WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY
|
|
- Michalina Szymańska
- 9 lat temu
- Przeglądów:
Transkrypt
1 WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład w ICM / PTWK,
2 PLAN 1. Domieszkowanie, segregacja składnika 2. Transport składnika, prążki wzrostu 3. Zjawisko przechłodzenia stężeniowego 4. Przegląd metod wzrostu z roztworów 5. Wybrane metody: - met. hydrotermalna dla SiO 2 - met. amonotermalna dla GaN - wzrost z roztworów metalicznych, np: GaN z roztworu w Ga+Na, (inny przykład: GaN z roztworu w Ga znamy z IWC PAN Unipress ) 6. Porównanie wzrostu z fazy roztopionej i z roztworu
3 Domieszkowanie - na przykładzie (raczej akademickim) Si 1-x Ge x Mówiliśmy, że metodami z roztopu można tu hodować tylko Ge oraz Si PYTANIE: Jak wyglądałby wzrost kryształu z fazy roztopionej przy pewnej zawartości domieszek (czyli faza roztopiona i kryształ są roztworami ciekłym i stałym o niewielkim stężeniu domieszek)
4 Zjawisko segregacji domieszek Współczynnik segregacji (równowagowy): k 0 = C C solid liquid
5 Segregacja domieszek Segregacja domieszek przy krystalizacji (przesunięcie składów cieczy i ciała stałego będących w równowadze termodynamicznej) wynika nawet z najprostszych modeli roztworów z modelu roztworów idealnych ( H m = 0). Np. M. Curie-Skłodowska separowała pierwiastki promieniotwórcze korzystając z segregacji składnika.
6 Konsekwencje segregacji (1): zmiana koncentracji domieszek wzdłuż kryształu dg g skrystalizowana część cieczy, g = ułamek liczony molowo (lub ułamek masy) C s (g), C l (g) skład molowy fazy stałej (s) i fazy ciekłej (l) N l (0) początkowa ilość moli cieczy k wsp. segregacji domieszki dg element cieczy skrystalizowany Równanie bilansu ilości domieszek: C l ( g) (1 g) N l (0) = C l ( g + dg) (1 g dg) N l (0) + C l ( g) k dg N l (0) ilość moli domieszki w fazie roztopionej ilość domieszki w fazie roztopionej po skrystalizowaniu dg ilość domieszki w fazie skrystalizowanej dg dc l C l = ( k dg 1) 1 g C s ( g) = C l (0) k (1 g) k 1 (przy założeniu pełnej dyfuzji domieszki w cieczy i braku dyfuzji w ciele stałym, czyli krystalizacja zachodzi dostatecznie powoli, wtedy k równowagowy wsp. segregacji)
7 Pfann; Solid St. Physics. Vol. 4 (1958)
8 Przykład: GaAs:Te 8x10 18 GaAs:Te #B43 Koncentracja electronów [cm -3 ] 7x x x x x x x10 18 as-grown pomiary model segregacji: n = [Te As ] k = ,0 0,2 0,4 0,6 0,8 g - skrystalizowana część cieczy T.S., rozpr. dokt., UW (1999)
9 5x10 18 GaAs:Te,Ge #B44 4x10 18 as-grown wygrzewane (1100 o C/15 min+q) wygrzewane (750 o C/156 h+q) Konc. elektronów [cm -3 ] 3x x x10 18 Model segregacji: [Ge Ga ] n = [Te As ] + [Ge Ga ] - [Ge As ] [Ge Ga ] 0 0,0 0,2 0,4 0,6 0,8 g - skrystalizowana część cieczy Odstępstwo od segregacyjnej zależności koncentracji elektronów w krysztale GaAs:Te,Ge as-grown i spełnienie zależności w krysztale wygrzewanym w 1100 o C zostało zinterpretowane jako wywołane wzajemną deaktywacją elektryczną atomów donorów tworzących związane chemicznie kompleksy Te As -Ge Ga rozpadające się przy wygrzewaniu w ~1100 o C i tworzące się w temperaturach poniżej ~900 o C. (Dla pełnej analizy należy uwzględnić obsadzanie przez elektrony stanów DX (Ge Ga ) powyżej n = 2x10 18 cm -3.) T.S., rozpr. dokt., UW (1999)
10 Segregacja przy topieniu strefowym Wielokrotne przejścia strefy stopionej jest metodą oczyszczania materiału x/l = L/L w wg ozn. z obrazka strefy
11 Segregacja składnika w przypadku słabego mieszania cieczy faza stała - kryształ faza ciekła W cieczy przy powierzchni kryształu istnieje warstwa wzbogacona w domieszkę (dla k < 1) - warstwa dyfuzyjna o grubości δ k = 0 k = C C C C( ) s l l o s - równowagowy wsp. segregacji (z wykr. fazowego) - efektywny wsp. segregacji
12 Wsp. segregacji (efektywny) zależy od prędkości krystalizacji! k = k 0 + ( 1 k0 k0 ) exp( u δ / D) Burton, Prim, Slichter (1953) u - liniowa prędkość krystalizacji (prędkość przesuwania frontu krystalizacji) δ grubość warstwy dyfuzyjnej D stała dyfuzji domieszki w cieczy WNIOSEK: Istnieje zależność między prędkością wzrostu, a koncentracją domieszek w krysztale.
13 Przypomnienie - transport ciepła przy wzroście z roztopu Równanie 1-wym. w pobliżu powierzchni ciecz-kryształ: κ liq T liq z + L ρ sol V growth = κ sol T z sol κ przewodnictwo cieplne L ciepło krystalizacji V growth predkość wzrostu ρ sol gęstość kryształu T z - osiowe gradienty temperatury Przy powierzchni ciecz - kryształ istnieją gradienty temperatury. Aktualna prędkość wzrostu zależy od wartości przechłodzenia cieczy przy pow. granicznej faz.
14 Przypomnienie - wpływ konwekcji na rozkład temperatury w roztopie Konwekcja w roztopie ma charakter oscylacyjny (przepływy nie są laminarne) czyli: temperatura przy powierzchni rosnącego kryształu fluktuuje w czasie czyli: prędkość wzrostu fluktuuje wokół wartości średniej. Fluktuacje prędkości wzrostu powodują fluktuacje koncentracji domieszek
15 Konsekwencje segregacji (2): prążki wzrostu (growth striations) - Ta część kryształu rosła w lab. na Ziemi - a ta w lab. na orbicie okołoziemskiej (brak grawitacji, więc brak sił wyporu, czyli osłabienie konwekcji) Current Topics in Mat. Sci., vol. 2 (1976) Prążki wzrostu (fluktuacje koncentracji domieszki w skali ok µm) pochodzą z oscylacyjnego charakteru konwekcji cieczy (bez grawitacji są nieobecne). Prążki wzrostu ujawniają informacje o kształcie frontu krystalizacji. Prążki wzrostu można obserwować np. w topografii rentgenowskiej lub poprzez trawienie selektywne wypolerowanej powierzchni kryształu.
16 Tłumienie oscylacyjnej konwekcji roztopu w polu magnetycznym K.A. Jackson, pr. przeglądowa JCG 264(2004)519
17 Przykład: wzrost kryształu GaAs 1-x P x, x= µm x 500 µm Pojawienie się niestabilności powierzchni wzrostu w przypadku zbyt dużej predkości wzrostu GaAs 1-x P x metodą Czochralskiego ważna rola efektów transportu składnika.
18 Niestabilności frontu krystalizacji wywołane obecnością domieszki - przechłodzenie stężeniowe C k < 1 I, II rzeczywiste gradienty temperatury przy powierzchni liquid-solid I niestabilna pow. S-L II - stabilna T temp. równowagi odpowiadająca składom w warstwie dyfuzyjnej obszar cieczy zbyt przechłodzonej Uniknięcie przechłodzenia stężeniowego wymaga: - mniejszych prędkści wzrostu - większych grad T TUTAJ trochę trudne!!!
19 Wniosek: Jeśli faza ciekła ma inny skład niż rosnący kryształ, to dużą rolę odgrywają efekty transportu składnika. Wtedy transport składnika wyznacza prędkość wzrostu kryształu, a nie transport ciepła. To ma zasadnicze znaczenia przy wzroście kryształów z roztworów.
20 Przegląd metod wzrostu kryształów z ciekłych roztworów DEFINICJA: wzrost kryształu AB z roztworu w C dotyczy sytuacji gdy skład molowy AB w C jest rzędu ~0.1% - ~10 % - roztwory niskotemperaturowe (np. H 2 O, rozpuszczalniki organiczne) - roztwory wysokotemperaturowe (np. ciekłe metale, ciekłe sole, ciecze nadkrytyczne) Prędkości wzrostu rzędu ~1 ~100 µm/h Czynnikiem wywołującym wzrost kryształu z roztworu jest przesycenie (a dla przypomnienia: z roztopu przechłodzenie). Do uzyskania przesycenia wykorzystuje się zależność rozpuszczalności od temperatury.
21 Strefa rozpuszczania strefa wzrostu
22 Wybrane metody (bardzo subiektywnie): - hydrotermalna (np. wzrost α-sio 2 z roztworu w H 2 O w stanie nadkrytycznym)
23 Metoda hydrotermalna (np. wzrost α-sio 2 z roztworu w H 2 O) Rozpuszczalnik: H 2 O powyżej lub w sąsiedztwie punktu krytycznego Autoklaw: p(max) =~ 5 kbar T(max) = o C - zamknięta stała objętość. Duże wymagania materiałowe!
24 Rozpuszczalność SiO 2 w H 2 O Dla zwiększenia rozpuszczalności stosuje się tzw. mineralizatory - związki ułatwiające tworzenie kompleksów z materiałem rozpuszczanym (np. NaOH przy wzroście SiO 2 z rotworu w H 2 O). Uznaje się, że rozpuszczalność kilka % molowo jest wystarczająca do wzrostu kryształu.
25 Rozpuszczalność SiO 2 w H 2 O (bez mineralizatora) Current Topics in Mat. Sci., vol. 4
26 Przybliżone warunki wzrostu: - temp. strefy rozpuszczania = 400 o C - temp. strefy wzrostu = 360 o C (T mierzone na zewnątrz autoklawu, wewnątrz może być znacznie mniejsza różnica temperatur stref) - ciśnienie = 1.5 kbar - stopień wypełnienia objętości roztworem w temp. otocz. = prędkość wzrostu = ~ 1 mm / 24 godz - wg. Laudise, Sullivan (1959) Kryształy α-kwarcu otrzymywane metodą hydrotermalną, ITME, Warszawa
27 ZnO być może konkurencyjnym do GaN materiałem na niebieską optoelektronikę, ZnO-ZnBeO (np. firma start-up : Moxtronics) J.C. Brice (1986)
28 Metoda amonotermalna (roztwór w nadkrytycznym amoniaku, NH 3 ) na przykładzie wzrostu AlN, GaN Pierwsze publikacje: 1) D. Peters (@Hoechst), J. Cryst. Growth 104 (1990) 411 Ammonothermal Synthesis of AlN KAl(NH 2 ) 4 KNH 2 + AlN + 2 NH 3 - reakcja odwracalna i kontrolowalna przez temperaturę i ciśnienie, - wystarczająca rozpuszczalność w NH 3 2) R. Dwiliński et al. (@ Wydział Fizyki UW), Acta Physica Pol., A 90 (1996) 763 On GaN crystallization by ammonothermal method MRS Internet J. Nitride Semicond. Res. 3 (1998) 25 Ammono method of BN, AlN and GaN synthesis and crystal growth
29 Rozpuszczalność GaN w NH 3 -KNH 2 Wang et al., J.Cryst. Growth 287 (2006) GaN 10 x 10 x 1 mm 3 - pr. wzrostu ~ 50 µm/dobę
30
31 !
32 - mineralizatory zawierajace metale grupy 2, np. Ca,Ba, Mg i/lub niemetale grupy 7: Cl, Br, I.
33 Autoklawy do badań wzrostu domieszkowanych kryształów azotków metodą amonotermalną na Wydziale Fizyki UW (grupa prof.m. Kamińskiej, ~ ) Current Topics in Mat. Sci., vol. 8 (1982)
34
35
36
37 Co może wyniknąć z dobrych pomysłów? Fabryka firmy Ammono sp. z o.o. w Nieporęcie k. Warszawy
38 zdjęcie: Gazeta Wyborcza, 2010 zdjęcie : spectrum.ieee.org
39 Wzrost GaN z roztworu w Ga+Na T. Yamada, H. Yamane i in., Tohoku University, Sendai, Japonia : J. Cryst. Growth, vol. 281, p. 242 vol. 286, p. 494
40 Porównanie zasad wzrostu z fazy roztopionej i z roztworu Faza roztopiona: - tylko do materiałów topiących się kongruentnie (pod warunkiem dostępności zakresu param. termodynamicznych) - duże predkości wzrostu - czynnik kontroli prędkości wzrostu: przechłodzenie - niezbędna dokładna kontrola rozkładu temperatur w strefie wzrostu - przeważnie mało istotny wpływ transportu składnika (domieszki < ~0.1 %at.) Roztwory: - do b. wielu materiałów pod warunkiem znalezienia rozpuszczalnika - reakcja rozpuszczania musi być odwracalna i kontrolowalna (p, T) - małe prędkości wzrostu, ale prosta kontrola przebiegu procesu wzrostu - czynnik kontroli prędkości wzrostu: przesycenie - niezbędna dokładna kontrola warunków transportu składnika od strefy rozpuszczania do str. wzrostu
41 Źródła wiedzy n/t: J. Żmija, Otrzymywanie monokryształów, Teoria wzrostu kryształów, PWN, 1988 E. Fraś, Krystalizacja metali i stopów, PWN, 1992 D.T. J. Hurle (ed.), Handbook of Crystal Growth, North Holland / Elsevier kilka tomów z artykułami przeglądowymi nt. wielu metod wzrostu (~1995) J.C. Brice, Crystal Growth Processes, Wiley, 1986, - kompendium B. Pamplin (ed.), Crystal growth, Pergamon, 1974 periodyki: Journal of Crystal Growth np. JCG vol. 264 (2004) - seria interesujacych przegladowych artykulów nt. różnych ważnych technik z punktu widzenia zastosowań, a także publikacje z różnych konferencji dot. wzrostu kryształów, Progress in Crystal Growth and Characterization - artykuły przeglądowe i wiele innych, a także DOSWIADCZENIE!!!
ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY
ROZTWORY, WZROST KRYSZTAŁÓW Z ROZTWORU - - WYBRANE METODY Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl Wykład
Bardziej szczegółowoFizyka i technologia wzrostu kryształów
Fizyka i technologia wzrostu kryształów Wykład 11. Wzrost kryształów objętościowych z fazy roztopionej (roztopu) Tomasz Słupiński e-mail: Tomasz.Slupinski@fuw.edu.pl Stanisław Krukowski i Michał Leszczyński
Bardziej szczegółowoTechnologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Bardziej szczegółowoTechnologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Bardziej szczegółowoInżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką
Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również
Bardziej szczegółowoMATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe
Bardziej szczegółowoFizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrostu kryształów Wykład 13. Wzrost kryształów objętościowych z roztopu Tomasz Słupiński Wydział Fizyki, Uniwersytet Warszawski e-mail: tomslu@fuw.edu.pl Stanisław
Bardziej szczegółowoMetody wytwarzania elementów półprzewodnikowych
Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie
Bardziej szczegółowoAnaliza termiczna Krzywe stygnięcia
Analiza termiczna Krzywe stygnięcia 0 0,2 0,4 0,6 0,8 1,0 T a e j n s x p b t c o f g h k l p d i m y z q u v r w α T B T A T E T k P = const Chem. Fiz. TCH II/10 1 Rozpatrując stygnięcie wzdłuż kolejnych
Bardziej szczegółowoWZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU)
WZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU) Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl
Bardziej szczegółowoDyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
Bardziej szczegółowoFizyka, technologia oraz modelowanie wzrostu kryształów. II. semestr Wstęp. 16 luty 2010
Fizyka, technologia oraz modelowanie wzrostu kryształów II. semestr Wstęp 16 luty 2010 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 01 ext. 3363 E-mail:
Bardziej szczegółowoDyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Bardziej szczegółowoSeria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii
Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)
Bardziej szczegółowoTermodynamiczne warunki krystalizacji
KRYSTALIZACJA METALI ISTOPÓW Zakres tematyczny y 1 Termodynamiczne warunki krystalizacji hiq.linde-gas.fr Krystalizacja szczególny rodzaj krzepnięcia, w którym ciecz ulega przemianie w stan stały o budowie
Bardziej szczegółowoIII. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.
Bardziej szczegółowoELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,
Bardziej szczegółowoZadania treningowe na kolokwium
Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność
Bardziej szczegółowoSTRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy
Bardziej szczegółowoRównowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii
Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W
Bardziej szczegółowoWYKAZ NAJWAŻNIEJSZYCH SYMBOLI
SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.
Bardziej szczegółowoKRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana
Bardziej szczegółowoWŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Bardziej szczegółowoCzy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak
Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało
Bardziej szczegółowoCzym się różni ciecz od ciała stałego?
Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona
Bardziej szczegółowoTechnologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG
Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki
Bardziej szczegółowoDiagramy fazowe graficzna reprezentacja warunków równowagi
Diagramy fazowe graficzna reprezentacja warunków równowagi Faza jednorodna część układu, oddzielona od innych części granicami faz, na których zachodzi skokowa zmiana pewnych własności fizycznych. B 0
Bardziej szczegółowoprof. dr hab. Małgorzata Jóźwiak
Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga
Bardziej szczegółowoZAMRAŻANIE PODSTAWY CZ.2
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.2 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Odmienność procesów zamrażania produktów
Bardziej szczegółowoWykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Bardziej szczegółowoWykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Bardziej szczegółowoMateriały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.
Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie
Bardziej szczegółowoPodstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Bardziej szczegółowoEpitaksja z fazy ciekłej (LPE)
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 23 marzec 21 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext. 3363
Bardziej szczegółowoEpitaksja z fazy ciekłej (LPE)
Fizyka, technologia oraz modelowanie wzrostu kryształów Epitaksja z fazy ciekłej (LPE) 8 kwiecień 213 Zbigniew R. Żytkiewicz Instytut Fizyki PAN 2-668 Warszawa, Al. Lotników 32/46 tel: 22 843 66 1 ext.
Bardziej szczegółowoWZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU)
WZROST KRYSZTAŁÓW OBJĘTOŚCIOWYCH Z FAZY ROZTOPIONEJ (ROZTOPU) Tomasz Słupiński Uniwersytet Warszawski, Wydział Fizyki, Zakład Fizyki Ciała Stałego (Pracownia Fizyki Wzrostu Kryształów) tomslu@fuw.edu.pl
Bardziej szczegółowoTECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW
TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW Gdzie spotykamy monokryształy? Rocznie, na świecie produkuje się 20000 ton kryształów. Większość to Si, Ge, GaAs, InP, GaP, CdTe. Monokryształy można otrzymywać:
Bardziej szczegółowochemia wykład 3 Przemiany fazowe
Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe
Bardziej szczegółowowymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Bardziej szczegółowoFizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-4 Warszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mail: stach@unipress.waw.pl,
Bardziej szczegółowoInżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką
Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Definicja Gibbsa = stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego,
Bardziej szczegółowoWykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Bardziej szczegółoworelacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
Bardziej szczegółowoFizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Bardziej szczegółowoStany równowagi i zjawiska transportu w układach termodynamicznych
Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.
Bardziej szczegółowoWykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
Bardziej szczegółowoChemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Bardziej szczegółowoPodstawy technologii monokryształów
1 Wiadomości ogólne Monokryształy - Pojedyncze kryształy o jednolitej sieci krystalicznej. Powstają w procesie krystalizacji z substancji ciekłych, gazowych i stałych, w określonych temperaturach oraz
Bardziej szczegółowoVIII Podkarpacki Konkurs Chemiczny 2015/2016
III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem
Bardziej szczegółowoVI Podkarpacki Konkurs Chemiczny 2013/2014
VI Podkarpacki Konkurs Chemiczny 01/01 ETAP I 1.11.01 r. Godz. 10.00-1.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Znając liczbę masową pierwiastka można określić liczbę:
Bardziej szczegółowoChemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
Bardziej szczegółowoWykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1
Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda
Bardziej szczegółowoFunkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Bardziej szczegółowoZastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak
Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym
Bardziej szczegółowoTermodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
Bardziej szczegółowoRozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Bardziej szczegółowoZAMRAŻANIE PODSTAWY CZ.1
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces
Bardziej szczegółowoWykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Bardziej szczegółowoAbsorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Bardziej szczegółowoTeoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Bardziej szczegółowoWykład 8B. Układy o ograniczonej mieszalności
Wykład 8B Układy o ograniczonej mieszalności Układy o ograniczonej mieszalności Jeżeli dla pewnego składu entalpia swobodna mieszania ( Gmiesz> 0) jest dodatnia, to mieszanie nie jest procesem samorzutnym
Bardziej szczegółowoOBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego
OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. II. Przemiany austenitu przechłodzonego WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A
Bardziej szczegółowoSynteza Nanoproszków Metody Chemiczne II
Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,
Bardziej szczegółowo1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
Bardziej szczegółowoWykład 8 Wykresy fazowe część 1
Wykład 8 Wykresy fazowe część 1 Grzegorz Karwasz Zalecany wykład Henryk Adrian (AGH Kraków) http://student.agh.edu.pl/~isshi/materialy/metaloznawstwo/wyklad_5_is.pdf Zagadnienia Wykresy termodynamiczne
Bardziej szczegółowoPrężność pary nad roztworem
Tomasz Lubera Układ: Prężność pary nad roztworem dwuskładnikowy (składniki I i II) dwufazowy (ciecz i gaz) w którym faza ciekła i gazowa to roztwory idealne W stanie równowagi prężności pary składników/układu
Bardziej szczegółowoPodstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
Bardziej szczegółowoWłaściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Bardziej szczegółowoPrzyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Bardziej szczegółowoWYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Bardziej szczegółowoWarunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Bardziej szczegółowo7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych
7. Defekty samoistne 7.1. Typy defektów Zgodnie z trzecią zasadą termodynamiki, tylko w temperaturze 0[K] kryształ może mieć zerową entropię. Oznacza to, że jeśli temperatura jest wyższa niż 0[K] to w
Bardziej szczegółowoSzkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?
Bardziej szczegółowoKinetyka zarodkowania
Kinetyka zarodkowania Wyrażenie na liczbę zarodków n r o kształcie kuli i promieniu r w jednostce objętości cieczy przy założeniu, że tworzenie się zarodków jest zdarzeniem losowym: n r Ne G kt v ( 21
Bardziej szczegółowoTermodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Bardziej szczegółowoSTRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Bardziej szczegółowo1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Bardziej szczegółowoSpis treści. Wstęp... 9
Spis treści Wstęp... 9 1. Szkło i sprzęt laboratoryjny 1.1. Szkła laboratoryjne własności, skład chemiczny, podział, zastosowanie.. 11 1.2. Wybrane szkło laboratoryjne... 13 1.3. Szkło miarowe... 14 1.4.
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoĆWICZENIA LABORATORYJNE Z CHEMII FIZYCZNEJ
SKRYPTY DLA SZKÓŁ WYŻSZYCH POLITECHNIKA ŁÓDZKA Praca zbiorowa ĆWICZENIA LABORATORYJNE Z CHEMII FIZYCZNEJ DLA STUDENTÓW WYDZIAŁU INŻYNIERII CHEMICZNEJ I OCHRONY ŚRODOWISKA Wydanie II poprawione ŁÓDŹ 2006
Bardziej szczegółowoMateriał powtórzeniowy do sprawdzianu - roztwory i sposoby wyrażania stężeń roztworów, rozcieńczanie i zatężanie roztworów, zadania z rozwiązaniami
Materiał powtórzeniowy do sprawdzianu - roztwory i sposoby wyrażania stężeń roztworów, rozcieńczanie i zatężanie roztworów, zadania z rozwiązaniami I. Mieszaniny Mieszanina to układ przynajmniej dwuskładnikowy
Bardziej szczegółowoRepeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoPODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2
PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-
Bardziej szczegółowoBudowa stopów. (układy równowagi fazowej)
Budowa stopów (układy równowagi fazowej) Równowaga termodynamiczna Stopy metali są trwałe w stanie równowagi termodynamicznej. Równowaga jest osiągnięta, gdy energia swobodna układu uzyska minimum lub
Bardziej szczegółowoWykresy równowagi fazowej. s=0
Wykresy równowagi fazowej Reguła faz Gibbsa o budowie fazowej stopów (jakie i ile faz współistnieje) w stanie równowagi decydują trzy parametry: temperatura, ciśnienie oraz stężenie poszczególnych składników
Bardziej szczegółowoTemat 27. Termodynamiczne modele blokowe wzrostu kryształów
Temat 27. Termodynamiczne modele blokowe wzrostu kryształów W modelach blokowych wzrostu kryształów wszystkie zjawiska zachodzące na powierzchni kryształu zostały sprowadzone do przyłączania i odłączania
Bardziej szczegółowoE dec. Obwód zastępczy. Napięcie rozkładowe
Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)
Bardziej szczegółowoObliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej
Bardziej szczegółowoStatyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Bardziej szczegółowoWstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,
Bardziej szczegółowoSprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ...
CHEMIA Przed próbną maturą 2017 Sprawdzian 1. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30 Imię i nazwisko... Liczba punktów Procent 2 Zadanie 1. Chlor i brom rozpuszczają się
Bardziej szczegółowoKryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
Bardziej szczegółowoPOLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir
POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY W CIAŁACH ACH STAŁYCH Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir Co to sąs ekscytony? ekscyton to
Bardziej szczegółowo3. Równania konstytutywne
3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość
Bardziej szczegółowo= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Bardziej szczegółowoRoztwory rzeczywiste (1)
Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 rzyczyny dodatnich i ujemnych odchyleń od prawa Raoulta konsekwencja
Bardziej szczegółowoWykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania
Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit
Bardziej szczegółowoTRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI
Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowo