Defekty punktowe i domieszkowanie kryształów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Defekty punktowe i domieszkowanie kryształów"

Transkrypt

1 Defety puntowe i domieszowanie ryształów Keshra Sangwal, Politechnia Lubelsa I. Rodzaje defetów puntowych II. Statystya defetów puntowych III. Dyfuzja w ryształach IV. Metody wytwarzania defetów puntowych V. Defety puntowe podczas wzrostu VI. Domieszowanie ryształów Współczynni podziału domieszi Równowagowy współczynni segregacji Efetywny współczynni segregacji Współzależność pomiędzy eff a szybości wzrostu ściany R Przesycenie progowe dla wychwytywania domieszi podczas wzrostu Literatura 1) D. Hull, Dysloacje (PWN, 1982). 2) M. Suszyńsa, Wybrane zagadnienia z fizyi defetów sieciowych (Ossolineum, 1990). 3) J.C. Brice, The Growth of Crystals from Liquids (North-Holland, 1973). 4) A.A. Chernov (ed.), Modern Crystallography: Crystal Growth (Springer, 1984). 5) K. Sangwal, Additives and Crystallization Processes: From Fundamentals to Applications, Wiley, Chichester, 2007.

2 I. Rodzaje defetów w puntowych Sąd nazwa defetów puntowych? Dosonała sieć rystaliczna rozmieszczenie puntów w 3D W sieci 3D braujące punty lub rozmieszczenie braujących puntów w pozycjach międzywęzłowych

3 Przyłady defetów puntowych Metale Kryształ jonowy 1:1

4 Defety Schotty ego i Frenla Przyład: KCl:CaCl 2 C. Kittel, Wstęp do fizyi ciała stałego (PWN, 1970).

5 II. Statystya defetów w puntowych Naturalne źródła defetów puntowych - Istnienie fonony - Absorpcja fononów E sr energia atywacji sou waansu E st energia tworzenia waansu (= E v )

6 Równowaga termiczna Gęstość waansów Parametry termodynamiczne: Swobodna energia termiczna: F Energia wewnętrzna: E Entropia uładu: S Równanie energii swobodnej: F = E-TS. Zmiana energii swobodnej ryształu: F = E - T S. E = ne v (1 - αt), S = S onf + S ter, gdzie: S onf = ln[(n+n)!/n!n!], S ter = 3z ln(ν/ν ) Dla metali: n S = exp N n + n N exp( E v B ter / B αe exp B Podręczniowe równanie T ). v exp Ev T B.

7 Gęstość innych defetów Gęstość defetów Frenla w metalach: n E exp. 1/ 2 ') 2 = F K NN T ( B Gęstość defetów Schotty ego w ryształach jonowych n N Ep = K exp 2BT.

8 III. Dyfuzja w ryształach ach

9 IV. Metody wytwarzania defetów puntowych 1. Gwałtowne ochładzanie z wysoiej temperatury 2. Silne odształcenie tzn. obróba plastyczna (ucie lub walcowanie) 3. Bombardowanie jonami lub wysooenergetycznymi naładowanymi cząstami 4. Procesy wzrostowe (domieszowanie)

10 V. Defety puntowe podczas wzrostu Szorstie stopnie: - waanse, Mechanizm I: Strutura stopni elementarnych - domieszi. J.J. De Yoreo et al., w: Advances in Crystal Growth, Eds. K. Sato et al., Elsevier, 2001, p

11 Przyłady obrazów segregacji defetów puntowych O czym będzie mowa? Setorowa niejednorodność Strefowa niejednorodność Pasma wzrostu (Growth bands), stryjacje domieszowe (Impurity striations)

12 Przyłady i uwagi Współczynni segregacji zależy od strutury i różnicy rozmiarów atomów, cząstecze, jonów we wspólnej sieci rystalicznej. Brice (1973)

13 VI. Domieszowanie ryształów Podstawowa literatura: K. Sangwal, Addititives and Crystallization Processes: From Fundamentals to Applications, Wiley, Chichester, 2007, chap. 9. Duże deformacje sieci nie sprzyjają włączenia atomów domieszowych w niej. Włączenia domieszi w sieci: 1)Pojedyncze atomy, jony, cząsteczi lub omplesy o rozmiarach cząsteczowych np. dimery, i trymery; homogeniczne wychwytywanie domieszi. Powstaje roztwór stały gdy c isolid = c iliquid (wychwyt domieszi jest termodynamicznie równowagowy) lub c isolid c iliquid (wychwyt nierównowagowy). 2)Inluzje oloidalne o rozmiarach mirometrowych; heterogeniczne wychwytywanie domieszi. Stężenie i rozład homogenicznie i niehomogenicznie wychwytywanej domieszi są różne w objętości ryształu z powodu termicznej nierównowagi na granicy ryształ-ciecz. Niejednorodny wychwyt: 1) w różnych setorach wzrostu ryształu (niejednorodność setorowa), 2) w danym setorze wzrostu (niejednorodność strefowa; growth bands, impurity striations).

14 Współczynni podziału domieszi Gdy domiesza C (i) wchodzi w substancji A (s): współczynni segregacji d = [C solid [Csolid ] ] + [A solid [C ] liquid [C ] + [A liquid ] liquid ]. (1) Stężenie [C] i [A] w ułamach atomowych/jonowych, ułamach wagowych lub wyrażone jao masa do objętości Gdy [C] << [A], = [C d [C solid liquid ] [A ] [A liquid solid ]. ] W przypadu wzrostu ze stopu [C d [C solid liquid ]. ] (2) (3) Gdy stężenie jest w ułamach molowych = d x x is il / x / x ss sl. (4) S solid L - liquid 0 zależy od własności fizyochemicznych ryształu i domieszi. eff to sprawa granicy ryształ-płyn; eff (granica głada) < eff (granica szorsta). Segregacja domiesze 1. Równowagowa (przesycenia σ 0) Równowagowy współczynni segregacji 0 2. Nierównowagowa (σ > 0) Efetywny współczynni segregacji eff

15 Równowagowy współczynni segregacji 1) Podejście mieszaniny dwusładniowej: Dla C w A teoretyczny opis podobny do opisu wyresów fazowych dla uładów dwusładniowych W przypadu C w A: A C H 1 1 m m 1 1 ln. 0 A C H = RG T Tm RG T Tm 2) Podejście termodynamiczne: ln 0 = ln 0(0) G / RGT. gdzie: 0 (0) to wartość 0 gdy r i = r s, a G zmiany różnicy energii swobodnej. Inne podejścia oparte na: różnicy objętości, cieple sublimacji, współczynniu dyfuzji itp. W przypadu niedopasowania objętości ułamowej V/VA w danej temperaturze: ln = B1 + B2 V / VA 0 3 = A B + B( r i / r s ).

16 Gdy zmiana energii swobodnej jest spowodowana niedopasowaniem (r i -r s ) rozmiarów atomów/jonów: gdzie E moduł Younga., ) ( 3 1 ) ( (0) ln ln 3 2 G 0 0 = s i s i s A r r r r r T R EN π

17 Jeszcze ila przyładów

18 Efetywny współczynni segregacji 1) Model dyfuzji objętościowej Burtona et al. (1953): ef f = 0 0, + ( 1 0)exp( Rδ / D) gdzie: δ - grubość warstwy dyfuzyjnej, D współczynni dyfuzji domieszi w roztworze. Dla << 1 0 = exp( Rδ / D) eff 0 (1) (2) Z wyresów δ/d = s/m. Ponieważ D = cm 2 /s, δ = nm.

19 2) Podejście dyfuzyjno-relasacyjne Hall (1953), Kitamura i Sunagawa (1977), Chernov (1984): eff = 0 + ( ads 0)exp( R R i = h /τ / R), (1) gdzie: h grubość warstwy na rosnącej powierzchni, τ - odstęp czasu dla wzrostu olejnych warstw) ads współczynni segregacji w warstwie adsorpcyjnej. i Gdy 0 << 1, eff = ads a gdy R i/ R << 1, eff = ads exp( R ads i ( R / R), i / R). (2) (3)

20 3) Podejście selecji statystycznej Voronov, Chernov (1967): 0 eff =, + σ / σ 1 const (1) gdzie: σ const constant. Gdy σ / σ << const 1, eff = 0 0 σ / σ const (2) Naturalna selecja statystyczna zależy od inetyi przyłączenia i odłączenia cząste domieszi na załomach

21 4) Podejście adsorpcji powierzchniowej Założenia: 1) Cząsteczi domieszi onurują z cząsteczami substancji rystalizującej. 2) Zwięszenie σ powoduje zwięszenie gęstości załomów w stopniach. 3) eff = 0 +f(gęstość załomów) eff = 0 + B 2 1 n σ 2 / c gdzie: B 2, m stałe, n 2 miara bariery związanej z wpływami przesycenia σ. m i, AO - jednowodny szczawian amonu.

22 Współzależność pomiędzy eff a szybości wzrostu ściany R Z zależności otrzymujemy, / σ eff m n c B i + =, ) ( n c A R σ σ. σ / 1 1/ n m n m R c A B c B i i c eff + + =

23 Przesycenie progowe dla wychwytywania domieszi podczas wzrostu Z wyresów eff (σ), otrzymujemy σ 0 : eff = p( σ σ ). 0 AO Z teorii hamowania wzrostu ściany przez domieszę, mamy zależność: 1 σ * 1 1 = 1 + σ1 Kc, gdzie: σ 1 stała, K stała Langmuira. i

Defekty punktowe i domieszkowanie kryształów

Defekty punktowe i domieszkowanie kryształów Defety puntowe i domieszowanie ryształów Keshra Sangwal Załad Fizyi Stosowanej, Instytut Fizyi Politechnia Lubelsa I. Rodzaje defetów puntowych II. Statystya defetów puntowych III. Dyfuzja w ryształach

Bardziej szczegółowo

Defekty punktowe i domieszkowanie kryształów

Defekty punktowe i domieszkowanie kryształów Defety puntowe i domieszowanie ryształów Keshra Sangwal, Politechnia Lubelsa I. Wprowadzenie do defetów II. Rodzaje defetów puntowych III. Statystya defetów puntowych IV. Dyfuzja w ryształach V. Metody

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d. Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Kinetyka reakcji chemicznych

Kinetyka reakcji chemicznych Kinetya reacji chemicznych Metody doświadczalne Reacje powolne (> s) do analizy Reacje szybie ( -3 s) detetor v x x t tx/v Reacje b. szybie ( -4-4 s) (fotochemiczne) wzbudzenie analiza Szybość reacji aa

Bardziej szczegółowo

Do wniosku o przeprowadzenie postępowania habilitacyjnego

Do wniosku o przeprowadzenie postępowania habilitacyjnego Dr Akademia im. Jana Długosza w Częstochowie Do wniosku o przeprowadzenie postępowania habilitacyjnego Załącznik 2a Częstochowa, 09.04.2015 Spis treści 1. Imię i nazwisko 2. Wykształcenie, stopnie naukowe

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

Wykład 5. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 5. Anna Ptaszek 1 / 20

Wykład 5. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 5. Anna Ptaszek 1 / 20 Wykład 5 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 9 października 2015 1 / 20 Zjawiska powierzchniowe Adsorpcja na powierzchni ciała stałego (adsorbentu): adsorpcja fizyczna: substancja adsorbująca

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY

WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład w ICM

Bardziej szczegółowo

Wykład 5. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemiczne podstawy procesów przemysłu

Wykład 5. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemiczne podstawy procesów przemysłu Wykład 5 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2018 1 / 22 Zjawiska powierzchniowe Adsorpcja na powierzchni ciała stałego (adsorbentu): adsorpcja fizyczna: substancja adsorbująca

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Temat 27. Termodynamiczne modele blokowe wzrostu kryształów

Temat 27. Termodynamiczne modele blokowe wzrostu kryształów Temat 27. Termodynamiczne modele blokowe wzrostu kryształów W modelach blokowych wzrostu kryształów wszystkie zjawiska zachodzące na powierzchni kryształu zostały sprowadzone do przyłączania i odłączania

Bardziej szczegółowo

Krystalizacja. Zarodkowanie

Krystalizacja. Zarodkowanie Krystalizacja Ciecz ciało stałe Para ciecz ciało stałe Para ciało stałe Przechłodzenie T = T L - T c Przesycenie p = p g - p z > 0 Krystalizacja Zarodkowanie Rozrost zarodków Homogeniczne Heterogeniczne

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Analiza parametrów rozszczepienia zero-polowego oraz pola krystalicznego dla jonów Mn 2+ i Cr 3+ domieszkowanych w krysztale YAl 3 (BO 3 ) 4

Analiza parametrów rozszczepienia zero-polowego oraz pola krystalicznego dla jonów Mn 2+ i Cr 3+ domieszkowanych w krysztale YAl 3 (BO 3 ) 4 Analiza parametrów rozszczepienia zero-polowego oraz pola rystalicznego dla jonów Mn 2+ i Cr 3+ domieszowanych w rysztale YAl 3 (BO 3 ) 4 Paweł Gnute & Muhammed Açıgöz Czesław Rudowicz Strutura ryształu

Bardziej szczegółowo

Kinetyka reakcji chemicznych Kataliza i reakcje enzymatyczne Kinetyka reakcji enzymatycznych Równanie Michaelis-Menten

Kinetyka reakcji chemicznych Kataliza i reakcje enzymatyczne Kinetyka reakcji enzymatycznych Równanie Michaelis-Menten Kinetya reacji chemicznych 4.3.1. Kataliza i reacje enzymatyczne 4.3.2. Kinetya reacji enzymatycznych 4.3.3. Równanie Michaelis-Menten Ilościowy opis mechanizm działania atalizatorów Kinetya chemiczna

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA w elektronice

INŻYNIERIA MATERIAŁOWA w elektronice Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów

Bardziej szczegółowo

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Marcela Trybuła Władysław Gąsior Alain Pasturel Noel Jakse Plan: 1. Materiał badawczy 2. Eksperyment Metodologia 3. Teoria Metodologia

Bardziej szczegółowo

Kinetyka chemiczna kataliza i reakcje enzymatyczne

Kinetyka chemiczna kataliza i reakcje enzymatyczne inetya chemiczna ataliza i reacje enzymatyczne Wyład z Chemii Fizycznej str. 3.3 / 1 Ilościowy opis mechanizm działania atalizatorów Wyład z Chemii Fizycznej str. 3.3 / 2 Ilościowy opis mechanizm działania

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

Układ termodynamiczny

Układ termodynamiczny Uład terodynaiczny Uład terodynaiczny to ciało lub zbiór rozważanych ciał, w tóry obo wszelich innych zjawis (echanicznych, eletrycznych, agnetycznych itd.) uwzględniay zjawisa cieplne. Stan uładu charateryzuje

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Termodynamiczne warunki krystalizacji

Termodynamiczne warunki krystalizacji KRYSTALIZACJA METALI ISTOPÓW Zakres tematyczny y 1 Termodynamiczne warunki krystalizacji hiq.linde-gas.fr Krystalizacja szczególny rodzaj krzepnięcia, w którym ciecz ulega przemianie w stan stały o budowie

Bardziej szczegółowo

Ćwiczenie VI KATALIZA HOMOGENICZNA: ESTRYFIKACJA KWASÓW ORGANICZNYCH ALKOHOLAMI

Ćwiczenie VI KATALIZA HOMOGENICZNA: ESTRYFIKACJA KWASÓW ORGANICZNYCH ALKOHOLAMI Zjawisa powierzchniowe i ataliza Ćwiczenie VI ATALIZA HMGNIZNA: STYFIAJA WASÓW GANIZNYH ALHLAMI WPWADZNI stry wasów organicznych stanowią jedną z ważniejszych grup produtów przemysłu chemicznego, ta pod

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

(Ćwiczenie nr 4) Wpływ siły jonowej roztworu na stałą szybkości reakcji.

(Ćwiczenie nr 4) Wpływ siły jonowej roztworu na stałą szybkości reakcji. (Ćwiczenie nr 4) Wpływ siły jonowej roztworu na stałą szybości reacji Wstęp Rozpatrzmy reację zachodzącą w roztworze pomiędzy jonami i w wyniu tórej powstaje produt D: D stała szybości reacji () Gdy reacja

Bardziej szczegółowo

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-4 Warszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mail: stach@unipress.waw.pl,

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Definicja Gibbsa = stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego,

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również

Bardziej szczegółowo

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207 Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy

Bardziej szczegółowo

Nauka o Materiałach Wykład II Monokryształy Jerzy Lis

Nauka o Materiałach Wykład II Monokryształy Jerzy Lis Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych

7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych 7. Defekty samoistne 7.1. Typy defektów Zgodnie z trzecią zasadą termodynamiki, tylko w temperaturze 0[K] kryształ może mieć zerową entropię. Oznacza to, że jeśli temperatura jest wyższa niż 0[K] to w

Bardziej szczegółowo

1. Struktura pasmowa from bonds to bands

1. Struktura pasmowa from bonds to bands . Strutura pasmowa from bonds to bands Wiązania owalencyjne w cząsteczach Pasma energetyczne w ciałach stałych Przerwa energetyczna w półprzewodniach Dziura w paśmie walencyjnym Przybliżenie prawie swobodnego

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Termodynamika materiałów

Termodynamika materiałów Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele

Bardziej szczegółowo

ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY

ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów

Bardziej szczegółowo

Stany równowagi i zjawiska transportu w układach termodynamicznych

Stany równowagi i zjawiska transportu w układach termodynamicznych Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY W CIAŁACH ACH STAŁYCH Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir Co to sąs ekscytony? ekscyton to

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Wzrost fazy krystalicznej

Wzrost fazy krystalicznej Wzrost fazy krystalicznej Wydzielenie nowej fazy może różnić się of fazy pierwotnej : składem chemicznym strukturą krystaliczną orientacją krystalograficzną... faza pierwotna nowa faza Analogia elektryczna

Bardziej szczegółowo

Ć W I C Z E N I E 5. Kinetyka cementacji metali

Ć W I C Z E N I E 5. Kinetyka cementacji metali Ć W I C Z E N I E Kinetyka cementacji metali WPROWADZENIE Proces cementacji jest jednym ze sposobów wydzielania metali z roztworów wodnych. Polega on na wytrącaniu jonów metalu bardziej szlachetnego przez

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna? Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

Inżynieria Biomedyczna

Inżynieria Biomedyczna 1.Obliczyć przy jakim stężeniu kwasu octowego stopień dysocjacji osiągnie wartość 3.%, jeżeli wiadomo, że stopień dysocjacji 15.%-wego roztworu (d=1.2 g/cm 3 ) w 2. Do 1 cm 3 2% (d=1.2 g/cm 3 ) roztworu

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Zjawiska powierzchniowe

Zjawiska powierzchniowe Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym

Bardziej szczegółowo

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników.

Roztwory. Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Roztwory Homogeniczne jednorodne (jedno-fazowe) mieszaniny dwóch lub więcej składników. Własności fizyczne roztworów są związane z równowagę pomiędzy siłami wiążącymi cząsteczki wody i substancji rozpuszczonej.

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

A B Skąd wiadomo, że reakcja zachodzi? Co jest miarą szybkości reakcji?

A B Skąd wiadomo, że reakcja zachodzi? Co jest miarą szybkości reakcji? Kinetya chemiczna 3.1.1. Pojęcie szybości reacji chemicznej 3.1.. Ilościowe miary szybości 3.1.3. Reacje pierwszego rzędu 3.1.4. Reacje zerowego rzędu 3.1.5. Przyłady SZYBKOŚĆ REAKCJI HOMOGENICZNEJ A B

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

E dec. Obwód zastępczy. Napięcie rozkładowe

E dec. Obwód zastępczy. Napięcie rozkładowe Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)

Bardziej szczegółowo

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu. Informacja do zadań 1 i 2 Chlorek glinu otrzymuje się w reakcji glinu z chlorowodorem lub działając chlorem na glin. Związek ten tworzy kryształy, rozpuszczalne w wodzie zakwaszonej kwasem solnym. Z roztworów

Bardziej szczegółowo

Materiały Reaktorowe

Materiały Reaktorowe Materiały Reaktorowe Dr inż. Paweł Stoch Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych kcimo.pl B6 p.205 12-617-25-04 pstoch@agh.edu.pl Wykład 30 h + laboratorium

Bardziej szczegółowo

Wykład 13. Anna Ptaszek. 4 stycznia Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 13.

Wykład 13. Anna Ptaszek. 4 stycznia Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 13. Wykład 13 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 4 stycznia 2018 1 / 29 Układy wielofazowe FAZA rozpraszająca rozpraszana gaz ciecz ciało stałe gaz - piana piana stała ciecz mgła/aerozol

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

KINETYKA REAKCJI CHEMICZNYCH I KATALIZA

KINETYKA REAKCJI CHEMICZNYCH I KATALIZA ĆWICZENIE NR KINETYKA REAKCJI CHEMICZNYCH I KATALIZA Cel ćwiczenia Badanie wpływu temperatury i atalizatora na szybość reacji. Zares wymaganych wiadomość. Szybość reacji chemicznych definicja, jednosti..

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ 5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Energia wiązania słaba rzędu 10-2 ev J. Energia cieplna 3/2 k B. T J. Energia ruchu cieplnego powoduje rozerwanie wiązań cząsteczkowych.

Energia wiązania słaba rzędu 10-2 ev J. Energia cieplna 3/2 k B. T J. Energia ruchu cieplnego powoduje rozerwanie wiązań cząsteczkowych. Ciała stałe - o struturze rystalicznej wyazują daleo zasięgowe uporządowanie atoowe, są to onoryształy i poliryształy. - o struturze bezpostaciowej (aorficznej), wyazują bra uporządowania atoowego daleiego

Bardziej szczegółowo

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na

Bardziej szczegółowo

Efekty strukturalne przemian fazowych

Efekty strukturalne przemian fazowych Efekty strukturalne przemian fazowych Literatura 1. Zbigniew Kędzierski PRZEMIANY FAZOWE W UKŁADACH SKONDESOWANYCH, AGH Uczelniane Wydawnictwa Naukowo Dydaktyczne, 003. Marek Blicharski INŻYNIERIA MATERIAŁOWA

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna

+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 9 Optyka nieliniowa

Metody Optyczne w Technice. Wykład 9 Optyka nieliniowa Metody Optyczne w Technice Wyład 9 Optya nieliniowa Fala eletromagnetyczna J t D H t B B D rot rot div div J M H H B D Nieliniowa odpowiedź ośroda olaryzacja ośroda to moment dipolowy na jednostę objętości

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

Problemy elektrochemii w inżynierii materiałowej

Problemy elektrochemii w inżynierii materiałowej Problemy elektrochemii w inżynierii materiałowej Pamięci naszych Rodziców Autorzy NR 102 Antoni Budniok, Eugeniusz Łągiewka Problemy elektrochemii w inżynierii materiałowej Wydawnictwo Uniwersytetu Śląskiego

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo