Ć W I C Z E N I E N R M-5

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ć W I C Z E N I E N R M-5"

Transkrypt

1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-5 WYZNACZANIE MOMENTU BEZWŁADNOŚCI ŻYROSKOPU

2 Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou I. Zagadnienia do rzestudiowania 1. Bryła sztywna. 2. Równanie ruchu obrotowego bryły sztywnej. 3. Moment bezwładności unktu i bryły sztywnej, moment siły, moment ędu. 4. Żyrosko, bąk symetryczny i jego zastosowania, recesja. II. Wrowadzenie teoretyczne Żyrosko jest bryłą sztywną o symetrii obrotowej, mogącą wykonywać, dzięki secjalnej konstrukcji, ruch obrotowy wokół trzech wzajemnie rostoadłych osi. Oś bryły jest osią maksymalnego momentu bezwładności i jest swobodną, stabilną osią obrotu. Stanowi ją dźwignia dwustronna, gdzie na jednym ramieniu umieszczona jest wirująca tarcza (bąk), na drugim zaś ciężarek (rys. 1a). Gdy bąk jest nieruchomy, rzesunięcie ciężarka owoduje, że żyrosko zachowuje się jak dźwignia zwykłej wagi (nastęuje obrót wokół osi oziomej). Gdy wrawimy bąk w szybki ruch obrotowy, równowaga ozostanie niezakłócona. Natomiast rzesunięcie ciężarka z ołożenia równowagi, odczas ruchu bąka, owoduje, że dźwignia zmienia swoje ołożenie. Nastęuje obrót dźwigni wokół osi ionowej. Ta zmiana ołożenia osi wirowania żyroskou od wływem działania siły zewnętrznej nazywana jest recesją (rys. 1b). Rys. 1. Model żyroskou Zwykle zjawisku recesji towarzyszy zjawisko nutacji. Koniec osi żyroskou, wykonując ruch recesyjny o kole równocześnie wykonuje on inny ruch okresowy o cykloidzie (rys. 1c). Żyrosko został wynaleziony w 1852 r. rzez Leona Foucaulta jako demonstracja zasady zachowania momentu ędu. Jest to urządzenie, służące do obserwacji obrotu ciała, na którym jest zainstalowane. Nazwa ochodzi od greckich słów Scoeo - obserwować. Drugim elementem wyrazu żyrosko jest greckie słowo gyros (czytane z francuska jako żyro), oznaczające obrót, wirowanie. Tak więc Foucault wymyślił rzyrząd, który miał mu osłużyć do wykazania, że Ziemia wiruje. Dzisiaj żyroskoy stosuje się w urządzeniach do wskazywania wybranego kierunku używanych w samolotach, śmigłowcach, 2

3 Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou statkach it. Urządzenie zbudowane na tej zasadzie jest nazywane żyroskoem, żyrokomasem lub komasem żyroskoowym. Najrostszym rzykładem zjawiska recesji jest kula ziemska. Ziemia wykonuje ruch obrotowy wokół Słońca i jednocześnie ruch obiegowy wokół własnej osi. Na skutek oddziaływania grawitacyjnego Księżyca i Słońca (owstają ływy, czyli rzyływy i odływy) i nierównomiernego rozmieszczenia masy Ziemi (słaszczenie na biegunach) oś obrotu Ziemi nie może zachować stałego ołożenia w rzestrzeni i zakreśla stożek. Oś obrotu Ziemi nie jest więc rostoadła do jej łaszczyzny obiegu wokół Słońca (eklityki), ale ochylona od kątem ok. 23,5. Skutkiem recesji Ziemi jest rzesuwanie się gwiazd wzdłuż eklityki (ozornej drogi rocznego ruchu Słońca) z rędkością niemal jednego stonia na 72 lata. Jednocześnie biegun ółnocny zakreśla na niebie duży okrąg (o kącie rozwarcia 23,5 ) i coraz to inna gwiazda staje się gwiazdą olarną, czyli gwiazdą znajdującą się w obliżu osi obrotu Ziemi. Zakreślenie ełnego okręgu trwa lat (360 x72 lata). Uroszczony ois ruchu żyroskou Ruch obrotowy bryły sztywnej oisuje II zasada dynamiki dla ruchu obrotowego. Moment siły M działającej na ciało w ciągu ewnego czasu równy jest szybkości wektorowej zmiany momentu ędu (lub krętu) Moment ędu bryły danego unktu bryły zależność dl M dt L i (1) w układzie związanym ze środkiem masy określa L r m v r i i i i i i (2) Bąk o momencie bezwładności I, wrawiony w ruch obrotowy z rędkością kątową, ma moment ędu L Iˆ (3) Ponieważ rędkość kątowa jest stała const ( M 0, dl 0), rzesunięcie ciężarka z ołożenia dt równowagi r 0 w ołożenie r wywoła owstanie momentu siły M M m r r g 0 (4) który wywoła zmianę momentu ędu żyroskou 3

4 Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou d L Mdt (5) Wektor dl ma kierunek wektora M, jest więc rostoadły do wektora L i nie zmienia jego wartości tylko jego kierunek (rys. 2). Rys. 2. Rozkład momentów ędu i siły w żyroskoie Żyrosko zacznie się obracać wokół swojej osi. Wektor momentu ędu zatacza swoim końcem okrąg o romieniu roorcjonalnym do wartości wektora L. W czasie dt zakreśli on kąt d dl d L (6) Wektor momentu ędu będzie zmieniał swój kierunek, obracając się wokół osi ionowej z rędkością kątową ruchu recesyjnego d 1 dl lim t 0 t dt L dt (7) Wówczas moment siły równa się M dl L dt (8) Stąd zgodnie ze wzorem (4): M L I (9) możemy zatem naisać M I (10) 4

5 III. Zestaw omiarowy Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou Żyrosko omiarowy (rys. 3) stosowany w ćwiczeniu osiada tachometr rędkości obrotowej żyroskou oraz układ fotoelektryczny umożliwiający omiar rędkości kątowej recesji. Silnik elektryczny (1) umocowany jest w uchwycie (2), ozwalającym na ograniczony obrót w łaszczyźnie ionowej. Na wale silnika znajduje się koło zamachowe (3) w osłonie rzezroczystej (4). Dźwignia (5) osiada nacięcia kalibrowane co 1 cm. Obciążnik (6) może rzesuwać się wzdłuż dźwigni. Całość umieszczona jest na kolumnie (7). Na odstawie znajduje się układ omiarowy (8) z tachometrem i czasomierzem cyfrowym. Na tarczy (9) znajdują się nacięcia co 5 º, które zliczane są za omocą czujnika fotoelektrycznego. Masa obciążnika wynosi 0,375 kg. Rys. 3. Schemat zestawu omiarowego IV. Przebieg ćwiczenia 1. Włączyć sznur sieciowy układu omiarowego do sieci zasilającej. 2. Wcisnąć rzycisk СЕТЬ (SIEĆ), kontrolując, czy wszystkie wskaźniki mierników wskazują cyfrę zero, a także czy świeci się żarówka czujnika fotoelektrycznego. 3. Za omocą nakrętek nóżek odstawy wyoziomować rzyrząd. 4. Dorowadzić dźwignię żyroskou do równowagi, rzesuwając wzdłuż niej ciężarek. Po ustaleniu równowagi odczytać ołożenie równowagi r o. 5. Srawdzić, czy okrętło regulacji obrotów silnika n (REG ) znajduje się w lewym skrajnym ołożeniu. 5

6 Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou UWAGA: Włączenie rzyrządu do sieci, gdy okrętło n znajduje się w innym ołożeniu, może sowodować rzealenie bezieczników w obwodzie silnika 6. Nacisnąć rzycisk CБРОС (Zliczanie). Ustawić rędkość obrotową około 6000 obr/min. Odczekać chwilę na ustalenie się obrotów. 7. Przesunąć ciężarek o 2 cm w stosunku do ołożenia równowagowego. Wyzerować liczniki i uruchomić czasomierz cyfrowy (nacisnąć rzycisk CБРОС), co sowoduje rozoczęcie omiaru. Wykonać omiar dla kąta obrotu żyroskou = 50 wokół osi ionowej zakreślanego w czasie t. Cyfrowy odczyt zmierzonych wartości nastęuje o naciśnięciu klawisza СТОП (STOP). Wartość kąta w stoniach otrzymuje się, mnożąc rzez 10 odczyt z górnego wyświetlacza, a czas omiaru t w sekundach okazuje dolny wyświetlacz. UWAGA: Przycisk СТОП należy nacisnąć tuż o wyświetleniu wartości kąta orzedzającej zamierzoną wartość końcową, n. jeżeli chcemy, aby = naciskamy rzycisk СТОП o wyświetleniu = 40. Wciś- nięcie rzycisku CБРОС kasuje dane z orzedniego omiaru. 8. Podobne omiary wykonać dla kilku innych ołożeń ciężarka. 9. Po skończeniu omiarów zmniejszyć obroty do zera i wyłączyć zasilanie rzyrządu z sieci. V. Tabele omiarowe TABELA 1. Tabela omiarów r o [m] n [obr/min] [rad/s] [rad/s] deg] deg] r [m] r [m] t [s] t [s] TABELA 2. Tabela wyników [rad/s] [rad/s] I [kgm 2 ] I [kgm 2 ] I/I 6

7 VI. Oracowanie ćwiczenia Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou 1. Obliczyć rędkość kątową obrotów bąka ze wzoru 2 n [rad/s] (11) Obliczyć rędkość kątową recesji żyroskou z zależności 3. Korzystając z rawa recesji żyroskou oraz zależności M I M m g r r 0, kąt wyrazić w radianach. t (12) (13) gdzie: M - moment siły działającej na dźwignię żyroskou, I - moment bezwładności wirnika i tarczy, m - masa ciężarka, otrzymujemy m g r I r 0 (14) Skąd I m g r r 0 (15) ostatecznie uwzględniając związek omiędzy rędkością obrotową n i kątową, wyrażenie na wyznaczenie momentu bezwładności żyroskou 30m g r r t n (16) I 0 VII. Rachunek błędu 1. Błąd I obliczyć metodą różniczki zuełnej I r I I I I r r t m r t m 0 (17) I 0 2. Do oszacowania nieewności bezwzględnej i względnej rzyjąć 1 = =.rad, m = kg 7

8 Ćwiczenie M-5: Wyznaczanie momentu bezwładności żyroskou 3. Zaokrąglone wartości obliczonych wielkości wstawić do tabeli Przerowadzić dyskusję uzyskanych wyników. Literatura 1. Halliday D., Resnick R., Walker J., Fizyka, t. 2, Wydawnictwo Naukowe PWN, Warszawa Lech J., Oracowanie wyników omiarów w laboratorium odstaw fizyki, Wydawnictwo Wydziału Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej PCz, Częstochowa Massalski J., Massalska M., Fizyka dla inżynierów, Fizyka klasyczna, T. I, WNT, Warszawa Piekara A., Mechanika ogólna, PWN, Warszawa Resondowski R., Laboratorium z fizyki, Wydawnictwo Politechniki Śląskiej, Gliwice Szczeniowski S., Fizyka doświadczalna, cz. 1, Mechanika i akustyka, PWN, Warszawa Szydłowski H., Pracownia fizyczna wsomagana komuterem, Wydawnictwo Naukowe PWN, Warszawa Wróblewski A.K., Zakrzewski J.A., Wstę do fizyki, Wydawnictwo Naukowe PWN, Warszawa

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA WYKONAWCZEGO PRĄD STAŁEGO Warszawa 2003 1. WSTĘP. Silnik wykonawczy prądu stałego o wzbudzeniu

Bardziej szczegółowo

Ć W I C Z E N I E N R C-5

Ć W I C Z E N I E N R C-5 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 9 1.X.016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moment bezwładności - koło Krążek wokół osi symetrii: M dm

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 3

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 3 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechanii łynów ĆWICZENIE NR 3 CECHOWANIE MANOMETRU NACZYNIWEGO O RURCE POCHYŁEJ 2 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ruch obrotowy Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ruch jednostajny po okręgu y v W ruchu jednostajnym po okręgu prędkość punktu materialnego jest

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny. Podsumowanie wykładu Egzamin

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny. Podsumowanie wykładu Egzamin Bryła sztywna Wykład XXIII: Fizyka I (BC) Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny Podsumowanie wykładu Egzamin Tensor momentu bezwładności Tensor momentu bezwładności pozwala

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 2 WYZNACZANIE GĘSTOSCI CIAŁ STAŁYCH Autorzy:

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Wyznaczanie współczynnika tarcia tocznego za pomocą wahadła nachylnego MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 4 KATEDRA ZARZĄDZANIA PRODUKCJĄ

Wyznaczanie współczynnika tarcia tocznego za pomocą wahadła nachylnego MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 4 KATEDRA ZARZĄDZANIA PRODUKCJĄ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO173; INO173 Ćwiczenie Nr 4 Wyznaczanie współczynnika

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne

Bardziej szczegółowo

00013 Mechanika nieba A

00013 Mechanika nieba A 1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki. Badanie silników skokowych. Temat ćwiczenia:

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki. Badanie silników skokowych. Temat ćwiczenia: Katedra Energetyki Laboratorium Podstaw Elektrotechniki Temat ćwiczenia: Badanie silników skokowych KOMPUTER Szyna transmisji równoległej LPT Bufory wejściowe częstościomierz /licznik Kontrola zgodności

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

LABORATORIUM DYNAMIKI MASZYN. Redukcja momentów bezwładności do określonego punktu redukcji

LABORATORIUM DYNAMIKI MASZYN. Redukcja momentów bezwładności do określonego punktu redukcji LABORATORIUM DYNAMIKI MASZYN Wydział Budowy Maszyn i Zarządzania Kierunek: Mechanika i Budowa Maszyn Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr 2 Redukcja momentów bezwładności do określonego

Bardziej szczegółowo

Temat: Oscyloskop elektroniczny Ćwiczenie 2

Temat: Oscyloskop elektroniczny Ćwiczenie 2 PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Oscylosko elektroniczny Ćwiczenie 2 Sis rzyrządów omiarowych Program ćwiczenia 1. Pomiar naięcia i częstotliwości 1.1. Przygotować oscylosko

Bardziej szczegółowo

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika

Bardziej szczegółowo

TEORIA MASZYN I MECHANIZMÓW ĆWICZENIA LABORATORYJNE

TEORIA MASZYN I MECHANIZMÓW ĆWICZENIA LABORATORYJNE MiBM. Teoria maszyn i mechanizmów. Ćwiczenie laboratoryjne nr 5 str. 1 MiBM TMiM Akademia Górniczo-Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki TEORIA MASZYN I

Bardziej szczegółowo

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

10 K A T E D R A FIZYKI STOSOWANEJ

10 K A T E D R A FIZYKI STOSOWANEJ 10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział

Bardziej szczegółowo

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka) 2012 Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 402 Godzina... Wyznaczanie siły wyporu i gęstości ciał WIELKOŚCI FIZYCZNE JEDNOSTKI WALEC (wpisz

Bardziej szczegółowo

I. Pomiary charakterystyk głośników

I. Pomiary charakterystyk głośników LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 4 Pomiary charakterystyk częstotliwościowych i kierunkowości mikrofonów i głośników Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem ierwszej części ćwiczenia

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 5 Temat: Wyznaczanie gęstości ciała stałego i cieczy za pomocą wagi elektronicznej z zestawem Hydro. 1. Wprowadzenie Gęstość

Bardziej szczegółowo

BADANIE OBWODÓW TRÓJFAZOWYCH

BADANIE OBWODÓW TRÓJFAZOWYCH Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Instrukcja do ćwiczenia: BADAIE OBWODÓW TÓJFAZOWYCH . Odbiornik rezystancyjny ołączony w gwiazdę. Podłączyć woltomierze ameromierze

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Termodynamika techniczna

Termodynamika techniczna Termodynamika techniczna Wydział Geologii, Geofizyki i Ochrony Środowiska Ekologiczne Źródła Energii II rok Pomiar wilgotności owietrza Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń

Bardziej szczegółowo

ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH

ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH 1. Cel ćwiczenia Celem bezośrednim ćwiczenia jest omiar narężeń ionowych i oziomych w ścianie zbiornika - silosu wieżowego, który jest wyełniony

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami INSTRUKCJA DO ĆWICZENIA NR 2 Analiza kinematyczna napędu z przekładniami 1. Wprowadzenie Układ roboczy maszyny, cechuje się swoistą charakterystyką ruchowoenergetyczną, często odmienną od charakterystyki

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Z poprzedniego wykładu:

Z poprzedniego wykładu: Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 2 WYZNACZANIE GĘSTOSCI CIAŁ STAŁYCH Autorzy:

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

I. Pomiary charakterystyk głośników

I. Pomiary charakterystyk głośników LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 4 Pomiary charakterystyk częstotliwościowych i kierunkowości mikrofonów i głośników Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem ierwszej części ćwiczenia

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Ć W I C Z E N I E N R J-1

Ć W I C Z E N I E N R J-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar mocy

Ćwiczenie M-2 Pomiar mocy POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH INSTRUKCJA do ćwiczeń laboratoryjnych z Metrologii wielkości energetycznych Ćwiczenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: podstawowy Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Przekazanie studentom

Bardziej szczegółowo

Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego

Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego 1 z 7 JM-test-MathJax Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Korekta 24.03.2014 w Błąd maksymalny (poprawione formuły na niepewności maksymalne dla wzorów 41.1 i 41.11)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Przekazanie

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Ć W I C Z E N I E N R O-1

Ć W I C Z E N I E N R O-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU

Bardziej szczegółowo

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu

Bardziej szczegółowo

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone

Bardziej szczegółowo