Ekonometria. Ćwiczenia 5. Krzysztof Pytka. 22 listopada Zakład Wspomagania i Analizy Decyzji (SGH)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria. Ćwiczenia 5. Krzysztof Pytka. 22 listopada 2010. Zakład Wspomagania i Analizy Decyzji (SGH)"

Transkrypt

1 Ekonometria Ćwiczenia 5 Krzysztof Pytka Zakład Wspomagania i Analizy Decyzji (SGH) 22 listopada 2010

2 Mapa drogowa na dziś Mapa drogowa na dziś 1 Wstęp Mapa drogowa na dziś 2 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych 3 Funkcja o stałej elastyczności substytucji (CES) 4 Taking Robert Solow seriously... (Mankiw et al. 1992)

3 Modele nieliniowe Wstęp Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych modele liniowe względem parametrów, ale niekoniecznie względem zmiennych: g(y ) = α 1 f 1 (x) + α 2 f 2 (x) α p f p (x) + ε modele nieliniowe względem parametrów, np.: funkcja Cobba-Douglasa: y = x α1 1 x α x α K K ε, funkcja CES, funkcja logistyczna: y t = α 1+βe + ε γt t

4 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych Determinanty dochodów ludności nieliniowa zmienna niezależna gdzie: ln income i = α 0 + α 1 age i + α 2 exper i + α 3 black i + +α 5 hispanic i + α 6 educ i + ε i ln income i logarytm dochodów, age i wiek respondenta, exper i doświadczenie zawodowe respondenta, black i zmienna binarna dla ludności afroamerykańskiej, hispanic i zmienna binarna dla ludności latynoamerykańskiej, educ lata edukacji.

5 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych Determinanty dochodów ludności dodanie nieliniowości w regresorach gdzie: ln income i = α 0 + α 1 age i + α 2 exper i + α 3 black i + +α 6 experi 2 + α 7 educ i + ε i ln income i logarytm dochodów, age i wiek respondenta, exper i doświadczenie zawodowe respondenta, black i zmienna binarna dla ludności afroamerykańskiej, educ lata edukacji,

6 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych Determinanty dochodów ludności dodanie zmiennych interakcyjnych gdzie: ln income i = α 0 + α 1 age i + α 2 exper i + α 3 black i + +α 6 experi 2 + α 7 FB i + α 8 educf i + α 9 educ i + ε i ln income i logarytm dochodów, age i wiek respondenta, exper i doświadczenie zawodowe respondenta, black i zmienna binarna dla ludności afroamerykańskiej, educ lata edukacji, FB female black, educf female education.

7 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych Dochody menadżerów w USA (dane z Forbesa za Wooldridge em) salary i = α + β ln sales i + γroe i + δroei 2 + ε i gdzie: salary i wynagrodzenie CEO w i tej firmie, sales i sprzedaż firmy w mln USD, roe i return on equity i-tej firmy.

8 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych Dochody menadżerów w USA (dane z Forbesa za Wooldridge em) ln salary i = α + β ln sales i + γroe i + δroei 2 + ε i gdzie: salary i wynagrodzenie CEO w i tej firmie, sales i sprzedaż firmy w mln USD, roe i return on equity i-tej firmy.

9 Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych Determinanty morderstw w USA (Mustard 2003) lratmurd i = α 0 + α 1 arrmurd i + α 2 rcpi i + α 3 density i + α 4 ppb i + ε i gdzie: lratmurd logarytm naturalny hrabstwa rocznej stopy morderstw na 100,000 mieszkańców, arrmurd aresztowania w sprawie o zabójstwo w stosunku do zabójstw w hrabstwie [%], density gęstość zaludnienia hrabstwa, ppb procent ludności afroamerykańskiej, rpci dochód przeciętny mieszkańców.

10 Nieliniowe modele linearyzowalne Modele liniowe względem parametrów Efekty krańcowe, elastyczności i semielastyczności Determinanty morderstw w USA Linearyzowanie modeli nieliniowych 1 Model potęgowy: 2 Model wykładniczy: Y = αx β 1 X γ 2 eε a+bx +ε Y = e 3 Model wykładniczo-hiperboliczny: Y = e a+ b X +ε

11 Funkcja o stałej elastyczności substytucji (CES) Ogólna postać: Y = α 0 K i=1 X α i i ε

12 Funkcja o stałej elastyczności substytucji (CES) Ogólna postać: Y = α 0 K i=1 X α i i Postać (dwuczynnikowej) funkcji produkcji typu Cobb-Douglas: ε Y t (K t, L t ) = A t K α t L β t ε t Funkcja użyteczności typu Cobb-Douglas: u(x 1, x 2 ) = x α 1 x β 2

13 Jednorodność funkcji Funkcja o stałej elastyczności substytucji (CES) Definition (Jednorodność funkcji) Funkcja g : R 2 R jest jednorodna stopnia r względem x R oraz y R wtedy i tylko wtedy, gdy: λ R+ : g(λx, λy) = λ r g(x, y).

14 Jednorodność funkcji Funkcja o stałej elastyczności substytucji (CES) Definition (Jednorodność funkcji) Funkcja g : R 2 R jest jednorodna stopnia r względem x R oraz y R wtedy i tylko wtedy, gdy: λ R+ : g(λx, λy) = λ r g(x, y).

15 Test liniowych restrykcji (*) Funkcja o stałej elastyczności substytucji (CES) 1 Nakładamy jakieś restrykcje a priori dotyczące relacji między parametrami; w naszym przypadku: α + β = 1 2 Przeprowadzamy test ilorazu wiarygodności na istotność liniowych restrykcji: H 0 : oszacowania parametrów są zgodne z restrykcjami H 1 : oszacowania parametrów stoją w sprzeczności z restrykcjami

16 Funkcja CES Wstęp Funkcja o stałej elastyczności substytucji (CES) Y = γ[δk ρ + (1 δ)l ρ ] ν/ρ ε gdzie: γ > 0 parametr skali produkcji, δ [0, 1] - parametr podziału między czynnikami produkcji ν > 0 stopień jednorodności funkcji, ρ > 1 parametr substytucji, gdzie elastyczność substytucji σ = 1 1+ρ

17 Funkcja CES szczególne przypadki Funkcja o stałej elastyczności substytucji (CES) Funkcja Leontieffa (ρ + ) Funkcja C-D (ρ 0) Funkcja liniowa (ρ 1 + )

18 Taking Robert Solow seriously... (Mankiw et al. 1992)

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja

Bardziej szczegółowo

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary

Bardziej szczegółowo

Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji Dr Michał Gradzewicz atedra Ekonomii I AE Plan wykładu (Nie)liniowość modeli ekonomerycznych iniowość modeli ekonometrycznych Efekty krańcowe Elastyczności

Bardziej szczegółowo

Ekonometria. Ćwiczenia 6. Krzysztof Pytka. 29 listopada 2011. Zakład Wspomagania i Analizy Decyzji (SGH)

Ekonometria. Ćwiczenia 6. Krzysztof Pytka. 29 listopada 2011. Zakład Wspomagania i Analizy Decyzji (SGH) Ekonometria Ćwiczenia 6 Krzysztof Pytka Zakład Wspomagania i Analizy Decyzji (SGH) 29 listopada 2011 Mapa drogowa na dziś Mapa drogowa na dziś 1 Wstęp Mapa drogowa na dziś 2 3 4 Anatomia funkcji logistycznej

Bardziej szczegółowo

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto Ekonometria jak dorać funkcję? Przykłady użyte w materiałach opracowano w większości na azie danych ze skryptu B.Guzik, W.Jurek Podstawowe metody ekonometrii (wyd. AE Poznań 3) W doorze postaci funkcji

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

log Ôi = 1, , 0014P i + 0, 0561C i 0, 4050R i se = (0, 0009) (0, 0227) (0, 1568)

log Ôi = 1, , 0014P i + 0, 0561C i 0, 4050R i se = (0, 0009) (0, 0227) (0, 1568) 1. Na podstawie danych zawartych w pliku [zgony niemowlat.xls] oszacuj (przy pomocy pakietu gretl lub arkusza kalkulacyjnego) parametry MNK następującego liniowego modelu ekonometrycznego: ZN t = a 0 +

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria konsumenta

Zadania z ekonomii matematycznej Teoria konsumenta Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x

Bardziej szczegółowo

Ekonometria I Temat 4. Modele nieliniowe. Karolina Konopczak & Michał Rubaszek Szkoła Główna Handlowa w Warszawie

Ekonometria I Temat 4. Modele nieliniowe. Karolina Konopczak & Michał Rubaszek Szkoła Główna Handlowa w Warszawie Ekonometria I Temat 4. Modele nieliniowe Karolina Konopczak & Michał Rubaszek Szkoła Główna Handlowa w Warszawie 1 Wprowadzenie Teoria ekonomiczna rzadko określa dokładną formę postaci funkcyjnej zależności

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 4877 obserwacji Zmienna zależna: y

Model 1: Estymacja KMNK z wykorzystaniem 4877 obserwacji Zmienna zależna: y Zadanie 1 Rozpatrujemy próbę 4877 pracowników fizycznych, którzy stracili prace w USA miedzy rokiem 1982 i 1991. Nie wszyscy bezrobotni, którym przysługuje świadczenie z tytułu ubezpieczenia od utraty

Bardziej szczegółowo

Ćwiczenia 10. Analiza regresji. Część I.

Ćwiczenia 10. Analiza regresji. Część I. Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie

Bardziej szczegółowo

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku. Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.

1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2. Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.

Bardziej szczegółowo

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19 Plan prezentacji 1 Nieliniowo±

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

gdzie. Dla funkcja ma własności:

gdzie. Dla funkcja ma własności: Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd

Bardziej szczegółowo

Maciej Malaczewski. Wprowadzenie

Maciej Malaczewski. Wprowadzenie Maciej Malaczewski Uniwersytet Łódzki POSTĘP TECHNICZNY A ROLA ZASOBÓW NATURALNYCH W PROCESIE PRODUKCJI * Wprowadzenie Postępujący rozwój technologii produkcyjnych powoduje powstawanie nowych możliwości

Bardziej szczegółowo

Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25. Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi

Bardziej szczegółowo

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 9 Mikołaj Czajkowski Wiktor Budziński Wielomianowy model logitowy Użyteczność konsumenta i z wyboru alternatywy j spośród J i alternatyw X wektor cech (atrybutów) danej alternatywy Z wektor

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010

Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010 szeregu czasowego Wst p do ekonometrii szeregów czasowych wiczenia 1 19 lutego 2010 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci 2 3 4 5 6 7 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci

Bardziej szczegółowo

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Modelowanie systemów liczacych. Ćwiczenie 2.

Modelowanie systemów liczacych. Ćwiczenie 2. Modelowanie systemów liczacych. Ćwiczenie 2. 1. Rozkłady i dystrybuanty w programie MATLAB Do odczytywania wartości prawdopodobieństwa typu P(X = X a ) przy ustalonym rozkładzie oraz zadanej wartości zmiennej

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Mieczysław Kowerski. Program Polska-Białoruś-Ukraina narzędziem konwergencji gospodarczej województwa lubelskiego

Mieczysław Kowerski. Program Polska-Białoruś-Ukraina narzędziem konwergencji gospodarczej województwa lubelskiego Mieczysław Kowerski Wyższa Szkoła Zarządzania i Administracji w Zamościu Program Polska-Białoruś-Ukraina narzędziem konwergencji gospodarczej województwa lubelskiego The Cross-border Cooperation Programme

Bardziej szczegółowo

Projekt Nr. Prace terenowe. Prace laboratoryjne Opracowanie wyników

Projekt Nr. Prace terenowe. Prace laboratoryjne Opracowanie wyników Projekt Nr Temat Cel Sprzęt Prace terenowe Prace laboratoryjne Opracowanie wyników Produkcja pierwotna nadziemna: drzewa (metoda dendrometryczna) Ocena biomasy stojącej drzew (zawartość węgla i energii)

Bardziej szczegółowo

Zadanie 3 Na podstawie danych kwartalnych z lat oszacowano następujący model (w nawiasie podano błąd standardowy oszacowania):

Zadanie 3 Na podstawie danych kwartalnych z lat oszacowano następujący model (w nawiasie podano błąd standardowy oszacowania): Zadanie 1 Fabryka Dolce Vita do produkcji czekolady potrzebuje nakładów kapitału i siły roboczej. Na podstawie historycznych danych o wielkości produkcji oraz nakładów czynników produkcji w tej fabryce

Bardziej szczegółowo

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania

Bardziej szczegółowo

Modele nieliniowe sprowadzalne do liniowych

Modele nieliniowe sprowadzalne do liniowych Modele nieliniowe sprowadzalne do liniowych Modele liniowe względem parametrów przykłady, zastosowania Modele hiperboliczne i wykładnicze Związek kształtu modelu z celem analizy ekonometrycznej NajwaŜniejsze

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Algorytm I. Obliczanie wymaganej powierzchni absorpcji

Algorytm I. Obliczanie wymaganej powierzchni absorpcji Algorytm I. Oblcne wymgnej powerchn bsorpcj Wsp. prewodnośc olcj λ Zewnętrny wsp. wnn cepł α Prerój ew. olcj d Prerój wew. olcj d Grubość olcj d r Wsp. prenn cepł r α d π d + * ln λ d + α d Wsp. prenn

Bardziej szczegółowo

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1.

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. mgr mgr Krzysztof Czauderna Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Bardziej szczegółowo

Matematyka I dla DSM zbiór zadań

Matematyka I dla DSM zbiór zadań I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i

Bardziej szczegółowo

Zamów książkę w księgarni internetowej

Zamów książkę w księgarni internetowej Zamów książkę w księgarni internetowej Wydawca Monika Pawłowska Redaktor prowadzący Janina Burek Opracowanie redakcyjne Bogumiła Ziembla Korekta i łamanie Wydawnictwo JAK Projekt graficzny okładki Barbara

Bardziej szczegółowo

t y x y'y x'x y'x x-x śr (x-x śr)^2

t y x y'y x'x y'x x-x śr (x-x śr)^2 Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,

Bardziej szczegółowo

Wybór postaci analitycznej modelu ekonometrycznego

Wybór postaci analitycznej modelu ekonometrycznego Wybór postaci analitycznej modelu ekonometrycznego Wybór postaci analitycznej modelu ekonometrycznego jest jednym z najtrudniejszych etapów badań. Jest on szczególnie uciążliwy, gdy rozpatrujemy modele

Bardziej szczegółowo

Zestaw 6 (jednoczynnikowa i wieloczynnikowa analiza wariancji (ANOVA))

Zestaw 6 (jednoczynnikowa i wieloczynnikowa analiza wariancji (ANOVA)) Zestaw 6 (jednoczynnikowa i wieloczynnikowa analiza wariancji (ANOVA)) ANOVA Hipoteza: H: µ 1(mi) = µ 2 = µ 3 = = µ r (Czynnik nie wpływa na zmienną objaśnianą) (Czynnik wpływa) Założenia ANOVY: 0) Próby

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE

Bardziej szczegółowo

WPROWADZENIE. 2 Jacek Bojarski: www.wmie.uz.zgora.pl/pracownicy/jbojarski

WPROWADZENIE. 2 Jacek Bojarski: www.wmie.uz.zgora.pl/pracownicy/jbojarski WPROWADZENIE 1 Jacek Bojarski: www.wmie.uz.zgora.pl/pracownicy/jbojarski PROGRAMY KOMPUTEROWE DO ANALIZ STATYSTYCZNYCH Darmowe oprogramowanie R-project- www.r-project.org, gretl- www.gretl.eu, bogata lista

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

WYKORZYSTANIE MODELU LOGITOWEGO DO ANALIZY BEZROBOCIA WŚRÓD OSÓB NIEPEŁNOSPRAWNYCH W POLSCE W 2010 ROKU

WYKORZYSTANIE MODELU LOGITOWEGO DO ANALIZY BEZROBOCIA WŚRÓD OSÓB NIEPEŁNOSPRAWNYCH W POLSCE W 2010 ROKU STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Beata Bieszk-Stolorz Uniwersytet Szczeciński WYKORZYSTANIE MODELU LOGITOWEGO DO ANALIZY BEZROBOCIA WŚRÓD OSÓB NIEPEŁNOSPRAWNYCH W POLSCE W

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

TOTAL QUADRA SIGMA DELTA LAMBDA

TOTAL QUADRA SIGMA DELTA LAMBDA SIGMA DELTA LAMBDA 2-3 6 7 8 NASZA PRZEWAGA NOWE ROZWIĄZANIA 4 TOTAL 5 QUADRA SIGMA DELTA QUADRA TOTAL JUŻ W a praw a - klam w e al ka klam k 200 000 CYKLI 200 000 CYKLI DALEJ 1 2 SPRĘŻYNY JUŻ W 2 200

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Dr Adam Wasilewski Dr Marcin Gospodarowicz Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy.

Dr Adam Wasilewski Dr Marcin Gospodarowicz Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy. Dr Adam Wasilewski Dr Marcin Gospodarowicz Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy Józefów, 2014 Cel Podstawy teoretyczne i metodyka badań Wyniki badań Podsumowanie

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Liczebność pewnej populacji ryb jest opisana następującym równaniem Rickera: N n+1 = α N n exp( βn n ), (1) w którym N n oznacza liczebność populacji w n tej

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria produkcji

Zadania z ekonomii matematycznej Teoria produkcji Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A

Bardziej szczegółowo

Mikroekonometria 8. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 8. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 8 Mikołaj Czajkowski Wiktor Budziński Efekty krańcowe W jaki sposób zmiana wartości zmiennej objaśniającej wpływa na zmianę prawdopodobieństwa zdarzenia? Model jest nieliniowy, więc sprawa

Bardziej szczegółowo

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17

Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17 Stanisław Cichocki Natalia Neherebecka Zajęcia 15-17 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary dopasowania 4.

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe

Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe imię, nazwisko, nr indeksu: Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05 Zadanie 1 Zadanie 2 Zadanie 3 / 4 pkt / 4 pkt / 3 pkt Zadanie 4 / 7 pkt [1/1/1/2/2] Zadanie 5 Razem / 4 pkt /22 pkt Skala

Bardziej szczegółowo

Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne.

Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne. Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne. dr Anna Nowak-Czarnocka Zastosowania statystyki i data mining w badaniach naukowych Warszawa, 12 października 2016 Pole badawcze Ryzyko

Bardziej szczegółowo

Statystyka, Ekonometria

Statystyka, Ekonometria Statystyka, Ekonometria Wykład dla Geodezji i Kartografii 11 kwietnia 2011 () Statystyka, Ekonometria 11 kwietnia 2011 1 / 31 LITERATURA J. Hozer, S.Kokot, W. Kuźmiński metody analizy statystycznej w wycenie

Bardziej szczegółowo

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

BADANIE ZMIAN EFEKTYWNOŚCI WYKORZYSTANIA CZYNNIKÓW PRODUKCJI (na przykładzie przedsiębiorstwa przemysłowego)

BADANIE ZMIAN EFEKTYWNOŚCI WYKORZYSTANIA CZYNNIKÓW PRODUKCJI (na przykładzie przedsiębiorstwa przemysłowego) KRYSTYNA BARANEK-KOPIASZ BADANIE ZMIAN EFEKTYWNOŚCI WYKORZYSTANIA CZYNNIKÓW PRODUKCJI (na przykładzie przedsiębiorstwa przemysłowego) Podejmując niniejszą pracę postawiono sobie za cel ilościowe zbadanie

Bardziej szczegółowo

OeconomiA copernicana. Iwona Müller-Frączek, Michał Bernard Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Iwona Müller-Frączek, Michał Bernard Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2012 Nr 2 ISSN 2083-1277 Iwona Müller-Frączek, Michał Bernard Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA STOPY BEZROBOCIA W POLSCE W UJĘCIU PRZESTRZENNO-CZASOWYM Klasyfikacja

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Modele długości trwania

Modele długości trwania Modele długości trwania Pierwotne zastosowania: przemysłowe (trwałość produktów) aktuarialne (długość trwania życia) Zastosowania ekonomiczne: długości bezrobocia długości czasu między zakupami dóbr trwałego

Bardziej szczegółowo

Popyt na widowisko a wyniki sportowe

Popyt na widowisko a wyniki sportowe Co przyciąga widzów na mecze? Wydział Nauk Ekonomicznych UW Sport Attendance: A survey of the literature 1973-2007 Jaume Garcia Villar, Placido Rodriguez Guerrero Rivista di Diritto Ed Economia Dello Sport

Bardziej szczegółowo