teoria ergodyczna patroni sesji Czesław Ryll-Nardzewski, Edward Sąsiada

Wielkość: px
Rozpocząć pokaz od strony:

Download "teoria ergodyczna patroni sesji Czesław Ryll-Nardzewski, Edward Sąsiada"

Transkrypt

1 teoria ergodyczna patroni sesji Czesław Ryll-Nardzewski, Edward Sąsiada Jubileuszowy Zjazd Matematyków Polskich w stulecie Polskiego Towarzystwa Matematycznego Kraków 3-7 września 2019

2 Indeks abstraktów Teoria ergodyczna 2 3 Klaudiusz Czudek, Tomasz Szarek Centralne twierdzenie graniczne dla losowych homeomorfizmów odcinka 3 Tomasz Downarowicz Wkład Czesława Ryll-Nardzewskiego w rozwój teorii ergodycznej 3 Brunon Kamiński Edward Sąsiada - inicjator badań w zakresie teorii ergodycznej na UMK w Toruniu 5 Olena Karpel, Sergey Bezuglyi, Jan Kwiatkowski Dokładna liczba ergodycznych miar niezmienniczych dla diagramów Brattelego 5 Mariusz Lemańczyk Rozłączność möbiusowa układów sztywnych 6 Romuald Lenczewski Decomposition of free cumulants 6 Zbigniew Lipecki Zwartość przedziałów porządkowych w kracie liniowej z topologią lokalnie solidną 6 Grzegorz Plebanek Miary doskonałe i gry Banacha-Mazura 6 Andrzej Wiśnicki okół nieliniowej wersji twierdzenia Rylla-Nardzewskiego

3 3 Centralne twierdzenie graniczne dla losowych homeomorfizmów odcinka Klaudiusz Czudek Polska Akademia Nauk Niech f 1,..., f n będą rosnącymi homeomorfizmami domkniętego odcinka [0, 1]. Będąc w punkcie x (0, 1), losujemy homeomorfizm f i z pewnym prawdopodobieństwem p i, niezależnym od punktu x, i przesuwamy się do punktu f i (x). W ostatnich latach powstało wiele prac dotyczących ergodycznych własności tak skonstruowanego łańcucha Markowa. W trakcie referatu przedstawię krótki i elementarny dowód jedyności miary stacjonarnej oraz szkic dowodu centralnego twierdzenia granicznego. Wynik uzyskano wspólnie z Tomaszem Szarkiem. [1]. K. Czudek, T. Szarek, Ergodicity and central limit theorem for random interval homeomorphisms, przyjęta do publikacji w Israel Journal of Mathematics [2]. L. Alsedà, M. Misiurewicz, Random interval homeomorphisms, Publ. Mat., 58: (2014). [3]. D. Malicet, Random walks on Homeo(S 1 ) Comm. Math. Phys. 356(3): (2017). [4]. M. Maxwell, M. Woodroofe, Central limit theorems for additive functionals of Markov chains, Ann. Probab., 28(2) (2000). Wkład Czesława Ryll-Nardzewskiego w rozwój teorii ergodycznej Tomasz Downarowicz Politechnika Wrocławska mail@myserver.com W krotkim wystąpieniu postaram się nakreślić najważniejsze wyniki Czesława Ryll-Nardzewskiego zarówno bezpośrednio w teorii ergodycznej, jak również te, które pośrednio przyczyniły się do rozwoju tej teorii. [1]. Tomasz Downarowicz, Wkład Czesława Ryll-Nardzewskiego w rozwój teorii ergodycznej, Wiadomości Matematyczne 53, nr 2, (2017), Edward Sąsiada - inicjator badań w zakresie teorii ergodycznej na UMK w Toruniu Brunon Kamiński bkam@mat.umk.pl Uniwersytet Mikołaja Kopernika w Toruniu Profesor Edward Sąsiada urodził się 18. marca 1924 roku we Lwowie. Po ukończeniu szkoły podstawowej w roku 1936 do chwili wybuchu wojny uczęszczał do Państwowego Gimnazjum nr I we Lwowie, a w latach okupacji sowieckiej do VII Szkoły Średniej. Podczas okupacji niemieckiej był zatrudniony jako uczeń w Warsztatach Samochodowych (HKP) we Lwowie. Po powtórnym zajęciu Lwowa przez wojska sowieckie został powołany do pracy w Remontowej Fabryce Czołgów, w której pracował do czasu repatriacji w 1946 roku. Razem z rodzicami został repatriowany do Gliwic i tu, po roku nauki w liceum ogólnokształcącym, uzyskał świadectwo dojrzałości. E. Sąsiada studiował matematykę na Uniwersytecie Wrocławskim w latach , uzyskując w dniu r. stopień magistra matematyki na podstawie pracy O dzieleniu i rozspajaniu przez zbiory domknięte wykonanej pod kierunkiem prof. Bronisława Knastera. W tym samym roku przeniósł się z Wrocławia do Torunia wraz z prof. Jerzym Łosiem. Początkowo E. Sąsiada pracował jako asystent przy Katedrze Matematyki Uniwersytetu Mikołaja Kopernika, a następnie w 1953 roku rozpoczął pracę w nowo utworzonym Toruńskim Oddziale Instytutu Jubileuszowy Zjazd Matematyków Polskich w stulecie PTM, Krak"ow,

4 4 Matematycznego PAN, gdzie był zatrudniony do czasu przejścia na emeryturę w 1994 r. Prowadził także wykłady monograficzne i seminaria w Instytucie Matematyki UMK. W roku 1959 uzyskał stopień doktora na podstawie rozprawy O rozszczepialności grup mieszanych napisanej pod kierunkiem prof. J. Łosia. W 1961 r. habilitował się na podstawie rozprawy Pierścienie proste i radykalne w sensie Jacobsona i uzyskał stanowisko docenta w IM PAN, a tytuł profesora nadzwyczajnego w 1967 roku. Na początku swojej pracy badawczej E. Sąsiada współpracował z prof. J. Łosiem. Wspólną dziedziną ich badań była teoria grup abelowych. Po doktoracie zajął się teorią radykałów pierscieni. A oto wybrane osiagniecia Profesora w w/w dziedzinach: konstrukcja nierozkładalnych grup abelowych o mocy większej niż continuum, negatywne rozwiązanie Pierwszego Problemu Testowego I. Kaplansky ego dla grup abelowych, a także problemu K. Borsuka dotyczącego grup kohomologii, konstrukcja pierścienia prostego radykalnego w sensie Jacobsona. Wyniki te były poważnymi osiągnięciami w skali światowej. W literaturze naukowej proste pierścienie radykalne występują pod nazwa Sąsiada rings. W drugiej połowie lat sześćdziesiątych E. Sąsiada zajął się nową dziedziną matematyki - teorią ergodyczną. W roku akademickim 1968/69 zainicjował wykład monograficzny i seminarium z tej dziedziny. Zaczął także wykładać teorię prawdopodobieństwa. Główne kierunki badań E. Sąsiady i kierowanego przez niego zespołu to klasyfikacja układów dynamicznych oraz entropijna teoria tych układów. Ponadto Profesor prowadził wspólne badania z fizykami z UMK w zakresie fizyki statystycznej. Do osiągnięć naukowych E. Sąsiady w nowych dziedzinach jego badań należą m. in.: pozytywne rozwiązanie problemu J. P. Conze a dotyczącego widma teorio-miarowych działań grupy Z 2 ze ściśle dodatnią entropią, uogólnienie tw. R. L. Dobruszina dotyczącego istnienia miary probabilistycznej dla danej specyfikacji, podanie pełnego układu niezmienników topologicznej sprzezoności dla monotonicznych odwzorowań odcinka. Wymienione wyżej rezultaty są opublikowane w pracach wspólnych z innymi autorami. Jako owoc badań E. Sąsiady w zakresie fizyki statystycznej warto wymienić wprowadzone przez niego pojęcie entropii stanu statystycznego logiki kwantowej. W pracy poświęconej tej entropii pokazał, że jest ona nierosnącą funkcją czasu, jeśli ewolucja stanów w czasie spełnia własność Markowa. Na początku lat osiemdziesiątych Prof. Sąsiada wraz z grupą współpracowników zajął się jednym z klasycznych problemów teorii operatorów liniowych i ciągłych przestrzeni Banacha, a mianowicie problemem istnienia nietrywialnych domkniętych podprzestrzeni liniowych niezmienniczych. Tej tematyce poświęcił wykład monograficzny w roku akademickim 1978/79. Niestety badania te przerwała choroba Profesora, która juz go nie opuściła i uniemożliwiła prowadzenie dalszych badań. W czasie swojej działalności naukowej E. Sąsiada wielokrotnie uczestniczył w zjazdach i sympozjach, zarówno w kraju jak i za granicą. W latach kilkakrotnie był na Węgrzech, gdzie podjął współpracę z matematykami węgierskimi. W latach przebywał na krótkich stażach naukowych na Uniwersytecie im. Łomonosowa w Moskwie, a w roku 1965 w USA na University of Chicago. W roku 1964 uczestniczył w Międzynarodowym Kongresie Matematycznym w Sztokholmie. Pod kierunkem Profesora Sąsiady rozprawy doktorskie napisali: A. Jakubowski, B. Kamiński, R. Kiełpiński, J. Kwiatkowski, K. Parczyk i T. Sekou. W roku 1964 E. Sąsiada otrzymał indywidualną nagrodę Ministra Szkolnictwa Wyższego za rozprawę habilitacyjną, a w 1995 r. honorowe członkostwo PTM za wybitne zasługi dla nauki polskiej. W tym samym roku Rektor i Senat UMK przyznali mu medal Za zasługi położone dla rozwoju Uczelni. Profesor Edward Sąsiada zmarł 23 lutego 1999 roku i został pochowany na cmentarzu św. Jerzego w Toruniu. Aktualnie dzieło Profesora Sąsiady kontynuują dwie katedry Wydziału Matematyki i Informatyki UMK prowadzące badania naukowe na poziomie światowym: Katedra Teorii Ergodycznej i Układów Dynamicznych kierowana przez prof. dr hab. Mariusza Lemańczyka i katedra Teorii Prawdopodobieństwa i Analizy Stochastycznej kierowana przez prof. dr hab. Adama Jakubowskiego. Teoria ergodyczna

5 5 [1]. S. Balcerzyk, 50 lat seminarium algebraicznego w Toruniu, Wiad. Mat. 41: (2005). [2]. S. Balcerzyk, B. Kamiński, Edward Sąsiada ( ), Wiad. Mat. 37: (2001). [3]. R. S. Ingarden, Comments on the Kolmogorov-Sinai-Sąsiada entropy and the quantum information theory, Rep. Math. Phys. 10: (1976). [4]. D. Simson, Konstrukcja pierścieni Sąsiady, Wiad. Mat. 41: (2005). Dokładna liczba ergodycznych miar niezmienniczych dla diagramów Brattelego Olena Karpel helen.karpel@gmail.com Akademia Górniczo-Hutnicza / B. Verkin ILTPE of NASU Współautorzy: Sergey Bezuglyi sergii-bezuglyi@uiowa.edu University of Iowa, USA Jan Kwiatkowski jkwiat@mat.umk.pl Wyższa Szkoła Informatyki i Zarządzania im. Prof. Tadeusza Kotarbińskiego Referat jest poświęcony badaniu sympleksu M 1 (B) miar probabilistycznych na przestrzeni ścieżek diagramu Brattelego B, które są niezmiennicze względem współkońcowej relacji równoważności. Takie miary są również niezmiennicze względem homeomorfizmu zbioru Cantora. Przedstawimy kryterium monoergodyczności dla dowolnego diagramu Brattelego, a w przypadku diagramu Brattelego skończonej rangi k podamy warunki konieczne i wystarczające na to, żeby diagram posiadał dokładnie 1 l k ergodycznych probabilistycznych miar niezmienniczych. Podamy opis struktury diagramów Brattelego o skończonej randze oraz opiszemy poddiagramy będące nośnikami miar ergodycznych. Dla diagramów Brattelego nieskończonej rangi przedstawimy warunki wystarczające na to, żeby diagram posiadał dokładną (skończoną lub nieskończoną) liczbę miar probabilistycznych ergodycznych niezmienniczych. Rozważymy kilka przykładów, w szczególności stacjonarne diagramy Brattelego, diagramy Pascala-Brattelego oraz układy Toeplitza. Rozłączność möbiusowa układów sztywnych Mariusz Lemańczyk mlem@mat.umk.pl Wydział Matematyki i Informatyki, UMK, Toruń Po krótkim przedstawieniu hipotezy Sarnaka i jej związków z teorią liczb, celem referatu jest przedstawienie szkicu dowodu rozłączności möbiusowej układów dynamicznych, których miary niezmiennicze wyznaczają metryczne układy sztywne. Referat na postawie wspólnej pracy z A. Kanigowskim i M. Radziwiłłem. [1]. A. Kanigowski, M. Lemańczyk, M. Radziwiłł, Rigidity in dynamics and Möbius disjointness, arxiv: [2]. P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, 2010, Jubileuszowy Zjazd Matematyków Polskich w stulecie PTM, Krak"ow,

6 6 Decomposition of free cumulants Romuald Lenczewski Politechnika Wrocławska Freeness of Voiculescu is the most interesting notion of independence in noncommutative probability. In this theory, free cumulants of probability distributions play the role of noncommutative analogs of classical cumulants. We will present a new approach to free cumulants based on their decomposition and discuss the associated lattices of partitions. Zwartość przedziałów porządkowych w kracie liniowej z topologią lokalnie solidną Zbigniew Lipecki lipecki@impan.pan.wroc.pl Polska akademia Nauk Niech X będzie kratą liniową z topologią lokalnie solidną (np. kratą Banacha z topologią mocną), a x jej elementem dodatnim. Podamy warunki konieczne i wystarczające na to, aby przedział porządkowy [0, x] był zwarty. Są wśród nich dwa natępujące: (i) extr[0, x] jest zwarte i [0, x] jest porządkowo zupełne; (ii) istnieje homeomorfizm afiniczny przedziału [0, x] na pewną kostkę Tichonowa [0, 1] S zachowujący porządek. Miary doskonałe i gry Banacha-Mazura Grzegorz Plebanek grzes@math.uni.wroc.pl Uniwersytet Wrocławski Marczewski [1953] wprowadził pojęcie miary zwartej, a Ryll-Nardzewski [1953] udowodnił, że miara jest doskonała wtedy i tylko wtedy gdy jest zwarta w sensie Marczewskiego na każdym przeliczalnie generowalnym pod-σ-ciele swojej dziedziny. W dwóch innych wspólnych pracach Marczewski i Ryll- Nardzewski badali zastosowania miar doskonałych do zagadnień związanych z istnieniem miar, określonych na iloczynach kartezjańskich i mających zadane rozkłady brzegowe. Fremlin [2000] wprowadził klasę miar związanych z grą nieskończoną typu Banacha-Mazura i badał związki takich miar z miarami zwartymi. Fremlin postawił też problem, czy każda skończona miara na dowolnych σ-ciele zawartym w Bor[0, 1] jest zwarta i przedstawił jego rozwiązanie przy założeniu hipotezy continuum. Mój odczyt ma na celu przypomnienie pewnych, do dziś otwartych problemów, które mają teoriomnogościowy posmak i są związane z tymi zagadnieniami. Wokół nieliniowej wersji twierdzenia Rylla-Nardzewskiego Andrzej Wiśnicki andrzej.wisnicki@up.krakow.pl Uniwersytet Pedagogiczny w Krakowie Twierdzenie Rylla-Nardzewskiego o punkcie stałym, dotyczące dystalnych półgrup ciągłych odwzorowań afinicznych działających na wypukłych i słabo zwartych podzbiorach przestrzeni lokalnie wypukłej (w szczególności półgrup afinicznych izometrii), znalazło wiele zastosowań, m.in. w teorii ergodycznej, w dynamice topologicznej oraz w geometrycznej teorii grup. W referacie przedstawimy jego nieliniowe rozszerzenie na dystalne półgrupy odwzorowań nieoddalających (tzn. 1-lipschitzowskich), przedyskutujemy możliwe dalsze uogólnienia oraz podamy kilka jego zastosowań, m.in. do otrzymania nieliniowego rozszerzenia twierdzenia Badera-Gelandera-Monoda dotyczącego grup izometrii w przestrzeniach L-osadzonych (np. w L 1, w przestrzeniach predualnych do algebr von Neumanna). Teoria ergodyczna

7 7 [1]. U. Bader, T. Gelander, N. Monod, A fixed point theorem for L 1 spaces, Invent. Math., 189: (2012). [2]. C. Ryll-Nardzewski, Generalized random ergodic theorems and weakly almost periodic functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10: (1962). [3]. A. Wiśnicki, Around the nonlinear Ryll-Nardzewski theorem, arxiv: Jubileuszowy Zjazd Matematyków Polskich w stulecie PTM, Krak"ow,

teoria ergodyczna patroni sesji: Czesław Ryll-Nardzewski, Edward Sąsiada

teoria ergodyczna patroni sesji: Czesław Ryll-Nardzewski, Edward Sąsiada teoria ergodyczna patroni sesji: Czesław Ryll-Nardzewski, Edward Sąsiada Jubileuszowy Zjazd Matematyków Polskich w stulecie Polskiego Towarzystwa Matematycznego Kraków 3-7 września 2019 Spis treści Teoria

Bardziej szczegółowo

Edward Sąsiada( )

Edward Sąsiada( ) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXVII(2001) S. Balcerzyk(Toruń) B. Kamiński(Toruń) Edward Sąsiada(1924 1999) Profesor Edward Sąsiada urodził się 18 marca

Bardziej szczegółowo

Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad.

Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad. Teoria ergodyczna seminarium monograficzne dla studentów matematyki dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik rok akad. 2013/14 Teoria ergodyczna Teoria ergodyczna Teoria ergodyczna zajmuje

Bardziej szczegółowo

Początki toruńskiej algebry

Początki toruńskiej algebry ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXV(1999) Daniel Simson(Toruń) Początki toruńskiej algebry W roku 1951 Instytut Matematyczny Polskiej Akademii Nauk(IM PAN)

Bardziej szczegółowo

DOKTOR HONORIS CAUSA UNIWERSYTETU ZIELONOGÓRSKIEGO. Profesor dr hab. Lech Górniewicz

DOKTOR HONORIS CAUSA UNIWERSYTETU ZIELONOGÓRSKIEGO. Profesor dr hab. Lech Górniewicz DOKTOR HONORIS CAUSA UNIWERSYTETU ZIELONOGÓRSKIEGO Profesor dr hab. Lech Górniewicz CZŁONKOSTWO W TOWARZYSTWACH I KOMITETACH NAUKOWYCH ŻYCIORYS NAUKOWY SPECJALNOŚĆ NAUKOWA MATEMATYKA topologia; analiza

Bardziej szczegółowo

Kolegium Dziekanów i Dyrektorów

Kolegium Dziekanów i Dyrektorów Kolegium Dziekanów i Dyrektorów jednostek posiadających uprawnienia do nadawania stopnia doktora habilitowanego w zakresie nauk matematycznych Warszawa, 9. listopada 2007 Kolegium Dziekanów i Dyrektorów

Bardziej szczegółowo

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15 Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna

Bardziej szczegółowo

Zastosowania twierdzeń o punktach stałych

Zastosowania twierdzeń o punktach stałych 16 kwietnia 2016 Abstrakt Niech X będzie przestrzenią topologiczną. Ustalmy odwzorowanie ciągłe f : X X. Twierdzeniem o punkcie stałym nazywamy prawdę matematyczną postulującą pod pewnymi warunkami istnienie

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: PROBABILISTYKA NIEPRZEMIENNA Nazwa w języku angielskim: NONCOMMUTATIVE PROBABILITY Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA Nazwa w języku angielskim TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Sławni Polscy Fizycy i Matematycy. Matematycy Fizycy Najważniejsi

Sławni Polscy Fizycy i Matematycy. Matematycy Fizycy Najważniejsi Sławni Polscy Fizycy i Matematycy Matematycy Fizycy Najważniejsi Matematycy Mikołaj Kopernik Stefan Banach Jan Śniadecki Stanicław Saks Leon Chwistek Władysław Ślebodziński Mikołaj Kopernik 19 lutego 1473-24

Bardziej szczegółowo

KAROL BORSUK ( )

KAROL BORSUK ( ) KAROL BORSUK (1905 1982) AUTORZY: Justyna Piekarska Marlena Trokowicz Tomasz Wacowski Krótki kurs historii matematyki Rok akademicki: 2014/2015 Semestr IV KAROL BORSUK Karol Borsuk urodził się 8 maja 1905

Bardziej szczegółowo

Spis treści. Skróty i oznaczenia Przedmowa...19

Spis treści. Skróty i oznaczenia Przedmowa...19 Skróty i oznaczenia...13 Przedmowa...19 I. Polska w średniowieczu (wieki XI XV)...25 1. Wprowadzenie...25 2. Prehistoria...26 3. Średniowiecze...27 4. Uniwersytety...29 5. Matematyka w Europie przed 1400

Bardziej szczegółowo

Układy dynamiczne na miarach. Wykłady

Układy dynamiczne na miarach. Wykłady Układy dynamiczne na miarach Wykłady nr 95 Andrzej Lasota Układy dynamiczne na miarach Wykłady Wydawnictwo Uniwersytetu Śląskiego Katowice 2008 Redaktor serii: Matematyka Roman Ger Recenzent Józef Myjak

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

Prof.dr hab.inż.czesław Józefaciuk

Prof.dr hab.inż.czesław Józefaciuk Prof.dr hab.inż.czesław Józefaciuk Prof.dr hab.inż.czesław Józefaciuk urodził się 1 lutego 1931 r. w Studziance. Był synem Mikołaja i Ludwiki z domu Kulicka. Okres jego dzieciństwa przypadł na pierwsze

Bardziej szczegółowo

Prof. dr. hab. Jacek Chądzyński

Prof. dr. hab. Jacek Chądzyński Prof. dr. hab. Jacek Chądzyński Profesor Jacek Chądzyński jest związany z Uniwersytetem Łódzkim od 1958 roku. Tutaj w latach 1958-63 studiował matematykę uzyskując stopień magistra. W roku 1968 uzyskał

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Informatyka, I stopień

Informatyka, I stopień Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, I stopień Sylabus modułu: Podstawy logiki i teorii mnogości (LTM200.2) wariantu modułu (opcjonalnie): 1. Informacje ogólne

Bardziej szczegółowo

KARTA KURSU. Probability theory

KARTA KURSU. Probability theory KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA Załącznik nr 4 do uchwały Senatu PK nr 104/d/11/2017 z dnia 22 listopada 2017 r. Politechnika Krakowska im. Tadeusza Kościuszki w Krakowie Nazwa wydziału lub wydziałów: Wydział Fizyki, Matematyki i Informatyki

Bardziej szczegółowo

Projekt matematyczny

Projekt matematyczny Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA DLA FIZYKÓW

ANALIZA MATEMATYCZNA DLA FIZYKÓW Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA

Bardziej szczegółowo

Prof. dr hab. Adam Wrzosek organizator i Dziekan Wydziału Lekarskiego Uniwersytetu Poznańskiego w latach 1920/ /1923

Prof. dr hab. Adam Wrzosek organizator i Dziekan Wydziału Lekarskiego Uniwersytetu Poznańskiego w latach 1920/ /1923 Prof. dr hab. Adam Wrzosek organizator i Dziekan Wydziału Lekarskiego Uniwersytetu Poznańskiego w latach 1920/1921 1922/1923 Lekarz, patolog, historyk medycyny i antropolog. Urodził się 6 V 1875 r. w Zagórzu

Bardziej szczegółowo

KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02

KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20182019 4. Forma

Bardziej szczegółowo

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Fale biegnące w równaniach reakcji-dyfuzji

Fale biegnące w równaniach reakcji-dyfuzji Fale biegnące w równaniach reakcji-dyfuzji Piotr Bartłomiejczyk Politechnika Gdańska Między teorią a zastosowaniami: Matematyka w działaniu Będlewo, 25 30 maja 2015 P. Bartłomiejczyk Fale biegnące 1 /

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

Operatorowe wersje twierdzenia Radona-Nikodyma

Operatorowe wersje twierdzenia Radona-Nikodyma Operatorowe wersje twierdzenia Radona-Nikodyma Zakład Równań Funkcyjnych Letnia Szkoła Instytutu Matematyki UŚ, 22-26 września 2014r. skalarne twierdzenie Radona-Nikodyma Załóżmy, że X = (X, A) jest przestrzenia

Bardziej szczegółowo

Prof. dr inż. dr h. c. ZBIGNIEW JASICKI

Prof. dr inż. dr h. c. ZBIGNIEW JASICKI Prof. dr inż. dr h. c. ZBIGNIEW JASICKI 1915-2001 Wybitny uczony, niestrudzony pedagog i organizator odbudowy energetyki polskiej po II wojnie światowej. Zbigniew Jasicki urodził się 16 sierpnia 1915 roku

Bardziej szczegółowo

90-lecie. Prof. zw. dr hab. inż. Zbigniew Kikiewicz

90-lecie. Prof. zw. dr hab. inż. Zbigniew Kikiewicz 90-lecie Prof. zw. dr hab. inż. Zbigniew Kikiewicz Kariera naukowa Prof. Zbigniew Kikiewicz urodził się 21 lutego 1924 roku w Białymstoku. W 1945 roku rozpoczął studia na Politechnice Łódzkiej jako jeden

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

Kandydaci na prodziekanów

Kandydaci na prodziekanów Kandydaci na prodziekanów Prodziekan ds. Nauki prof. dr hab. Janina Kotus Prodziekan ds. Rozwoju dr hab. inż. Maciej Grzenda Prodziekan ds. Nauczania dr Konstanty Junosza-Szaniawski Prodziekan ds. Studenckich

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTY KSZTACŁENIA PODSTAWOWEGO I OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTY KSZTACŁENIA PODSTAWOWEGO I OGÓLNEGO 1 KATALOG KURSÓW PRZEDMIOTY KSZTACŁENIA PODSTAWOWEGO I OGÓLNEGO ROK AKADEMICKI 2018/2019 2 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia podstawowego i ogólnego Oferta Ogólnouczelniana

Bardziej szczegółowo

2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):

2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują): OPISU MODUŁU KSZTAŁCENIA (SYLABUS) I. Informacje ogólne 1) Nazwa modułu : MATEMATYCZNE PODSTAWY KOGNITYWISTYKI 2) Kod modułu : 08-KODL-MPK 3) Rodzaj modułu : OBOWIĄZKOWY 4) Kierunek studiów: KOGNITYWISTYKA

Bardziej szczegółowo

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry W niniejszym artykule zero nie jest liczbą naturalną! Ultrafiltry Dominik KWIETNIAK, Kraków Artykuł ten stanowi zapis referatu jaki został wygłoszony na XLVII Szkole Matematyki Poglądowej Ekstrema. Przedstawiono

Bardziej szczegółowo

Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013

Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013 Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013 Tomasz Downarowicz Instytut Matematyki i Informatyki Politechniki

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Wstęp do układów statycznych

Wstęp do układów statycznych Uniwersystet Warszawski 1 maja 2010 Wprowadzenie Standardowe układy dynamiczne - przestrzeń X wraz z przekształceniem f : X X zachowującym strukturę. Typowe przykłady: X - przestrzeń metryczna, f - przekształcenie

Bardziej szczegółowo

Antoni Guzik. Rektor, Dziekan, Profesor, wybitny Nauczyciel, Przyjaciel Młodzieży

Antoni Guzik. Rektor, Dziekan, Profesor, wybitny Nauczyciel, Przyjaciel Młodzieży Antoni Guzik Antoni Guzik Rektor, Dziekan, Profesor, wybitny Nauczyciel, Przyjaciel Młodzieży Docent Antoni Guzik urodził się 7 kwietnia 1925 r. w Izydorówce, w dawnym województwie stanisławowskim. Szkołę

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

REGULAMIN postępowania konkursowego przy zatrudnianiu na stanowiska naukowe w Instytucie Genetyki i Hodowli Zwierząt PAN asystenta adiunkta

REGULAMIN postępowania konkursowego przy zatrudnianiu na stanowiska naukowe w Instytucie Genetyki i Hodowli Zwierząt PAN asystenta adiunkta REGULAMIN postępowania konkursowego przy zatrudnianiu na stanowiska naukowe w Instytucie Genetyki i Hodowli Zwierząt PAN na podstawie art. 91 p. 5 Ustawy o polskiej Akademii Nauk z dnia 30 kwietnia 2010

Bardziej szczegółowo

Wydział Elektryczny Politechniki Śląskiej. Poczet dziekanów 19/21

Wydział Elektryczny Politechniki Śląskiej. Poczet dziekanów 19/21 Wydział Elektryczny Politechniki Śląskiej Poczet dziekanów 19/21 Profesor Kazimierz IDASZEWSKI Lata urzędowania: 1945 Został powołany na pierwszego dziekana Wydziału Elektrycznego Politechniki Śląskiej.

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIE STWA

RACHUNEK PRAWDOPODOBIE STWA Jerzy Ombach RACHUNEK PRAWDOPODOBIE STWA WSPOMAGANY KOMPUTEROWO DLA STUDENTÓW MATEMATYKI STOSOWANEJ Wydawnictwo Uniwersytetu Jagielloƒskiego Seria Matematyka Książka finansowana przez Wydział Matematyki

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH Punkty okresowe, zbiory graniczne, sprzężenia Zadanie 1. Pokazać, że trajektoria (w przód) punktu x w przestrzeni metrycznej X pod działaniem ciągłego

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Statystyka z elementami rachunku prawdopodobieństwa

Statystyka z elementami rachunku prawdopodobieństwa Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

dr hab. inż. Krystyna Macek-Kamińska, profesor PO

dr hab. inż. Krystyna Macek-Kamińska, profesor PO Ukończone studia: Politechnika Wrocławska, Wydział Elektryczny Dyscyplina naukowa: elektrotechnika, informatyka Specjalność: automatyzacja napędu elektrycznego, metody numeryczne dr - 1983 Politechnika

Bardziej szczegółowo

WIEDZA. X1A_W04 X1A_W05 zna podstawowe modele zjawisk przyrodniczych opisywanych przez równania różniczkowe

WIEDZA. X1A_W04 X1A_W05 zna podstawowe modele zjawisk przyrodniczych opisywanych przez równania różniczkowe Załącznik nr 1 do uchwały Nr 32/2016 Senatu UWr z dnia 24 lutego 2016 r. Nazwa wydziału: Wydział Matematyki i Informatyki Nazwa kierunku studiów: matematyka Obszar w zakresie: nauk ścisłych Dziedzina nauki:

Bardziej szczegółowo

Wstęp do Matematyki (4)

Wstęp do Matematyki (4) Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Topologia Topology Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Matematyka Poziom kwalifikacji: I stopnia Semestr: IV Rodzaj zajęć: wykład, ćwiczenia Liczba godzin/tydzień:

Bardziej szczegółowo

Zbiory liczbowe widziane oczami topologa

Zbiory liczbowe widziane oczami topologa Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,

Bardziej szczegółowo

Co ma piekarz do matematyki?

Co ma piekarz do matematyki? Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

metody probabilistyczne i stochastyczne patron sesji Hugo Steinhaus

metody probabilistyczne i stochastyczne patron sesji Hugo Steinhaus metody probabilistyczne i stochastyczne patron sesji Hugo Steinhaus Jubileuszowy Zjazd Matematyków Polskich w stulecie Polskiego Towarzystwa Matematycznego Kraków 3-7 września 2019 Table of contents Thursday

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA

Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Załącznik nr 11 do Uchwały nr 236 Rady WMiI z dnia 31 marca 2015 roku Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Profil kształcenia: ogólnoakademicki Forma studiów: stacjonarne Forma kształcenia/poziom

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia

Odniesienie symbol I [1] [2] [3] [4] [5] Efekt kształcenia Efekty dla studiów pierwszego stopnia profil ogólnoakademicki, prowadzonych na kierunku Matematyka, na Wydziale Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4 określenie Odniesienie

Bardziej szczegółowo

Kraków, dnia 10 maja 2013 roku

Kraków, dnia 10 maja 2013 roku dr hab. Jan Malczak, Prof. AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica Aleja Adama Mickiewicza 30 30-962 Kraków Kraków, dnia 10 maja 2013 roku RECENZJA ROZPRAWY HABILITACYJNEJ I DOROBKU NAUKOWEGO

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW. Efekty kształcenia dla kierunku studiów Matematyka

OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW. Efekty kształcenia dla kierunku studiów Matematyka OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW Nazwa wydziału: Wydział Matematyki i Informatyki Nazwa kierunku studiów: Matematyka Obszar w zakresie: nauki ścisłe Dziedzina : matematyka Dyscyplina

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

UCHWAŁA. Wniosek o wszczęcie przewodu doktorskiego

UCHWAŁA. Wniosek o wszczęcie przewodu doktorskiego UCHWAŁA 30 czerwiec 2011 r. Uchwała określa minimalne wymagania do wszczęcia przewodu doktorskiego i przewodu habilitacyjnego jakimi powinny kierować się Komisje Rady Naukowej IPPT PAN przy ocenie składanych

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA FUNKCJONALNA Nazwa w języku angielskim Functional Analysis Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

O ROZMAITOŚCIACH TORYCZNYCH

O ROZMAITOŚCIACH TORYCZNYCH O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną

Bardziej szczegółowo

Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych

Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych, Markus Schmidmeier, FAU Maj, 2015 Oznaczenia K ciało algebraicznie domknięte α, β, γ partycje, tzn. nierosnące ciągi liczb naturalnych

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo