A. Dawid KSM (W1) Uniwersytet Śląski Katowice
|
|
- Bronisława Karpińska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Symulacje komputerowe 2 Metoda Monte Carlo PLAN WYKŁADU 1. Klasyczna metoda MC 2. Rozwiązanie Metropolisa 3. Implementacja algorytmu MC. 4. Klasyczny model sieciowy (Model Isinga) 5. Własności dielektryczne materiałów. 6. Kwantowa metoda wariacyjna. 7. Rozwiązanie dla atomu i molekuły wodoru.
2 Literatura M.P. Allen and D.J. Tildesley Computer Simulation of Liquids (Oxford University Press). D.C. Rapaport The art of molecular dynamics simulation. (Cambridge University Press 1995). D. Frenkel. Understanding Molecular Simulation. From Algorithms to Aplications. FOM Institute for Atomic and Molecular Physics Amsterdam, The Netherlands. (Academic Press 1996). Tao Pang Metody Obliczeniowe w fizyce PWN Warszawa 2001 W. Rubinowicz, W. Królikowski Mechanika Teoretyczna (PWN Warszawa 1988). A. N. Matwiejew Fizyka Cząsteczkowa (PWN Warszawa 1989). A. I. Anselm, Podstawy fizyki statystycznej i termodynamiki, (PWN Warszawa 1984).
3 Miejsce symulacji komputerowych w badaniach naukowych
4 Historia symulacji komputerowych. 1. II Wojna Światowa - symulacje dla pocisków altyleryjskich algorytm Metropolis dla metody Monte Carlo 3. Lata 50-te XX wieku - Los Alamos MANIAC wprowadzenie metody MD (Adler i Wainwright, Livermore.) MD dla fazy ciekłej.
5 Symulacje Monte Carlo. Symulacje MC Klasyczne Kwantowe (ab initio) Model ciągły Model Sieciowy Metoda Wariacyjna Całkowanie Po ścieżkach
6 Metoda Monte Carlo. Metoda bierze swoją nazwę od częstego stosowania w niej generatora liczb losowych. Monte Carlo hazard i gry losowe.
7 Metoda Monte Carlo. Symulacje Monte Carlo wykonywane są wówczas gdy problem fizyczny można sprowadzić do rozwiązania całki typu. F = x 2 x 1 dxf ( x) Po wprowadzeniu funkcji rozkładu gęstości (x) (x) F = x 2 x 1 dx f ( x) ( x) ( x) x1 x 2 x
8 Metoda Monte Carlo. Rozważmy przeprowadzenie τ losowań liczby τ z rozkładu (x) w granicach (x 1,x 2 ), wtedy nasza całka przyjmie postać średniej po wszystkich próbach; F = f ( ψ ( ψ Najprostszy przypadek gdy funkcja gęstości rozkładu prawdopodobieństwa jest jednorodna w całym przedziale. τ τ ) ) τ ψ ( x) = x 2 1 x 1 (x) 1 x x 2 1 x1 x2 x
9 Metoda Monte Carlo. W tym przypadku nasza całka przyjmie następującą postać dyskretną; F = ( x τ x ) τ max 2 1 f ( ψ τ ) max τ = 1 W przypadku jednowymiarowej całki metoda MC daje gorsze wyniki od metod bezpośrednich (Simpsona) Dla MC F = ( τ 1 max ) 1 2 Dla trapezów F = 1 ( τ 2 max )
10 Metoda Monte Carlo. Przykład: Układ molekuł w dobrym kontakcie ze zbiornikiem ciepła. Stałe N,V,T (układ kanoniczny). gdzie, Γ Z = A { q } q N = 1 β U ( Γ) Z = βu ( Γ) e dγ A( Γ) e dγ Przestrzeń konfiguracyjna. Całka konfiguracyjna (suma statystyczna). β = k B 1T
11 Schemat MC Metoda Monte Carlo. (1) Generujemy punkt w 3N wymiarowej przestrzeni konfiguracyjnej w granicach zamkniętej objętości (2) Obliczamy energię potencjalną dla każdego losowania U = V ( ) τ i< j r ij (3) Obliczamy czynnik Boltzmanna exp( βu τ )
12 Schemat MC Metoda Monte Carlo. Procedura jest powtarzana. Po dużej liczbie losowań całkę konfiguracyjną można przybliżyć równaniem; Z NVT V τ N max τ max τ = 1 exp( βu τ )
13 Metoda Monte Carlo. Wadą tej metody jest dodawanie do całki konfiguracyjnej przypadkowych przyczynków o nieznaczącej wartości. Rozwiązaniem tego problemu jest wprowadzenie rozkładu prawdopodobieństwa niejednorodnego. A NVT = draexp( βu ) dr exp( β U ) A NVT = dγ ( Γ) A( Γ) NVT
14 Metoda Monte Carlo. Jeżeli teraz nasze funkcje podcałkowe zamienimy jedną funkcją; f ( Γ) = ( Γ) A( Γ) NVT To średnią dowolnej wielkości w rozkładzie kanonicznym możemy przybliżyć równaniem. A NVT A NVT τ
15 Metoda Monte Carlo. Aby można liczyć według losowań naszą średnią; A NVT A τ Musi być spełniony następujący warunek; = NVT Wygenerowane sekwencje przypadkowych stanów muszą spełniać ten warunek.
16 Rozwiązanie Metropolisa. Rozwiązanie tego problemu znalazł w 1953 Metropolis. Łańcuch Markowa stanów, tak skonstruowany aby jego rozkład graniczny był rozkładem Łańcuch Markowa NVT (1) Wynik losowania należy do skończonej liczby wyników Γ { Γ Γ Γn } n 1, 2,..., (2) Wynik każdego z losowań zależy tylko od wyniku bezpośrednio go poprzedzającego. P ( (0) (2) ) ( (0) (1) ) ( (1) (2) Γ Γ = P Γ Γ P Γ Γ )
17 Rozwiązanie Metropolisa. Dwa stany połączone macierzą przejścia. Γ n, Γ m (1) = (0.5,0.5) Prawdopodobieństwo początkowe reprezentowane przez wektor. π = π mn
18 Rozwiązanie Metropolisa. (2) (3) = = (1) (2) π π = (1) π 2 = lim τ (1) π τ R musi spełniać równanie na wartości własne π = (*) mπ mn = m n
19 Rozwiązanie Metropolisa. Jeżeli wartość własna jest równa 1 to pi nazywamy macierzą Stochastyczną tzn. jej wiersze sumują się do jedności. π mn n = 1ˆ Nie znamy macierzy pi ale znamy wektor prawdopodobieństwa m = NVT ( Γ m ) Mikroskopowa odwracalność dla macierzy pi π = m mn n π nm (**)
20 Rozwiązanie Metropolisa. W 1953 roku Metropolis znalazł macierz przejścia satysfakcjonującą równania (*) i (**) π π mn mn = α = α mn mn π = 1 ( n / m) Prawdopodobieństwo pozostania w tym samym stanie mm π mn n m n n < m m α mn = α nm Macierz symetryczna
21 Rozwiązanie Metropolisa
22 Rozwiązanie Metropolisa (1) Wybieramy losowo dowolny atom. (2) Atom umieszczamy w środku małej kostki o rozmiarach 2δr max (Rys. 3.2). Przesuwamy atom w dowolne położenie wewnątrz tej kostki. (3) Obliczmy energie i-tego atomu w nowym i starym położeniu a następnie ich różnicę. N N n m δv nm = Φ( rij ) Φ( rij ) j= 1 j= 1 Jeżeli δv nm =V n -V m <0 to atom przesuwamy do nowego położenia. (4) Jeżeli δv nm >0 to przesunięcie musi być jeszcze zaakceptowane przez dane prawdopodobieństwo r n / r m. Generujemy liczbę losową ξ z przedziału [0,1]. Jeżeli exp(-βδv nm )>ξ ( ), to akceptujemy przesunięcie β do =1/ nowego k B T położenia. (5) Jeżeli exp(-βδv nm )<ξ to traktujemy stare położenie jako nowe położenie. (6) Wybieramy inny atom i powtarzamy operację.
23 Zalety i wady metody MC Metoda Monte Carlo zasadniczo nadaje się do badania własności fizycznych oraz struktury w stanie równowagowym. Pozwala dość dokładnie obliczać takie wielkości jak; Energia potencjalna Ciśnienie Ciepło właściwe Radialna funkcja rozkładu Metoda Monte Carlo jako metoda statystyczna słabo nadaje się do badania wielkości zależnych od czasu, takich jak wszelkiego rodzaju czasowe funkcje korelacji. Brak jest możliwości śledzenia toru cząstki wynikającego z równań ruchu.
24 2 Potencjał Lennarda-Jonesa (argon). 1 V Ar-Ar [10-21 J] r [A] V ( r ij ) = σ 4ε rij 12 σ rij 6 ε, σ Parametry zależne od materiału
25 Kod MC int inline MCrun(int ile,double Rmax){ double prec,rmax,delta,cb,beta,ep,wbol,temp; int los,accept=0,dzeta,ff=0,df,kf=1000; POS rr,robr,engl,*rt; Temp=2.867; beta=1/(kb*temp); srand(time(null)); rmax=4.2; prec=1000.0; dzeta=(int)prec; los=(int)(rmax*2.0*prec);
26 Kod MC for(t=0;t<ile;t++) { i = rand() % N; df = 1+(ff++) % kf; rt=new POS; rr.x = rmax-(double)(((rand() % los))/prec); rr.y = rmax-(double)(((rand() % los))/prec); rr.z = rmax-(double)(((rand() % los))/prec); accept=1;
27 Kod MC rt.x = M[i].R[0].x + rr.x; rt.y = M[i].R[0].y + rr.y; rt.z = M[i].R[0].z + rr.z; if(rt.x>=rmax*0.5 rt.x<=-rmax*0.5 rt.y>=rmax*0.5 rt.y<=-rmax*0.5 rt.z>=rmax*0.5 rt.z<=-rmax*0.5){ accept=0; break; }
28 Kod MC delta=countdeltaepot(i,rt); wbol=beta*delta; if(delta<0){accept=1; } if(delta>=0){ ep=(double)((1+(rand() % dzeta))/prec); cb=exp(-wbol); if(cb>ep){accept=1; }else{accept=0;} }
29 Kod MC if(accept==1){ M[i].R[0].x = rt.x; M[i].R[0].y = rt.y; M[i].R[0].z = rt.z; } delete rt; } return 0; }
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii
Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
1. Analiza danych mikroskopowych a) własności dynamiczne b) własności strukturalne 2. Opracowanie wyników OriginLab 3. Wizualizacja geometrii
Analiza i wizualizacja danych. Analiza danych mikroskopowych a) własności dynamiczne b) własności strukturalne. Opracowanie wyników OriginLab. Wizualizacja geometrii molekularnej. a) Biblioteka OpenGL
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Ogólny schemat postępowania
Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Algorytm Metropolisa-Hastingsa
Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC
Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki
Nie do końca zaawansowane elementy programowania w pakiecie R Tomasz Suchocki Plan wykładu Metody Monte Carlo Jak bardzo można przybliżyć liczbę π? Całkowanie numeryczne R w Linuxie Tinn-R Metody Monte
Metody Obliczeniowe w Nauce i Technice
Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Czym jest całka? Całkowanie numeryczne
Całkowanie numeryczne jest to zagadnienie z metod elementów skończonych (MES). Korzystając z całkowania numerycznego możemy obliczyć wartość dowolnej całki jednowymiarowej oznaczonej. Wynik jest zawsze
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Całkowanie metodą Monte Carlo
Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności
Redukcja wariancji w metodach Monte-Carlo
14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }
Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[
Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
Modelowanie komputerowe
Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.
Wykład Ćwiczenia Laboratorium Projekt Seminarium 45
Zał. nr 4 do ZW /202 WYDZIAŁ PPT / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Studenckie laboratorium obliczeniowe Nazwa w języku angielskim Student computational laboratory Kierunek studiów (jeśli
Kilka słów o metodzie Monte Carlo
Rachunek Prawdopodobieństwa Grupa wykładowa: środa g. 15.15 Prezentuje: Grupa w składzie: 1. Wojciech Nawracała 2. Paweł Gancarz 3. Michał Frysztacki 4. Paweł Trajdos 5. Jakub Bubin Ilustracja metody Monte
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy
i obiekty Programowanie i obiekty uzupełnienie notatek: dr Jerzy Białkowski i obiekty 1 2 3 4 i obiekty Obiektowość języka C++ Na tym wykładzie poznamy: ˆ Klasa (w języku C++ rozszerzenie struktury, typ
Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych.
Wykład 14 Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Rozkład chi-kwadrat Suma kwadratów n-zmiennych losowych o rozkładzie normalnym standardowym ma rozkład
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak
Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Procesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Wykład 9: Markov Chain Monte Carlo
RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa
Techniki optymalizacji
Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie
model isinga 2d ab 10 grudnia 2016
model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,
Równoległe symulacje Monte Carlo na współdzielonej sieci
Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Algorytmy MCMC i ich zastosowania statystyczne
Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 2 1 Podstawowe idee symulacji
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Optymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Komputerowe modelowanie zjawisk fizycznych
Komputerowe modelowanie zjawisk fizycznych Ryszard Kutner Zakład Dydaktyki Fizyki Instytut Fizyki Doświadczalnej, Wydział Fizyki Uniwersytet Warszawski IX FESTIWAL NAUKI WARSZAWA 2005 BRAK INWESTYCJI W
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Wstęp do programowania
wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji Metoda optymalizacyjna (2) W. Debski, 8.01.2015 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ d est d o = + λ I ( G T G + λi
Symulacja w przedsiębiorstwie
Symulacja w przedsiębiorstwie Generowanie liczb losowych Cel Celem laboratorium jest zapoznanie się z funkcjami generowania liczb pseudolosowych w środowisku Ms Excel. Funkcje te są podstawą modeli symulacyjnych
Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.
Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
Ilustracja metody MONTE CARLO. obliczania całek podwójnych
Ilustracja metody MONTE CARLO obliczania całek podwójnych Często jest tak, iż wiemy, że istnieje całka oznaczona z funkcji f jednak nie potrafimy jej analitycznie policzyć. Konieczne jest wtedy zastosowanie
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Wynik pomiaru jako zmienna losowa
Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
wartość oczekiwana choinki
wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Numeryczne rozwiązanie równania Schrodingera
Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Model Isinga. Katarzyna Sznajd-Weron
Model Isinga Katarzyna Sznajd-Weron Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk T > T c Jak to zrozumieć? Model
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
RACHUNEK PRAWDOPODOBIE STWA
Jerzy Ombach RACHUNEK PRAWDOPODOBIE STWA WSPOMAGANY KOMPUTEROWO DLA STUDENTÓW MATEMATYKI STOSOWANEJ Wydawnictwo Uniwersytetu Jagielloƒskiego Seria Matematyka Książka finansowana przez Wydział Matematyki
Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)
Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Procesy stochastyczne
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Procesy stochastyczne
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)