Co ma piekarz do matematyki?
|
|
- Rafał Lewandowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009
2 x
3 x (x 1, x 2 )
4 x (x 1, x 2 ) (x 1, x 2, x 3 )
5 x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ).
6 x d(x, y) = x y (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ).
7 x d(x, y) = x y (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ).
8 x d(x, y) = x y (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2 (x 1, x 2, x 3, x 4 ).
9 x d(x, y) = x y (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2 (x 1, x 2, x 3, x 4 ) d(x, y) = (x 1 y 1 ) (x 4 y 4 ) 2..
10 x d(x, y) = x y (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2 (x 1, x 2, x 3, x 4 ) d(x, y) = (x 1 y 1 ) (x 4 y 4 ) 2.. (x 1, x 2,..., x n ) d(x, y) = (x 1 y 1 ) (x n y n ) 2
11 x d(x, y) = x y = (x y) 2 (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2 (x 1, x 2, x 3, x 4 ) d(x, y) = (x 1 y 1 ) (x 4 y 4 ) 2.. (x 1, x 2,..., x n ) d(x, y) = (x 1 y 1 ) (x n y n ) 2
12 x d(x, y) = x y = (x y) 2 (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2 (x 1, x 2, x 3, x 4 ) d(x, y) = (x 1 y 1 ) (x 4 y 4 ) 2.. (x 1, x 2,..., x n ) d(x, y) = (x 1 y 1 ) (x n y n ) 2 Odcinek między x a y to zbiór punktów postaci x + t (y x), gdzie t [0, 1].
13 x d(x, y) = x y = (x y) 2 (x 1, x 2 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x 1, x 2, x 3 ) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + (x 3 y 3 ) 2 (x 1, x 2, x 3, x 4 ) d(x, y) = (x 1 y 1 ) (x 4 y 4 ) 2.. (x 1, x 2,..., x n ) d(x, y) = (x 1 y 1 ) (x n y n ) 2 Odcinek między x a y to zbiór punktów postaci x + t (y x), gdzie t [0, 1]. Kula o środku w x 0 i promieniu r to zbiór punktów x, dla których d(x 0, x) r.
14
15 trzy współrzędne położenia
16 trzy współrzędne położenia trzy współrzędne pędu (lub prędkości)
17 trzy współrzędne położenia trzy współrzędne pędu (lub prędkości) w sumie stan układu to punkt w R 6
18
19 3k współrzędnych położenia
20 3k współrzędnych położenia 3k współrzędnych pędu (lub prędkości)
21 3k współrzędnych położenia 3k współrzędnych pędu (lub prędkości) w sumie stan układu to punkt w przestrzeni 6k-wymiarowej
22
23 Podstawowa przestrzeń w teorii informacji to zbiór wszystkich nieskończonych ciągów zerojedynkowych, czyli {0, 1} Z. Jeden punkt jest charakteryzowany przez nieskończenie wiele współrzędnych!
24 Podstawowa przestrzeń w teorii informacji to zbiór wszystkich nieskończonych ciągów zerojedynkowych, czyli {0, 1} Z. Jeden punkt jest charakteryzowany przez nieskończenie wiele współrzędnych! Pierwszy problem: szyfrowanie (kryptografia)
25 Podstawowa przestrzeń w teorii informacji to zbiór wszystkich nieskończonych ciągów zerojedynkowych, czyli {0, 1} Z. Jeden punkt jest charakteryzowany przez nieskończenie wiele współrzędnych! Pierwszy problem: szyfrowanie (kryptografia) Drugi problem: kompresja danych
26 Zbiór Cantora
27 Zbiór Cantora
28 Zbiór Cantora
29 Zbiór Cantora
30 Zbiór Cantora
31 Zbiór Cantora
32 Zbiór Cantora
33 Zbiór Cantora
34 Zbiór Cantora
35 Zbiór Cantora
36 Zbiór Cantora
37
38
39
40 Stała Avogadra w jednym molu gazu znajduje się około cząsteczek
41 Stała Avogadra w jednym molu gazu znajduje się około cząsteczek To jest współrzędnych; dla uproszczenia 10 24
42 Stała Avogadra w jednym molu gazu znajduje się około cząsteczek To jest współrzędnych; dla uproszczenia mol gazu doskonałego w typowych warunkach (20 C, 10 5 Pa) zajmuje 24 dm 3
43 Biblia Tysiąclatka zawiera słów
44 Biblia Tysiąclatka zawiera słów Dla uproszczenia przyjmijmy, że słów jest 10 6 i jedno słowo opisuje jedną współrzędną
45 Biblia Tysiąclatka zawiera słów Dla uproszczenia przyjmijmy, że słów jest 10 6 i jedno słowo opisuje jedną współrzędną Do opisu tego układu potrzebujemy około /10 6 = tomów wielkości Biblii!
46 Musimy stawiać inne pytania!
47 Musimy stawiać inne pytania! jakie jest prawdopodobieństwo, że układ w trakcie swojej ewolucji będzie się znajdował w jednym ze stanów z wyróżnionego zbioru (np. wszystkie cząstki w jednej połówce pudełka)?
48 Musimy stawiać inne pytania! jakie jest prawdopodobieństwo, że układ w trakcie swojej ewolucji będzie się znajdował w jednym ze stanów z wyróżnionego zbioru (np. wszystkie cząstki w jednej połówce pudełka)? czy stan układu będzie dążył do jakiegoś położenia równowagi?
49 Musimy stawiać inne pytania! jakie jest prawdopodobieństwo, że układ w trakcie swojej ewolucji będzie się znajdował w jednym ze stanów z wyróżnionego zbioru (np. wszystkie cząstki w jednej połówce pudełka)? czy stan układu będzie dążył do jakiegoś położenia równowagi? czy układ będzie miał tendencję do powracania do stanu początkowego?
50 Ludwig Boltzmann ( ): związki między termodynamiką a mechaniką statystyczną (statystyczna interpretacja II zasady termodynamiki) rozkład prędkości cząstek gazu (rozkład Maxwella-Boltzmanna)
51 Josiah Willard Gibbs ( ): mechanika statystyczna (twórca tej nazwy) chemia fizyczna analiza wektorowa
52 Paul Ehrenfest ( ): mechanika statystyczna a fizyka atomowa fizyka kwantowa
53 Andriej Kołmogorow ( ): rachunek prawdopodobieństwa mechanika złożoność obliczeniowa
54 George Birkhoff ( ): równania różniczkowe teoria ergodyczna
55 Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych na pewnych abstrakcyjnych przestrzeniach, ze szczególnym uwzględnieniem asymptotycznych własności tych przekształceń.
56 Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych na pewnych abstrakcyjnych przestrzeniach, ze szczególnym uwzględnieniem asymptotycznych własności tych przekształceń. Matematyczny model:
57 Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych na pewnych abstrakcyjnych przestrzeniach, ze szczególnym uwzględnieniem asymptotycznych własności tych przekształceń. Matematyczny model: X zbiór wszystkich stanów układu
58 Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych na pewnych abstrakcyjnych przestrzeniach, ze szczególnym uwzględnieniem asymptotycznych własności tych przekształceń. Matematyczny model: X zbiór wszystkich stanów układu T t - przekształcenia przestrzeni X (funkcje T t : X X) odpowiadające upływowi czasu t, tzn. po czasie t układ przechodzi od stanu x do stanu T t (x)
59 Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych na pewnych abstrakcyjnych przestrzeniach, ze szczególnym uwzględnieniem asymptotycznych własności tych przekształceń. Matematyczny model: X zbiór wszystkich stanów układu T t - przekształcenia przestrzeni X (funkcje T t : X X) odpowiadające upływowi czasu t, tzn. po czasie t układ przechodzi od stanu x do stanu T t (x) Zakładamy, że T t+s (x) = T t (T s (x)) dla każdego stanu x
60 Upraszczając sytuację mierzymy stan układu jedynie co pewien czas t 0, np. co sekundę, i zamiast zestawu przekształceń T t rozważamy tylko to jedno T = T t0.
61 Upraszczając sytuację mierzymy stan układu jedynie co pewien czas t 0, np. co sekundę, i zamiast zestawu przekształceń T t rozważamy tylko to jedno T = T t0. Otrzymujemy układ dynamiczny (X, T), czyli zbiór z działaniem pewnego przekształcenia.
62 X kwadrat, którego bokami są odcinki [0, 1)
63 X kwadrat, którego bokami są odcinki [0, 1) T przekształcenie kwadratu, w którym kwadrat najpierw ściskamy dwukrotnie w pionie, a następnie przekrawamy na pół i jedną połówkę ustawiamy na drugiej
64 X kwadrat, którego bokami są odcinki [0, 1) T przekształcenie kwadratu, w którym kwadrat najpierw ściskamy dwukrotnie w pionie, a następnie przekrawamy na pół i jedną połówkę ustawiamy na drugiej
65 X kwadrat, którego bokami są odcinki [0, 1) T przekształcenie kwadratu, w którym kwadrat najpierw ściskamy dwukrotnie w pionie, a następnie przekrawamy na pół i jedną połówkę ustawiamy na drugiej T(x, y) = { (2x, 1 2 y) dla x < 1 2 (2x 1, 1 2 y + 1) dla x 1 2
66 Rozważmy ciasto-kwadrat z nadzieniem.
67 Rozważmy ciasto-kwadrat z nadzieniem.
68 Rozważmy ciasto-kwadrat z nadzieniem.
69 Definicja Jeśli przez P(A) oznaczymy pole zbioru A, to przekształcenie kwadratu T ma własność mieszania, gdy dla dowolnych zbiorów A i B zachodzi: P(A T n B) P(A) P(B)
70 Nie wszystkie przekształcenia tak ładnie mieszają
71 Nie wszystkie przekształcenia tak ładnie mieszają T(x, y) = { (x + r, y) gdy x + r < 1 (x + r 1, y) w przeciwnym razie
72 Nie wszystkie przekształcenia tak ładnie mieszają T(x, y) = { (x + r, y) gdy x + r < 1 (x + r 1, y) w przeciwnym razie
73 {0, 1} Z zbiór wszystkich ciągów zerojedynkowych obustronnie nieskończonych
74 {0, 1} Z zbiór wszystkich ciągów zerojedynkowych obustronnie nieskończonych Każdy punkt z odcinka [0,1) można zakodować ciągiem zerojedynkowym (zwykłym), a punkt z kwadratu ciągiem obustronnie nieskończonym }{{} }{{} y x
75 }{{} }{{} y x
76 }{{} }{{} y x
77 }{{} }{{} y x Mnożenie przez 2 to skasowanie pierwszej współrzędnej
78 }{{} }{{} y x Mnożenie przez 2 to skasowanie pierwszej współrzędnej Dzielenie przez 2 to dopisanie pierwszej współrzędnej 0
79 }{{} }{{} y x Mnożenie przez 2 to skasowanie pierwszej współrzędnej Dzielenie przez 2 to dopisanie pierwszej współrzędnej 0 Liczby z [0, 1 2 ) mają współrzędna 0; dodawanie 1 2 to zamiana tego 0 na 1
80 }{{} }{{} y x Mnożenie przez 2 to skasowanie pierwszej współrzędnej Dzielenie przez 2 to dopisanie pierwszej współrzędnej 0 Liczby z [0, 1 2 ) mają współrzędna 0; dodawanie 1 2 to zamiana tego 0 na 1 Przekształcenie piekarza na kwadracie to przesunięcie ciągu o jedna pozycję w lewo { (2x, 1 T(x, y) = 2 y) dla x < 1 2 (2x 1, 1 2 y + 1) dla x 1 2
TEORIA ERGODYCZNA. Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej
TEORIA ERGODYCZNA Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej Przedmiot zainteresowania Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych
Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab
Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub
Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad.
Teoria ergodyczna seminarium monograficzne dla studentów matematyki dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik rok akad. 2013/14 Teoria ergodyczna Teoria ergodyczna Teoria ergodyczna zajmuje
Teoria kinetyczno cząsteczkowa
Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15
Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Termodynamiczny opis układu
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Fizyka - opis przedmiotu
Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.4-WI-EKP-Fiz-S16 Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska Energetyka komunalna Profil
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ
Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,
ELEMENTY FIZYKI STATYSTYCZNEJ
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Mechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Elementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Odziaływania fundamentalne
Odziaływania fundamentalne silne elektromagn. słabe grawitacja Odziaływanie silne krótkozasięgowe (10-15 jadro atomowe), wymiana cięŝkich cząstek (gluony) Yukawa Odziaływania elektromagnetyczne atomy cząsteczki
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
Zasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita
Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Statystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni (ZZU) Egzamin
Zał. nr 3 do ZW Wydział Elektroniki PWr KARTA PRZEDMIOTU Nazwa w języku polskim: Fizyka 1.1A. Nazwa w języku angielskim: Physics 1.1A Kierunek studiów: Automatyka i Robotyka, Elektronika, Informatyka,
Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT
Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:
Teoria kinetyczna gazów
Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy
1 Kinetyka reakcji chemicznych
Podstawy obliczeń chemicznych 1 1 Kinetyka reakcji chemicznych Szybkość reakcji chemicznej definiuje się jako ubytek stężenia substratu lub wzrost stężenia produktu w jednostce czasu. ν = c [ ] 2 c 1 mol
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 176405 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Granica lim x 2
Termodynamika Część 3
Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Problemy i rozwiązania
Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Zbiór Cantora. Diabelskie schody.
Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka
Ć W I C Z E N I E N R C-7
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C-7 SPRAWDZANIE PRAWA BAROMETRYCZNEGO I. Zagadnienia
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
Redefinicja jednostek układu SI
CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA