OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
|
|
- Angelika Ostrowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 tel.: Liczba stron: 15 Data: r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE CIĄGI POMIAROWE
2 Nr str.: 2/15 Spis treści: 1. Opis metodyki 2. Zakres opracowania 3. Analiza niejednorodności danych pomiarowych 3.1. Przepływy maksymalne roczne pory zimowej Weryfikacja elementów odstających Test Grubbsa Becka Weryfikacja niezależności Test serii Weryfikacja stacjonarności - Test sumy rang Kruskala-Wallisa Weryfikacja stacjonarności - Test współczynnika korelacji rangowej Spearmana na trend wartości średniej 3.2. Przepływy maksymalne roczne pory letniej Weryfikacja elementów odstających Test Grubbsa Becka Weryfikacja niezależności Test serii Weryfikacja stacjonarności - Test sumy rang Kruskala-Wallisa Weryfikacja stacjonarności - Test współczynnika korelacji rangowej Spearmana na trend wartości średniej 4. Obliczenie największych przepływów rocznych o określonym prawdopodobieństwie przewyższenia 4.1. Przepływy maksymalne roczne pory zimowej 4.2. Przepływy maksymalne roczne pory letniej 2
3 Nr str.: 3/15 1. Opis metodyki Obliczenia największych przepływów rocznych o określonym prawdopodobieństwie przewyższenia, przeprowadzono przy wykorzystaniu metody alternatywy zdarzeń (MAZ). Podstawowym założeniem metody jest osobne badanie własności losowych ciągów przepływów maksymalnych wezbrań (pochodzących z okresu pory zimowej i letniej) w celu zachowania jednorodności genetycznej. Zbiory wartości przepływów maksymalnych z okresów pory zimowej oraz z okresów pory letniej w ciągu N 30lat obserwacji (i=1, 2,..., N) powinny spełniać warunki prostej próby losowej, tj. próba losowa musi być jednorodna (stacjonarna) a elementy próby muszą spełniać warunek niezależności (losowości). Warunki te są sprawdzane za pomocą odpowiednich testów statystycznych. Obliczenia wykonano w programie obliczeniowym Qmaxp wersja 1.4, opracowanym przez Instytut Meteorologii i Gospodarki Wodnej (IMGW). 2. Zakres opracowania Analizy przeprowadzono na podstawie długich, tj. o liczebności 43 elementów, ciągów pomiarowych przepływów na rzece X w przekroju obliczeniowym A, obejmującym wielolecie: Zakres zadania obejmuje następujące etapy: a) Analiza danych pomiarowych, polegająca na sprawdzeniu i weryfikacji posiadanych wartości przepływów pod kątem ich wiarygodności. Analiza ta obejmuje kolejno: analizę niejednorodności wykrywanej metodami genetycznymi, analizę niejednorodności wykrywanej metodami statystycznymi. Analizę niejednorodności wykrywanej metodami genetycznymi przeprowadzono na podstawie wizualnej oceny wykresów przebiegu badanych ciągów oddzielnie dla pory zimowej oraz pory letniej w celu identyfikacji potencjalnych punktów niejednorodności i wyeliminowania niejednorodności apriorycznej. Analizę niejednorodności wykrywanej metodami statystycznymi dokonano po przeprowadzeniu analizy j.w. dysponując ciągami genetycznie jednorodnymi, w celu wykrycia niejednorodności, która nie mogła lub nie została wykryta metodami analizy genetycznej. Polegała ona na weryfikacji ciągów pomiarowych pod kątem elementów odstających, a następnie zbadaniu ich stacjonarności. b) Wyznaczenia największych przepływów rocznych o określonym prawdopodobieństwie przewyższenia, odpowiednio dla pory zimowej/ letniej. Zadanie to zrealizowano w następujących etapach: 3
4 Nr str.: 4/15 oszacowanie rozkładu (funkcji) prawdopodobieństwa największych przepływów rocznych pory zimowej/ letniej, przeprowadzenie estymacji parametrów funkcji metodą największej wiarygodności, weryfikacji estymowanych funkcji rozkładu prawdopodobieństwa za pomocą testu zgodności 2 Pearsona (poziom istotności testu =0,05) dokonanie wyboru zespołu najlepiej dopasowanych funkcji za pomocą kryterium minimalnej odległości Kołmogorowa, końcowy wybór jednej, najbardziej wiarygodnej, funkcji rozkładu prawdopodobieństwa z zespołu najlepiej dopasowanych funkcji przy zastosowaniu kryterium informacyjnego Akaike, obliczenie rozkładu prawdopodobieństwa przewyższenia przepływów maksymalnych rocznych (bez względu na porę roku) jako prawdopodobieństwo alternatywy dwóch niewykluczających się zdarzeń niezależnych. 3. Analiza niejednorodności danych pomiarowych 3.1. Przepływy maksymalne roczne pory zimowej Na podstawie wykresu przebiegu zmienności ciągu przepływów maksymalnych rocznych (rys. 1), dokonano wstępnej weryfikacji poprzez wizualną ocenę wykresów przebiegu badanych ciągów dla pory zimowej w celu identyfikacji potencjalnych punktów niejednorodności. Nie zaobserwowano zależności elementów w ciągach, ani tendencji w przebiegu krzywych na wykresach. Rys.1. Przebieg zmienności ciągu przepływów maksymalnych dla pory zimowej w analizowanym wieloleciu Rzeka: W Wodowskaz: R 4
5 Nr str.: 5/15 W dalszej etapie analizy niejednorodności przystąpiono do weryfikacji genetycznie jednorodnych ciągów pomiarowych przepływów maksymalnych rocznych pory zimowej pod kątem występowania w nich elementów odstających Weryfikacja elementów odstających - Test Grubbsa i Becka Wynik testowania: Na przyjętym poziomie istotności alfa = w badanym ciągu nie zostały wykryte elementy odstające Weryfikacja niezależności Test serii Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co świadczy o losowym wyborze elementów do badanego ciągu i oznacza, że badana zmienna losowa jest niezależna Weryfikacja stacjonarności Test sumy rang Kruskala-Wallisa Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co oznacza, że w ciągu nie wykryto skoku wartości średniej, tj. ciąg pomiarowy jest stacjonarny. 5
6 Nr str.: 6/ Weryfikacja stacjonarności Test współczynnika korelacji rangowej Spearmana na trend wartości średniej Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co oznacza, że badany ciąg pomiarowy nie posiada trendu wartości średniej i jest stacjonarny Weryfikacja stacjonarności Test współczynnika korelacji rangowej Spearmana na trend wariancji Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co oznacza, że badany ciąg pomiarowy nie posiada trendu wariancji i jest stacjonarny Przepływy maksymalne roczne pory letniej Na podstawie wizualnej oceny wykresów przebiegu badanych ciągów (rys. 2) w nie stwierdzono zależności elementów w ciągach, ani tendencji w przebiegu krzywych na wykresach. Rys.2. Przebieg zmienności ciągu przepływów maksymalnych dla pory letniej w analizowanym wieloleciu
7 Nr str.: 7/ Weryfikacja elementów odstających - Test Grubbsa i Becka ynik testowania: Na przyjętym poziomie istotności alfa = w badanym ciągu nie zostały wykryte elementy odstające Weryfikacja niezależności Test serii Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co świadczy o losowym wyborze elementów do badanego ciągu i oznacza, że badana zmienna losowa jest niezależna Weryfikacja stacjonarności Test sumy rang Kruskala-Wallisa Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co oznacza, że w ciągu nie wykryto skoku wartości średniej, tj. ciąg pomiarowy jest stacjonarny Weryfikacja stacjonarności Test współczynnika korelacji rangowej Spearmana na trend wartości średniej Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co oznacza, że badany ciąg pomiarowy nie posiada trendu wartości średniej i jest stacjonarny Weryfikacja stacjonarności Test współczynnika korelacji rangowej Spearmana na trend wariancji Wynik testowania: Na przyjętym poziomie istotności alfa = nie ma podstaw do odrzucenia hipotezy zerowej Ho, co oznacza, że badany ciąg pomiarowy nie posiada trendu wariancji i jest stacjonarny. Weryfikacja elementów nie doprowadziła do wykrycia błędu grubego, należy uznać pojawienie się tych wartości za naturalne, zatem analizowany ciąg pomiarowy spełnia warunek niejednorodności. 7
8 Nr str.: 8/15 4. Obliczenie największych przepływów rocznych o określonym prawdopodobieństwie przewyższenia R A P O R T 4.1. Przepływy maksymalne roczne pory zimowej Maksymalne pory zimowej - Rzeka: X Wodowskaz: Y Wartości charakterystyczne z próby o liczebności N= 43 elementów Najmniejszy element : 4.75 Największy element : Średnia arytmetyczna : Odchylenie standardowe : Współczynnik zmienności:
9 Nr str.: 9/15 Współczynnik skośności : Najlepiej dopasowane funkcje poszczególnych typów rozkładów wg kryterium minimalnej odległości Kołmogorowa Dmax Rozkład gamma : odległość Kołmogorowa Dmax = % funkcja z dolnym ograniczeniem d= 4.6 alfa= 14.3, lambda= sprawdzian testu chi-kwadrat = odrzucono 0 z 48 Rozkład Weibulla : odległość Kołmogorowa Dmax = % funkcja z dolnym ograniczeniem d= 4.7 alfa= 18.7, beta= sprawdzian testu chi-kwadrat = odrzucono 0 z 48 Rozkład log-normalny: odległość Kołmogorowa Dmax = % funkcja z dolnym ograniczeniem d= 2.1 mi= 2.745, sigma= sprawdzian testu chi-kwadrat = odrzucono 0 z 48 Rozkład log-gamma: odległość Kołmogorowa Dmax = % funkcja z dolnym ograniczeniem d= 0.4 alfa= 0.114, lambda= sprawdzian testu chi-kwadrat = odrzucono 0 z 47 Wartość krytyczna testu chi-kwadrat = na poziomie = Wybór jednej najbardziej wiarygodnej funkcji rozkładu wg minimalnej wartości kryterium informacyjnego Akaike Rozkład gamma : Rozkład Weibulla : <<== wartość minimalna Rozkład log-normalny:
10 Nr str.: 10/15 Rozkład log-gamma : Najbardziej wiarygodna jest funkcja rozkładu Weibulla z dolnym ograniczeniem d= 4.7 oraz estymatorami MNW parametrów: alfa= 18.7, beta= Prawdop. Przepływ Przedział Błąd Granice obszaru niepewności przewyż. maksymalny ufności kwantyla kwantyla p[%] Qmax,p Palfa=84% sigma[%] dolna górna ? ? ?
11 Nr str.: 11/ Przepływy maksymalne roczne pory letniej Maksymalne pory letniej - Rzeka: X Wodowskaz: A Wartości charakterystyczne z próby o liczebności N= 43 elementów Najmniejszy element: 4.53 Największy element: Średnia arytmetyczna: Odchylenie standardowe: Współczynnik zmienności: Współczynnik skośności: Najlepiej dopasowane funkcje poszczególnych typów rozkładów wg kryterium minimalnej odległości Kołmogorowa Dmax Rozkład gamma: odległość Kołmogorowa Dmax = % 11
12 Nr str.: 12/15 funkcja z dolnym ograniczeniem d= 0.0 alfa= 40.7, lambda= sprawdzian testu chi-kwadrat = odrzucono 0 z 46 Rozkład Weibulla: odległość Kołmogorowa Dmax = % funkcja z dolnym ograniczeniem d= 0.0 alfa= 70.4, beta= sprawdzian testu chi-kwadrat = odrzucono 0 z 46 Rozkład log-normalny: odległość Kołmogorowa Dmax = % funkcja z dolnym ograniczeniem d= 0.0 mi= 3.819, sigma= sprawdzian testu chi-kwadrat = odrzucono 25 z 46 Rozkład log-gamma Brak funkcji niesprzecznych Wartość krytyczna testu chi-kwadrat = na poziomie = Wybór jednej najbardziej wiarygodnej funkcji rozkładu wg minimalnej wartości kryterium informacyjnego Akaike Rozkład gamma : Rozkład Weibulla : <<== wartość minimalna Rozkład log-normalny: Rozkład log-gamma : brak funkcji niesprzecznych Najbardziej wiarygodna jest funkcja rozkładu Weibulla z dolnym ograniczeniem d= 0.0 oraz estymatorami MNW parametrów: alfa= 70.4, beta= Prawdop. Przepływ Przedział Błąd Granice obszaru niepewności przewyż. maksymalny ufności kwantyla kwantyla 12
13 Nr str.: 13/15 p[%] Qmax,p Palfa=84% sigma[%] dolna górna ? ? ? ? ? ? ? ? NAJWIĘKSZE PRZEPŁYWY ROCZNE O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA jako kwantyle funkcji prawdopodobieństwa alternatywy Prawdop. Przepływ Przedział Błąd Granice obszaru niepewności altern. maksymalny ufności kwantyla kwantyla p[%] Qmax,p Palfa=84% sigma[%] dolna górna LG-LN 6.6 LN-LN 13
14 Nr str.: 14/ WE-WE 8.7 LG-LN WE-WE 10.1 LG-LN WE-WE 11.0 LG-LN WE-WE 11.8 LG-LN LG-LN 15.6 WE-WE LG-LN 21.0 WE-WE LG-LN 29.8 WE-WE LG-LN 38.2 WE-WE LG-LN 46.9 LG-WE WE-LN 57.0 LG-WE WE-LN 68.6 LG-WE WE-LN 82.8 LG-WE WE-GA LG-LN WE-WE LG-LN WE-WE LG-LN WE-WE LG-LN WE-WE LG-LN WE-WE LG-LN GA-WE LG-LN WE-WE LG-LN ? WE-WE GA-LN ? WE-WE GA-LN ? GA-WE LG-LN UWAGA: znak zapytania przy wartości kwantyla oznacza, że błąd kwantyla jest większy od 20% (liczebność próby losowej jest zbyt mała). Zastosowane skróty oznaczeń typów rozkładów: GA - rozkład gamma, WE - rozkład Weibulla, LN - rozkład log-normalny, LG - rozkład log-gamma, Rys. 3. Przepływy maksymalne roczne o określonym prawdopodobieństwie przewyższenia odpowiednio dla: - pory zimowej (kolorem niebieskim) - pory letniej (kolorem zielonym) 14
15 Nr str.: 15/15 15
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Ośrodek Hydrologii Zespół Ekspertyz, Opinii i Udostępniania Danych 01-673 Warszawa ul. Podleśna 61 tel. 22 56-94-381 Opracowanie rzędnych
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Seminarium Metody obliczania przepływów maksymalnych w zlewniach kontrolowanych i niekontrolowanych, RZGW, Kraków 30 IX 2013 r. Metody obliczania przepływów maksymalnych rocznych o określonym prawdopodobieństwie
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Rozkład prawdopodobieństwa przepływów maksymalnych rocznych (przepływów najwyższych w roku)
1 Rozkład prawdopodobieństwa przepływów maksymalnych rocznych (przepływów najwyższych w roku) 1. metoda CUGW (Pearson III i metoda kwantyli) Metoda ta powstała w latach sześćdziesiątych zeszłego stulecia
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki
Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow
Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez
Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Wyznaczanie przedziału 95%CI oznaczającego, że dla 95% prób losowych następujące nierówności są prawdziwe: X t s 0.025 n < μ < X + t s
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA
SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...
Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia
Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Metody nieparametryczne Do tej pory omawialiśmy metody odpowiednie do opracowywania danych ilościowych, mierzalnych W kaŝdym przypadku zakładaliśmy
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Badanie zależności skala nominalna
Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny
2008-03-18 wolne wolne 2008-03-25 wolne wolne
PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (estymacja punktowa, przedziałowa)
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH
Dane bibliograiczne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Mieczysław Połoński 1 1. Metodyka statystycznego opracowania
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański
KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji