Ć W I C Z E N I E N R O-1
|
|
- Sabina Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU
2 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru I. Zagadnienia do opracowania. Zjawisko odbicia i załamania światła.. Załamanie światła w pryzmacie. 3. Budowa i zasada działania spektrometru. 4. Zasada wyznaczania współczynnika załamania światła za pomocą spektrometru. 5. Rachunek błędu metodą różniczki zupełnej. II. Wstęp teoretyczny.. Zjawisko odbicia i załamania światła Podstawowymi prawami optyki geometrycznej są prawa odbicia i załamania światła. Możemy je przedstawić na następującym przykładzie: Jeżeli na granicę dwóch ośrodków optycznych I i II, w których prędkości rozchodzenia się światła są odpowiednio v i v, pada promień pod kątem, to częściowo ulega on odbiciu pod katem, a częściowo przechodzi do ośrodka drugiego ulegając załamaniu pod kątem (Rys. ). Rys.. Zjawisko odbicia i załamania światła Zjawiskami odbicia i załamania rządzą następujące prawa: - Kąt padania (zawarty między normalną N do granicy dwóch ośrodków i promieniem padającym), kąt odbicia (zawarty między normalną N i promieniem odbitym) oraz kąt załamania (między normalną N, a promieniem załamanym) leżą w jednej płaszczyźnie. - Kąt odbicia równy jest kątowi padania: =. - Stosunek sinusa kąta padania do sinusa kąta załamania równy jest stosunkowi prędkości rozchodzenia się światła w obu ośrodkach i jest wielkością stałą dla danego rodzaju promieniowania: sin sin v n v ()
3 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru Wielkość n nazywamy współczynnikiem załamania ośrodka drugiego względem pierwszego. Bezwzględnym współczynnikiem załamania danego ośrodka nazywamy współczynnik załamania tego ośrodka względem próżni. W próżni wszystkie rodzaje promieniowania elektromagnetycznego (do którego zaliczamy promieniowanie świetlne, niezależnie od jego długości fali) rozchodzą się z tą samą 8 prędkością c 3 0 m / s. Współczynnik załamania dla próżni n = l. Prędkość rozchodzenia się światła w ośrodkach gazowych różni się niewiele od prędkości rozchodzenia się światła w próżni i dlatego np. dla powietrza można w przybliżeniu przyjąć, że n = l... Załamanie światła w pryzmacie Bryła wykonana z przezroczystego materiału, ograniczona dwoma płaskimi ścianami przecinającymi się pod kątem stanowi pryzmat. Kąt nosi nazwę kąta łamiącego pryzmatu. Prosta wzdłuż której przecinają się płaszczyzny ścian bocznych, nosi nazwę krawędzi pryzmatu. Ściana przeciwległa do kąta może mieć kształt dowolny, gdyż nie ma ona wpływu na bieg promieni (Rys.). Zazwyczaj uzupełniamy pryzmat trzecią ścianą przecinającą ściany boczne w równych odległościach od krawędzi, ta ściana nosi nazwę podstawy pryzmatu. Taki pryzmat w przekroju przedstawia się jako trójkąt równoramienny. Rys.. Załamanie światła w pryzmacie Jak to przedstawiono na Rys., promień padający na ściankę pryzmatu pod kątem, załamuje się pod kątem, pada na drugą ściankę pod kątem i wychodzi z niej pod kątem. Normalne N do obu ścian bocznych pryzmatu tworzą ze sobą kąt równy kątowi łamiącemu pryzmatu. Przedłużenia promieni padającego i wychodzącego z pryzmatu tworzą kąt, zwany kątem odchylenia. Wartość tego kąta zależy od wartości kąta padania, od współczynnika załamania n materiału pryzmatu i od kąta 3
4 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru łamiącego pryzmatu : f,n,. Dla pryzmatu o stałym kącie łamiącym i dla światła monochromatycznego (stałe n) kąt odchylenia zależy jedynie od kąta padania : Z twierdzenia o kącie zewnętrznym w trójkącie wynika, że: f. ; () Przy zmniejszaniu kąta padania kąt odchylenia stopniowo się zmniejsza i przy pewnej wartości kąta osiąga wartość imalną, a następnie, przy dalszym zmniejszaniu kąta kąt odchylenia znowu rośnie. Najmniejszej wartości kąta odchylenia, zwanej kątem najmniejszego odchylenia, odpowiada zależność =. Stąd wynika też, że =. W tych warunkach promień wewnątrz pryzmatu biegnie równolegle do podstawy pryzmatu. Taki bieg promieni w pryzmacie przedstawiono na Rys. 3. Rys.3. Symetryczny bieg promieni w pryzmacie Gdy spełnione są zależności (), to: stąd: ; ; Stąd ostatecznie współczynnik załamania dla pryzmatu wynosi: 4
5 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru sin sin n (3) sin sin.3. Budowa i zasada działania spektrometru Spektrometr stanowi precyzyjną odmianę spektroskopu i umożliwia dokładny pomiar kąta odchylenia promienia przechodzącego przez pryzmat lub inny układ optyczny (Rys.4). Rys. 4. Budowa spektrometru Składa się on z kolimatora K i lunety L, które są umieszczone poziomo na metalowej podstawie. Kolimator jest to metalowy tubus zamknięty z jednej strony soczewką zbierającą S, z drugiej strony metalową zasłoną, w której znajduje się pionowa szczelina Sz. Szerokość szczeliny można dowolnie regulować za pomocą pierścienia P. Przed szczeliną ustawiamy źródło światła monochromatycznego (np. lampę sodową) i traktujemy szczelinę jako źródło promieniowania. Długość tubusa odpowiada dokładnie odległości ogniskowej soczewki kolimatora. Dzięki temu kolimator przekształca rozbieżną wiązkę światła w wiązkę promieni równoległych. Wiązka ta może następnie wchodzić bezpośrednio do lunety L, lub po odchyleniu przez pryzmat ustawiony na stoliku Spektrometru. Sama luneta jest wyposażona w układ soczewek zbierających: S stanowi obiektyw, a O okular lunety, które pozwalają na oglądanie otrzymywanych obrazów. W okularze lunety znajduje się krzyż z nitek pajęczych. Obracając pierścień okularu P, można regulować ostrość obrazu nitek krzyża. Obwód tarczy T jest zaopatrzony 5
6 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru w podziałkę kątową (która w tej wersji spektrometru ukryta jest wewnątrz tarczy i można ją obserwować tylko przez okular). Kolimator jest nieruchomy, lunetę można dowolnie przesuwać po obwodzie stolika. Dokładny odczyt położenia lunety jest możliwy dzięki dodatkowemu okularowi z noniuszem kątowym O zamontowanemu w lunecie. Sposób odczytu noniusza przestawia Rys. 5. Rys. 5. Przykładowy odczyt noniusza kątowego, w tym przypadku kąt lunety wynosi 34º 3. III. Zasada pomiaru (Zasada wyznaczania współczynnika załamania światła za pomocą spektrometru.) Aby wyznaczyć współczynnik załamania światła, z którego wykonany jest pryzmat należy zgodnie z zależnością (3) dokonać pomiaru kąta łamiącego oraz kąta najmniejszego odchylenia dla światła monochromatycznego o określonej długości fali. 3.. Wyznaczanie kąta łamiącego w pryzmacie W celu wyznaczenia kąta łamiącego stosujemy układ przedstawiony na Rys.6. Rys. 6. Zasada pomiaru kąta łamiącego w pryzmacie 6
7 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru Promienie równoległe wychodzące z kolimatora K padają na pryzmat od strony krawędzi łamiącej. Po odbiciu od obu ścian bocznych otrzymujemy w lunecie obrazy przy dwóch jej położeniach L i L symetrycznych względem położenia osiowego O O. Kąty padania na boczne ściany pryzmatu (i kąty odbicia) wynoszą odpowiednio: 90 ; 90 ponieważ: kąt zawarty pomiędzy osiami lunety w obu położeniach jest równy podwojonemu kątowi łamiącemu pryzmatu: ; (4) 3.. Wyznaczanie kąta najmniejszego odchylenia w pryzmacie. W celu wyznaczenia kąta najmniejszego odchylenia stosujemy układ przedstawiony na Rys. 7. Rys. 7. Zasada pomiaru kąta najmniejszego odchylenia w pryzmacie Szczelinę oświetlamy światłem lampy sodowej. Na stoliku umieszczamy badany pryzmat w położeniu, tak aby promienie padające na szczelinę boczną pryzmatu uległy załamaniu. Za pomocą 7
8 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru lunety szukamy obrazu szczeliny, który odpowiada odchylonemu biegowi promieni. Następnie obracając stolik z pryzmatem stwierdzamy, że obraz szczeliny się przesuwa, albo oddala od kierunku pierwotnego, albo się do niego przybliża. Przy ciągłym obrocie stolika w jedną stronę można zauważyć, że obraz przybliża się do pewnej granicznej pozycji i potem się od niej oddala. To zwrotne położenie obrazu szczeliny odpowiada imalnemu odchyleniu promienia. Za pomocą lunetki odczytujemy pozycje lunety ustawionej na imum odchylenia, a następnie umieszczamy pryzmat w pozycji i wyszukujemy nową pozycję lunety ustawionej na imum odchylenia i odczytujemy jej pozycję. Obie pozycje odpowiadające imum odchylenia są symetryczne względem osi kolimatora, a kąt najmniejszego odchylenia: (5) można poprzestać na znalezieniu kąta najmniejszego odchylenia tylko przy ustawieniu pryzmatu w pozycji lub, wtedy jednak trzeba znaleźć pozycję osi kolimatora czyli kierunek promieni nieodchylonych 0. Pomiar taki wykonujemy bez pryzmatu, a lunetkę ustawiamy na wprost kolimatora i odczytujemy położenie obrazu szczeliny odpowiadające kierunkowi promieni nieodchylonych 0. Kąt najmniejszego odchylenia wynosi wtedy: ale taki pomiar obarczony będzie większym błędem. (6) 0 IV. Zestaw pomiarowy Spektrometr, lampa sodowa, transformator do zasilania lampy sodowej, zestaw pryzmatów. V. Przebieg ćwiczenia. Lampę sodową włączamy do transformatora niskiego napięcia, a transformator do sieci prądu zmiennego o napięciu 0V. UWAGA: Włączenie lampy sodowej bezpośrednio do sieci prądu zmiennego spowoduje uszkodzenie lampy!. Szczelinę kolimatora spektrometru oświetlamy lampą sodową. 3. Lunetę spektrometru ustawiamy na przedłużeniu osi kolimatora tak, aby obraz szczeliny znajdował się na przecięciu krzyża z nitek pajęczych i regulujemy szerokość szczeliny kolimatora za pomocą pierścienia regulującego, a ostrość obrazu szczeliny za pomocą okularu lunety. 4. Ustawiamy na stoliku spektrometru pryzmat krawędzią łamiącą na wprost osi kolimatora tak, aby wiązka światła wychodząca z kolimatora jednakowo oświetlała obie ścianki pryzmatu. 5. Szukamy obrazu szczeliny odbitego od lewej ściany pryzmatu za pomocą lunety, ustawiamy go dokładnie na przecięciu nitek krzyża i odczytujemy to położenie. 8
9 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru 6. Szukamy obrazu szczeliny odbitego od prawej ściany pryzmatu za pomocą lunety i po dokładnym ustawieniu lunety (jak w p. 5), odczytujemy jej położenie. 7. Zmieniając nieznacznie położenie pryzmatu na stoliku spektrometru wykonujemy pomiary wg punktów 4-6 jeszcze dwukrotnie dla tego samego pryzmatu. 8. Pryzmat ustawiamy na stoliku spektrometru tak, aby jego kąt łamiący znalazł się po prawej stronie osi kolimatora i aby promienie na niego padające uległy odchyleniu. 9. Szukamy obrazu szczeliny w lunecie, a następnie obracając stolikiem ciągle w jedna stronę szukamy zwrotnego położenia obrazu szczeliny odpowiadającego imalnemu odchyleniu promieni przechodzących przez pryzmat. Odczytujemy pozycje lunety dla tego położenia. 0. Pryzmat ustawiamy na stoliku spektrometru tak, aby jego kąt łamiący znalazł się po lewej stronie osi kolimatora i aby promienie na niego padające uległy odchyleniu.. Szukamy zwrotnego położenia obrazu szczeliny w lunecie odpowiadającego imalnemu odchyleniu promieni przechodzących przez pryzmat i odczytujemy jego położenie.. Pomiary wg punktów 8- wykonujemy jeszcze dwukrotnie dla tego samego pryzmatu. 3. Przeprowadzamy pomiary wg punktów 4- dla pozostałych pryzmatów. 4. Wszystkie wyniki zapisujemy w tabeli. VI. Tabela pomiarowa Pryzmat l.p. I II III śr ( ) śr n VII. Opracowanie ćwiczenia. Obliczamy kąt łamiący dla każdego pomiaru: oraz wartość średnią dla każdego pryzmatu. i. Obliczamy kąt najmniejszego odchylenia dla każdego pomiaru: oraz wartość średnią dla każdego pryzmatu. 9
10 Ćwiczenie O-: Wyznaczanie współczynnika załamania światła za pomocą spektrometru 3. Obliczamy współczynnik załamania dla każdego z pryzmatów: sin n sin 4. Wyniki wpisać do tabeli. VIII. Rachunek błędu. Błąd bezwzględny współczynnika załamania wyznaczyć metodą różniczki zupełnej. Mamy tu dwie wielkości obarczone błędem i. Przy ocenie błędów bezwzględnych tych katów należy je liczyć w radianach i uwzględnić dokładność pomiaru odczytywanego za pomocą noniusza kątowego: n n n cos sin sin cos cos n sin sin Po zastosowaniu wzoru redukcyjnego z trygonometrii na sin(-) powyższe wyrażenie przyjmuje znacznie prostszą postać: gdzie: '... rad. '... rad. sin cos n sin sin. Przeprowadzić zaokrąglenie wartości n i n zgodnie z obowiązującymi normami. 3. Obliczyć błąd względny wyznaczonych wielkości. IX. Literatura. T. Dryński Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Naukowe PWN, Warszawa 976r.. H. Szydłowski Pracownia fizyczna wspomagana komputerem, Wydawnictwo Naukowe PWN, Warszawa 003r. 3. A. Zawadzki, H. Hofmokl Laboratorium fizyczne 4. Sz. Szczeniowski Fizyka doświadczalna, cz. IV, Optyka 5. A. Piekara Nowe oblicze optyki, 6. J. Lech Opracowanie wyników pomiarów w laboratorium podstaw fizyki, Wydawnictwo Politechniki Częstochowskiej, Wydział Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej, Częstochowa 005 0
I PRACOWNIA FIZYCZNA, UMK TORUŃ
I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.
0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 6 Temat: WYZNACZANIE DYSPERSJI OPTYCZNEJ PRYZMATU METODĄ POMIARU KĄTA NAJMNIEJSZEGO ODCHYLENIA Warszawa 009 WYZNACZANIE DYSPERSJI OPTYCZNEJ
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA. Cel ćwiczenia
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 10 Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia w pryzmacie Kalisz, luty 2005 r. Opracował:
S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1
Przeznaczenie S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1 Spektroskop szkolny służy do demonstracji i doświadczeń przy nauczaniu fizyki, zarówno w gimnazjach jak i liceach. Przy pomocy
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu
Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 10 Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania
Ć W I C Z E N I E N R O-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
STOLIK OPTYCZNY 1 V Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY 1 V 7-19 Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej. 6 4 5 9 7 8 3 2 Rys. 1. Wymiary w mm: 400 x 165 x 140, masa 1,90 kg. Na drewnianej podstawie
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru
II Pracownia Fizyczna 9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampa spektralna rtęciowa z zasilaczem 3. Pryzmaty szklane,
LABORATORIUM Z FIZYKI
Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.
MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Pomiar współczynnika załamania światła OG 1
I. Cel ćwiczenia: Pomiar współczynnika załamania światła OG 1 1. Zapoznanie się z budową i zasadą działania goniometru. 2. Poznanie metody pomiaru kątów pryzmatu 3. Poznanie metody pomiaru współczynników
Ć W I C Z E N I E N R O-4
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,
TARCZA KOLBEGO V 7-22
TARCZA KOLBEGO V 7-22 Przyrząd służy do zasadniczych pokazów z optyki geometrycznej, dotyczących odbicia i załamania światła. Ma on budowę wskazaną na rys. 1. Rys. 1. Na trójnożnej podstawie (1) jest umocowany
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI
ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej
Ćwiczenie Nr 11 Fotometria
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 6 Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego i metodą Bessela Kalisz, luty 2005 r. Opracował: Ryszard
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
POMIARY OPTYCZNE Współczynnik załamania #1. Damian Siedlecki
POMIARY OPTYCZNE 1 { 6. Współczynnik załamania #1 Damian Siedlecki Przypomnienie: Współczynnik załamania ośrodka opisuje zmianę prędkości fali w ośrodku: n c v = εμ c prędkość światła w próżni; v prędkość
Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.
Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:
Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
Wyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
rys. 1. Rozszczepienie światła białego w pryzmacie
Badanie widm emisyjnych za pomocą spektroskopu autor: dr Krzysztof Gębura Cel: wyznaczenie krzywej dyspersji spektrometru, stałej Rydberga dla atomu wodoru. Przyrządy: spektroskop pryzmatyczny, rurki widmowe
Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru.
Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru. Cel ćwiczenia: Część I. 1. Wyznaczenie współczynnika załamania światła. 2. Wyznaczenie stałej siatki dyfrakcyjnej. Część II. 1.
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
POMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru
Człowiek najlepsza inwestycja
Ćwiczenie: U.11 Tytuł ćwiczenia: Pierścienie Newtona Cel ćwiczenia: 1. Praktyczne zapoznanie się ze zjawiskiem interferencji światła. 2. Zapoznanie się z powstawaniem pierścieni Newtona w świetle przechodzącym
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
O3. BADANIE WIDM ATOMOWYCH
O3. BADANIE WIDM ATOMOWYCH tekst opracowała: Bożena Janowska-Dmoch Większość źródeł światła emituje promieniowanie elektromagnetyczne złożone z wymieszanych ze sobą fal o wielu częstotliwościach (długościach).
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
ŚWIATŁO I JEGO ROLA W PRZYRODZIE
ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów
16 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia małych przedmiotów
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie
POMIARY OPTYCZNE Pomiary kątów (klinów, pryzmatów) Damian Siedlecki
POMIARY OPTYCZNE 1 { 10. (klinów, pryzmatów) Damian Siedlecki 1) Metoda autokolimacyjna i 2φn a = 2φnf ob φ = a 2nf ob Pomiary płytek płasko-równoległych 2) Metody interferencyjne (prążki równej grubości)
Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego Zagadnienia: załamanie światła na anicy dwóch ośrodków, prawo Snelliusa, zjawisko całkowitego
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Badanie właściwości optycznych roztworów.
ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Wyznaczanie dyspersji optycznej pryzmatu metodą kąta najmniejszego odchylenia.
Wydział Fizyki Nazwisko i Imię. Janik Małgorzata. Janeczko Mariusz Poniedziałek 4 00 7 00 kwietnia 007 Ocena z przygotowania Ocena ze sprawozdania Nr zespołu 0 Ocena końcowa Prowadzący: Ryszard Siegoczyński
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54