Rozwiążmy razem Piramidy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiążmy razem Piramidy"

Transkrypt

1 Exercise. Caterpillar (0 points) Rozwiążmy razem Piramidy The body of a caterpillar of some insect consists of five spherical parts. Three of them are yellow and two are green. How many all types of caterpillar of this bug could appear in nature? Esercizio. La larva (0 punti) Il corpo della larva di un insetto si compone di cinque parti rotonde, di cui sono gialle e verdi. Quanti tipi di larve di questo insetto possono esistere nella natura? Aufgabe. Raupe (0 Punkte) Der Raupenkörper von einem Insekt besteht aus fünf runden Teilen, wobei von ihnen gelb und grün sind. Höchstens wie viele Raupentypen von diesem Insekt könnten in der Natur vorkommen? Tarea. Oruga (0 puntos) El cuerpo de la oruga de un insecto se compone de cinco partes esféricas, de cuales son amarillas y dos verdes. Cuántos tipos de la oruga de este insecto podría a lo más aparecer en la naturaleza? Exercice. Chenille (0 points) Le corps de la chenille d un insecte est composé de cinq parties rondes, mais d entre elles sont jaunes et vertes. Combien de sortes d insecte pourraient se reproduire au maximum dans la nature? Zadanie. Piramida Cheopsa ( punkty) Bezpośredni pomiar wysokości słynnej piramidy Cheopsa jest niemożliwy. Wiedząc, że krawędź podstawy ma 0m, a krawędź boczna 8m oblicz długość wysokości tej piramidy. Zadanie. Prezent Agnieszki (8 ) Pudełko na prezent ma kształt czworościanu. Trzy ściany tego pudełka są przystającymi równoramiennymi trójkątami prostokątnymi o przyprostokątnych długości 0cm. Narysuj siatkę tego pudełka w skali :4. Oblicz powierzchnię papieru, który zużyje Agnieszka do oklejenia tego pudełka. Wynik zaokrąglij do 0cm. Jaką pojemność ma pudełko oklejone przez Agnieszkę? Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona

2 Zadanie 4. Mikrodiament (punkty) Kryształ mikrodiamentu ma kształt ośmiościanu foremnego (sklejone podstawami dwa jednakowe ostrosłupy prawidłowe czworokątne o wszystkich krawędziach jednakowej długości). Taki kryształ ma około 0,4mm wysokości. Oblicz jego objętość? Zadanie 5. Szałas (4 punkty) Chcąc zbudować szałas o kwadratowej podstawie, Maciek wbił w ziemię pod kątem 60º cztery dwumetrowe żerdzie. Jaka jest powierzchnia ścian szałasu, które należy przykryć gałęziami? Zadanie 6. Pudełko na ozdoby choinkowe (4 punkty) Wytwórnia ozdób choinkowych pakuje bombki w pudełka o kształcie ostrosłupa czworokątnego prawidłowego o krawędzi podstawy cm i wysokości 8cm. Ile metrów kwadratowych tektury potrzeba do przygotowania 000 takich opakowań? Dolicz 5% powierzchni ostrosłupa na zakładki do sklejenia pudełka. Zadanie 7. Waga bryły ( punkty) Z kolorowego papieru, którego cm² waży 0,008g zrobiono siatkę ostrosłupa o podstawie kwadratu o boku 5cm i wysokości każdej ściany bocznej wynoszącej 6cm. Ile waży model tej bryły? Zadanie 8. Pojemnik na cement (5 ) Rysunek przedstawia używany na budowie pojemnik na cement, który powstał w wyniku połączenia graniastosłupa z ostrosłupem prawidłowym, przy czym ściany boczne ostrosłupa są trójkątami równobocznymi. Ile metrów sześciennych cementu zmieści siew tym pojemniku? Wynik zaokrąglij do 0,m³. Zadanie 9. Modele Zuzi (8 ) Zuzia chce zbudować dwa modele ostrosłupa prawidłowego trójkątnego. W obu podstawą ma być trójkąt równoboczny o krawędzi długości 0cm. W jednym z modeli ściany boczne mają być nachylone do podstawy pod kątem 60 º, a w drugim pod takim samym kątem mają być nachylone do podstawy krawędzie boczne. Naszkicuj oba modele i podaj na rysunkach długości krawędzi każdego z ostrosłupów (zaokrąglij je do pełnych milimetrów). Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona

3 Zadanie 0. Wieża ratuszowa ( punkty) Zwieńczenie wieży ratusza w kształcie graniastosłupa prawidłowego sześciokątnego, o wymiarach podanych na rysunku, jest pokryte blachą i dla konserwacji trzeba je pomalować antykorozyjną farbą, którą kupuje się w ośmiolitrowych pojemnikach. Jeden pojemnik wystarcza na pomalowanie m² powierzchni. Ile litrów farby potrzeba na pomalowanie dachu wieży? Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona

4 Rozwiązania oraz schemat oceniania zestawu Rozwiążmy Razem Piramidy Zadanie. Gąsienica (0 ) Ciało gąsienicy pewnego owada składa się z pięciu kulistych części, przy czym z nich są żółte, a zielone. Ile co najwyżej typów gąsienicy tego owada mogłoby wystąpić w przyrodzie? Oznaczmy kolor żółty cyfrą, zaś zielony cyfrą. Zadanie sprowadza się do odpowiedzi na pytanie- ile co najwyżej różnych liczb pięciocyfrowych mozna zbudować z cyfr,,,,. Liczb takich jest 0. Oto one:,,,,,,,,,. A Poprawne przetłumaczenie B Właściwe rozwiązanie w języku polskim C Uzasadnienie w języku polskim D Poprawne przetłumaczenie rozwiązania na język obcy 4 Exercise. Caterpillar (0 points) Solution: Denote by the yellow colour and by the green one. So the question is: how many different 5-digit numbers can we bulit from the digits,,,,. We have 0 such numbers:,,,,,,,,,. Scores: Activity Stages of solution Points A The correct translation B The right solution in Polish language C Justification in Polish D The correct translation of solution into English 4 Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 4

5 Esercizio. La Larva (0 punti) Soluzione: Stabiliamo il colore giallo come, il colore verde con la cifra. Bisogna rispondere alla domanda - quanti numeri di cinque cifre si può fare con le cifre,,,,. Ci sono dieci possibilità. Eccole:,,,,,,,,,. Punteggio: Numero dell attività Tappe della soluzione Numero di punti A Traduzione corretta B Soluzione giusta in polacco C Giustificazione in polacco D Traduzione corretta della soluzione nella lingua straniera 4 Aufgabe. Raupe (0 Punkte) Lösung: Bezeichnen wir das Gelbe mit der Ziffer, das Grüne dagegen mit der Ziffer. Die Aufgabe beschränkt sich auf die Antwort auf die Frage - höchstens wie viele verschiedene fünfstellige Zahlen kann man mit den Ziffern,,,, bilden. Es gibt 0 solcher Zahlen. Dies sind:,,,,,,,,,. Punktwertung: Tätigkeitsnummer Etappen der Aufgabenauflösung Punktenzah l A Richtige Übersetzung B Richtige Lösung im Polnischen C Begründung im Polnischen D Richtige Übersetzung der Lösung in eine Fremdsprache 4 Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 5

6 Tarea. Oruga (0 puntos) Solución: Marquemos el color amarillo con la cifra y verde con la cifra. La tarea se reduce a responder a la pregunta: Cuántos números de cinco cifras a lo más se puede construir a partir de las cifras:,,,,? Tales números son 0. Son siquientes:,,,,,,,,,. Puntuación Nº de actividad Etapas de solución de tarea Cantidad de puntos A Traducción correcta B Solución adecuada en polaco C Argumentación en polaco D Traducción correcta de la solución en la lengua extranjera 4 Exercice. Chenille (0 points) Solution: Désignons la couleur jaune par et le vert par. L exercice se ramenerait à la réponse à la question suivante combien de nombre différents de cinq chiffre peut-on composer au maximum des chiffres,,,,. Il existe dix nombres de ce genre. Les voici :,,,,,,,,,. Pointage: Numéro de l activité Solution étape par étape Nombre de points A Traduction correcte de l exercice B Solution correcte en polonais C Justification en polonais D Traduction correcte de la solution en langue étrangère 4 Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 6

7 Zadanie. Piramida Cheopsa ( punkty) Wysokość H piramidy obliczymy z trójkąta prostokątnego, gdzie D jest połową przekątnej d podstawy piramidy. Obliczamy D: = = 0 =5 Obliczamy H z tw. Pitagorasa: 8 = + =8 =8 5 = = [ ] Odp: Wysokośc piramidy wynosi 45 m. A Obliczenie długości połowy przekątnej kwadratu B Obliczenie wysokości piramidy C Oszacowanie wartości wysokości piramidy Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 7

8 Zadanie. Prezent Agnieszki (8 ) W skali : 4 długość boku a = 5cm, krawędź b= 5 cm, W skali : b = 0 cm Obliczamy pole powierzchni P trójkąta prostokątnego, w kórym a = h: = h = 0 0 =00 [ ] Obliczamy pole powierzchni P trójkąta równobocznego: = 4 = 0 4 = =00 [ ] Obliczamy pole powierzchni P ostrosłupa i prawidłowo zaokrąglamy wynik: = ,7=940 [ ] Obliczamy objętość ostrosłupa zauważając, że wysokość H ostrosłupa to inaczej krawędź a: V = P H p V = 00 0 V = 4000 V=, [cm ] A Prawidłowe użycie skali B Narysowanie siatki czworościanu C Obliczenie długości przeciwprostokątnej D Obliczenie pola powierzchni trójkąta prostokątnego E Obliczenie pola powierzchni trójkąta równobocznego F Obliczenie pola powierzchni ostrosłupa G Prawidłowe zaokrąglenie wyniku H Obliczenie objętości ostrosłupa Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 8

9 Zadanie 4. Mikrodiament ( punkty) a krawędzie podstaw ostrosłupa czworokątnego prawidłowego H wysokość ostrosłupa czworokątnego prawidłowego H = 0, mm V objętość ośmiościanu V = a H = a 0, Obliczamy krawędź a: ( a ) + 0, = a 4 a + 0,04 = a a = 0,04 a = 0,08 a = 8 00 = 8 0 = 0 = 5 V = 4 ( 0 ) V = = [mm ] A Obliczenie długości krawędzi ośmiościanu B Obliczenie objętości ośmiościanu Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 9

10 Zadanie 5. Szałas (4 punkty) Szałas ma kształt ostrosłupa prawidłowego czworokątnego. a długość krawędzi podstawy ostrosłupa H wysokość ostrosłupa h b - wysokość ściany bocznej ostrosłupa d długość przekątnej podstawy ostrosłupa P =4 a h = a h Z własności trójkąta o kątach 0º, 60º, 90º mamy: d = ; H=, 7 z równości d = otrzymujemy a =. Z twierdzenia Pitagorasa obliczamy długość wysokości ściany bocznej: h b = + ( ) h b = + = 4 4 = = Pb = = 8 = 7,65 = 5, m A Wyznaczenie wysokości szałasu B Obliczenie długości krawędzi podstawy szałasu C Obliczenie wysokości ściany bocznej D Obliczenie pola powierzchni ścian szałasu Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 0

11 Zadanie 6. Pudełko na ozdoby choinkowe (4 punkty) Korzystając z twierdzenia Pitagorasa obliczamy wysokość ściany bocznej: h = h = 0cm Obliczamy pole powierzchni ostrosłupa czworokątnego prawidłowego: P = a + 4 a h P = P=84 [cm ] Obliczamy pole powierzchni 000 pudełek: 000 =84000 =8,4 [ ] Doliczamy materiał na zakładki: 05% 8,4=,05 8,4=40, [ ] Odp: Do przygotowania 000 opakowań potrzeba 40, m A Obliczenie wysokości ściany bocznej B Obliczenie pola powierzchni ostrosłupa C Obliczenie pola powierzchni 000 pudełek D Doliczenie materiału na zakładki Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona

12 Zadanie 7. Waga bryły ( punkty) a długość krawędzi podstawy ostrosłupa; h długość wysokości ściany bocznej; Obliczamy pole powierzchni ostrosłupa czworokątnego prawidłowego: P = a + 4 a h P = =85 [ ] Obliczamy wagę tektury: 85 0,008 g = 0, 68 g A Obliczenie pola powierzchni ostrosłupa B Obliczenie wagi tektury Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona

13 Zadanie 8. Pojemnik na cement (5 ) a - krawędź podstawy graniastosłupa i ostrosłupa; d przekątna podstawy ostrosłupa czworokątnego prawidłowego; H wysokość ostrosłupa; h wysokość graniastosłupa; Zamieniamy jednostki długości: 4dm=,4m 5dm=,5m Obliczamy objętość graniastosłupa: V=a h V =,4,5 V = 6,86m Korzystając z twierdzenia Pitagorasa obliczamy wysokość H ostrosłupa: H = H = H = a,4 d 0,98 ( 0,7 ) Obliczamy objętość ostrosłupa: V = a H V =,4 V = 0,65m Obliczamy objętość pojemnika na cement: =6,86+0,65=7,5 7,5 [ ] A Obliczenie objętości graniastosłupa B Obliczenie wysokości ostrosłupa C Obliczenie objętości ostrosłupa D Obliczenie objętości pojemnika na cement E Prawidłowe zaokrąglenie Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona

14 Zadanie 9. Modele Zuzi (8 ) Niech: a długość boku trójkąta równobocznego h wysokość trójkąta równobocznego H wysokość ostrosłupa Model I Wyznaczamy wysokość trójkąta równobocznego a=0 h= 0 =5 Oznaczamy poprzez: x = OD y = AO Z trójkąta ABC mamy: x= h h= 5 y= h h= 0 Z własności trójkąta ODS o kątach 90,60,0 wynika,że: Wyznaczamy długość k : H=x = 5 =5 =5 k = H +y = 5 + = 5+ = 5+ = 7,6 [cm] Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 4

15 Model II Z własności trójkąta równobocznego ABC mamy: = h h= 0 = 0 Z własności trójkata o katach 90,60,0 wynika,że: k =x= 0 = 0,5 [cm] A Naszkicowanie obu modeli B Obliczenie długości odcinka x w modelu I C Obliczenie długości odcinka y w modelu I D Zastosowanie własności trójkąta o kątach 0º, 60º, 90º - obliczenie wysokości ostrosłupa w modelu I E Obliczenie długości odcinka k F Obliczenie długości odcinka x w modelu II G Obliczenie długości odcinka k Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 5

16 Zadanie 0. Wieża ratuszowa ( punkty) a krawędź podstawy ostrosłupa h wysokość ściany bocznej Obliczamy pole powierzchni bocznej P ostrosłupa sześciokątnego prawidłowego: a h P = P = 6 P = 44m Obliczamy ilość pojemników farby: 44 : = Obliczamy ilość farby: 8 = 96 [l] Odp: Na pomalowanie dachu wieży potrzeba 96 l farby. A Obliczenie pola powierzchni bocznej ostrosłupa sześciokątnego prawidłowego B Obliczenie ilości pojemników farby C Obliczenie ilości farby Pakiet edukacyjny.7 Piramidy klasa gimnazjum Strona 6

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej

Bardziej szczegółowo

Ćwiczenia otwierające Związek pitagorejski

Ćwiczenia otwierające Związek pitagorejski Ćwiczenia otwierające Związek pitagorejski Exercise 1. Numbering of Exponaten (10 points) In a school environmental classroom the pupils order the exhibits and stick on them new numbers created from digits

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

Rozwiążmy razem Matematyka na okrągło

Rozwiążmy razem Matematyka na okrągło Rozwiążmy razem Matematyka na okrągło Exercise 1. Blue pencils (10 points) Ania has 9 pencils in a box. At least one of these pencils is blue. Among each four pencils at least two are of the same colour

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Spotkanie 1: Dwiczenia otwierające Kręcidełka

Spotkanie 1: Dwiczenia otwierające Kręcidełka Spotkanie 1: Dwiczenia otwierające Kręcidełka Exercise 1, Pyramid from blocks (10 points) There was built some pyramid from playing blocks on the table (see the picture) and then it was painted with colour.

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze

Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze Spotkanie 1: Ćwiczenia otwierające - Świat w trójwymiarze Exercise 1. Digital cube (4 points) We are making a cube from the net below. What number is opposite to the wall with number 4? Aufgabe 1. Ziffernwürfel

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające Wszędzie matematyka

Spotkanie 1: Ćwiczenia otwierające Wszędzie matematyka Spotkanie 1: Ćwiczenia otwierające Wszędzie matematyka Tarea 1. Sacar agua (10 puntos) Es posible, por medio de recipientes con la capacidad de 9 litros y 15 litros, medir exactamente 8 litros de agua,

Bardziej szczegółowo

PLANIMETRIA. Poziom podstawowy

PLANIMETRIA. Poziom podstawowy LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

WZORU PRZEMYSŁOWEGO PL 18581. FUNDACJA SYNAPSIS, Warszawa, (PL) 31.10.2012 WUP 10/2012

WZORU PRZEMYSŁOWEGO PL 18581. FUNDACJA SYNAPSIS, Warszawa, (PL) 31.10.2012 WUP 10/2012 PL 18581 RZECZPOSPOLITA POLSKA (12) OPIS OCHRONNY WZORU PRZEMYSŁOWEGO (19) PL (11) 18581 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 19021 (22) Data zgłoszenia: 29.11.2011 (51) Klasyfikacja:

Bardziej szczegółowo

P r o j e k t W e s p ó ł w z e s p ó ł z M a t e m a t y k ą b e z G r a n i c

P r o j e k t W e s p ó ł w z e s p ó ł z M a t e m a t y k ą b e z G r a n i c ĆWIZENIA OTWIERAJĄE W trzy D. Task. Quadratic Prisms (2 points) Answer the following questions: a) How many sides has a quadratic prism? b) How many edges has a quadratic prism? c) How many corners has

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 4

Trenuj przed sprawdzianem! Matematyka Test 4 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny 25.10.2013r. Kod ucznia: Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych - etap szkolny Wypełnia komisja konkursowa Nr zadania Punktacja 1 2 3 4 5 A B C D A B C D A B C D A

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

TWIERDZENIE PITAGORASA

TWIERDZENIE PITAGORASA PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające Zmagania z polami

Spotkanie 1: Ćwiczenia otwierające Zmagania z polami Spotkanie 1: Ćwiczenia otwierające Zmagania z polami Aufgabe 1. Quadrat und Rechteck (8 Punkte) Ein Quadrat hat einen gleichen Umfang wie ein Rechteck mit Seiten 60m und 40m. Um wie viel ist die Quadratfläche

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne Wielokąty i okręgi zna twierdzenie Pitagorasa rozumie potrzebę stosowania twierdzenia Pitagorasa umie obliczyć

Bardziej szczegółowo

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody. Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Płaszczaki

Spotkanie 2: Rozwiążmy razem - Płaszczaki Spotkanie 2: Rozwiążmy razem - Płaszczaki Aufgabe 1. Holzfäller (10 Punkte) Fünf Holzfäller hacken fünf Baumstümpfe in fünf Minuten. Wie viele Holzfäller hacken zehn Baumstümpfe in zehn Minuten? Exercise

Bardziej szczegółowo

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4 PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich von diesen Zahlen ist: A) 490 B) 475 C) 471 D) 423 E) 402

Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich von diesen Zahlen ist: A) 490 B) 475 C) 471 D) 423 E) 402 Rozwiążmy razem Wokół dzielników i wielokrotności ufgabe. Summe der Zahlen (2 Punkte) Die Summe von fünf aufeinander folgenden natürlichen Zahlen ist gleich 2000. Die größte von diesen Zahlen ist: ) 490

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Rachunek prawdopodobieństwa. Uczeń: Uczeń: 1-2 Permutacje. - zna symbol n!; - stosuje

Bardziej szczegółowo

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Liczby i litery bez tajemnic

Spotkanie 2: Rozwiążmy razem - Liczby i litery bez tajemnic Spotkanie 2: Rozwiążmy razem - Liczby i litery bez tajemnic Exercise 1. Three figures (10 points) Three figures are given: a circle plane, a triangle and a square - all of different sizes and colours:

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

nie zdałeś naszej próbnej matury z matematyki?

nie zdałeś naszej próbnej matury z matematyki? Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Rozwiążmy razem W lustrze za lustrem

Rozwiążmy razem W lustrze za lustrem Rozwiążmy razem W lustrze za lustrem Exercice 1. Trois pastèque (10 points) Comment faire pour partager justement trois identiques pastèques entre quatre personnes, en faisant le moins de coupures qu il

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania

Bardziej szczegółowo

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa

Bardziej szczegółowo

otwierające Zabawy figurami

otwierające Zabawy figurami Ćwiczenia otwierające Zabawy figurami Exercise 1. Square (2 points) Four figures among five figures below can be used to built a square. What figure can not be used? ufgabe 1. Quadrat (2 Punkte) Mit vier

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Szczegółowe kryteria ocen dla klasy czwartej.

Szczegółowe kryteria ocen dla klasy czwartej. SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS 4-6 SP ROK SZKOLNY 2016/2017 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa:

SCENARIUSZ LEKCJI. Podstawa programowa: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 90 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka z plusem.

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:

Bardziej szczegółowo

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. 2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Jedlicze, 6.03.2013r...... Szkoła Podstawowa w... imię i nazwisko ucznia klasa IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Drogi Uczniu Jesteś

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Plus czy minus

Spotkanie 2: Rozwiążmy razem - Plus czy minus Spotkanie 2: Rozwiążmy razem - Plus czy minus Exercise 1. On the seabed (6 points) The numbers on the picture denote the position in regard to sea level. What is the distance: a) Between a diver and a

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3 KLASA IV Pierwszy autobus odjeżdża z przystanku o godzinie 5.30, a następne autobusy odjeżdżają z tego przystanku co 45 minut. Janek przyszedł na przystanek o godzinie 14.22. o ile minut przyszedł za późno

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Świat w trójwymiarze

Spotkanie 2: Rozwiążmy razem - Świat w trójwymiarze Spotkanie : Rozwiążmy razem - Świat w trójwymiarze Exercise 1. Cube with a flower (4 points) We are making a cube from the net below. What wall is opposite to the wall with a flower? Aufgabe 1. Würfel

Bardziej szczegółowo

Z logiką na Ty Rozwiążmy Razem

Z logiką na Ty Rozwiążmy Razem Exercise 1. Weigh and bread (3 points) Z logiką na Ty Rozwiążmy Razem On the scales of weighing machine there are weights and loafs of bread. The scales are in the balance. How many kilograms does the

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji 1 2 Temat lekcji Wakacje, wakacje i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

PL 207585 B1. BSC DRUKARNIA OPAKOWAŃ SPÓŁKA AKCYJNA, Poznań, PL 04.02.2008 BUP 03/08. ARKADIUSZ CZYSZ, Poznań, PL 31.01.

PL 207585 B1. BSC DRUKARNIA OPAKOWAŃ SPÓŁKA AKCYJNA, Poznań, PL 04.02.2008 BUP 03/08. ARKADIUSZ CZYSZ, Poznań, PL 31.01. RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207585 (13) B1 (21) Numer zgłoszenia: 380297 (51) Int.Cl. B65D 5/08 (2006.01) B65D 5/72 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Zmagania z polami

Spotkanie 2: Rozwiążmy razem - Zmagania z polami Spotkanie 2: Rozwiążmy razem - Zmagania z polami Aufgabe 1. Trapeze im Quadrat (6 Punkte) Aus einem Quadrat mit dem Flächeninhalt von 16cm² wurde ein Quadrat mit einer Seitenlänge von 2cm ausgeschnitten,

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające W krainie literek

Spotkanie 1: Ćwiczenia otwierające W krainie literek Spotkanie 1: Ćwiczenia otwierające W krainie literek Aufgabe 1. Spiele mit Buchstaben (4 Punkte) Schreibe in Form von einem Ausdruck: a) Die Bausteinhöhe ist gleich y cm. Von welcher Höhe ist ein Bauwerk,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES I. LICZBY I WYRAŻENIA ALGEBRAICZNE Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie notacji wykładniczej. 2. Zna sposób

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka)

Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Zestaw standardowy zawierał 23 zadania, w tym 20 zadań zamkniętych i 3 zadania otwarte. Wśród zadań zamkniętych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Ćwiczenia otwierające Pola, ary i hektary

Ćwiczenia otwierające Pola, ary i hektary Ćwiczenia otwierające Pola, ary i hektary Exercise. The area of square (2 points) The quadrangle CD is a square and the point M is a middle of the side. n area of the shadowed figure is equal to 9cm².

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Wszędzie matematyka

Spotkanie 2: Rozwiążmy razem - Wszędzie matematyka Spotkanie 2: Rozwiążmy razem - Wszędzie matematyka Tarea 1. Tres urnas(10 puntos) En cada de tres urnas han instalado dos esferas: en una dos blancas, en segunda dos negras, en la tercera una blanca y

Bardziej szczegółowo

Test całoroczny z matematyki. Wersja A

Test całoroczny z matematyki. Wersja A Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D) W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie

Bardziej szczegółowo

KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.

KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

Spotkanie 2: Rozwiążmy razem - Kręcidełka

Spotkanie 2: Rozwiążmy razem - Kręcidełka Spotkanie 2: Rozwiążmy razem - Kręcidełka Exercise 1. Board with numbers (10 points) The circuit board was divided into 6 sectors and to every sector it was some different number from 1 to 6 corresponded.

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające Płaszczaki

Spotkanie 1: Ćwiczenia otwierające Płaszczaki Spotkanie 1: Ćwiczenia otwierające Płaszczaki Exercise 1. Cafe and Tea (10 points) Editorial Board of Life and Modernity decided to make the statistical-scientific research of coffee and tea consumption

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014 WMG DUKCJ Z MTMTK W KLS TRZCJ GMZJUM WG PROGRMU MTMTK Z PLUSM w roku szkolnym 2013/2014 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOBR BRDZO DOBR CLUJĄC zna pojęcie liczby naturalnej, zna pojęcie notacji wykładniczej

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

Kryteria oceniania z matematyki Klasa III poziom rozszerzony Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A i II C w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A i II C w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A i II C w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Plan realizacji materiału nauczania został opracowany na podstawie programu nauczania

Bardziej szczegółowo

Przedmiotowy System Oceniania Matematyki w klasach I-III Gimnazjum nr 1 w Inowrocławiu

Przedmiotowy System Oceniania Matematyki w klasach I-III Gimnazjum nr 1 w Inowrocławiu Przedmiotowy System Oceniania Matematyki w klasach I-III Gimnazjum nr 1 w Inowrocławiu Podstawa programowa z 23 grudnia 2008 r. obowiązująca w klasie I gimnazjalnej od roku szkolnego 2009/2010 Rozporządzenie

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Spotkanie 1: Ćwiczenia otwierające Zabawy z matematyką

Spotkanie 1: Ćwiczenia otwierające Zabawy z matematyką Spotkanie 1: Ćwiczenia otwierające Zabawy z matematyką Exercise1. Toilette of Mr Violet (10 points) Mr Violet has decided to wash his head with shampoo Healthy hair regularly every three days. He started

Bardziej szczegółowo

Ćwiczenia otwierające Liczbowy zawrót głowy

Ćwiczenia otwierające Liczbowy zawrót głowy Ćwiczenia otwierające Liczbowy zawrót głowy Aufgabe 1. Katzen und Kanarienvögel (4 Punkte) In einem Zooladen wurden nur Katzen und Kanarienvögel verkauft. Zum Kauf wurden insgesamt 72 Stück Katzen und

Bardziej szczegółowo

3b. Rozwiązywanie zadań ze skali mapy

3b. Rozwiązywanie zadań ze skali mapy 3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA

Bardziej szczegółowo