Analiza Danych
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
2008-03-18 wolne wolne 2008-03-25 wolne wolne
PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Estymator jest nieobciążony, jeśli jego wartośd oczekiwana pokrywa się z wartością szacowanego parametru.
ZAŁOŻENIA ESYMAORA MNK. E(u) średnia wartośd oczekiwana równa Zakłócenia (składniki losowe, reszty) nie wykazują żadnej tendencji do odchylania wartości empirycznych zmiennej objaśnianej od wartości teoretycznych
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text
Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12
Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
METODY ILOŚCIOWE W ZARZĄDZANIU
1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
EKONOMETRIA prowadzący: Piotr Piwowarski
EKONOMETRIA prowadzący: Piotr Piwowarski Termin konsultacji: poniedziałek 13:15 14:45 wtorek 13:15 14:45 pokój 1101/1102 jedenaste piętro e-mail: piotr.piwowarski@poczta.umcs.lublin.pl strona internetowa:
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja