Akwizycja i przetwarzanie sygnałów cyfrowych
|
|
- Judyta Baranowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011
2 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata Fouriera f (t) F(ω) widmo F (ω) - średnia po czasie; tracimy informacje czasowe funkcja czasu - doskonała lokalizacja w czasie, brak danych częstotliwościowych potrzebna łaczna analiza (przykład - partytura utworu muzycznego)
3 STFT pierwsza próba: STFT dzielimy czas na odcinki o długości T dokonujemy transformat każdego odcinka osobno - dostajemy informację o przybliżonym czasie n.p. wystapienia danej składowej częstotliwościowej problem - zniekształcenia (efekty graniczne) wyjście - zastosowanie funkcji okna g(t); to prowadzi do formuły: F(ω, τ) = f (t)g (t τ)e jωt dt problem STFT - stały rozmiar okna by dostać składowa dolnopasmowa - rozmiar okna przynajmniej t 0 ale takie okno - słaba rozdzielczość czasowa
4 Problemy STFT rozważmy dyskretna wersję SFTF (częstość ω oraz przesunięcie τ - dyskretne) jednego przedziału F(m, 0) = f (t)g (t)e jmω 0t dt interpretacja - rozkład funkcji na składowe bazowe postaci: b 0 (t) = g(t), b 1 (t) = g(t)e jω 0t, b 2 (t) = g(t)e 2jω 0t okno o stałym rozmiarze, wewnatrz coraz więcej oscylacji inne rozwiazanie - stała ilość oscylacji, zmienny rozmiar okienka
5 Idea falek ilość oscylacji - stała rozmiar okna maleje częstotliwość rośnie funkcje o niższych częstotliwościach - pokrywaja dłuższy przedział czasu funkcje wyższych częstotliwości - pokrywaja krótsze okresy czasu
6 Skalowanie i przesunięcia falki - rodzina funkcji uzyskanych z falki macierzystej przez skalowania: f (t) f ( t a ) przesunięcia f (t) f (t b) jeżeli norma funnkcji f (t) 2 = f 2 (t)dt to skalowanie zmienia normę funkcji: f (t/a) 2 = a f (t) 2 dlatego przyjmujemy definicję falki pochodnej: ψ a,b (t) = 1 ψ( t b (a) a )
7 Rozwinięcia falkowe współczynniki rozwinięcia: w a,b = ψ a,b (t), f (t) = ψ a,b (t)f (t)dt rekonstrukcja gdzie: C ψ = ψ(t) f (t) = 1 0 C ψ w a,b ψ a,b (t) dadb a 2 Ψ(ω) 2 ω dω, Ψ(ω) transformata Fouriera falki warunek odwracalności: skończoność C ψ ; to jest możliwe, gdy Ψ(0) = ψ(t) = 0
8 Falki - warunki dopuszczalności skończoność C ψ = wartość średnia falki macierzystej = 0 skończoność energii: Ψ(ω) 2 dω < ostatnia nierówność: Ψ(ω 2 znika dla ω ; lokalizacja w częstotliwości rodzina falek z ciagłymi wartościami a i b - ciagła transformacja falkowa (CWT) CWT - reprezentacja mocno nadmiarowa; zwykle stosujemy wersję dyskretna w której parametry a, b przyjmuja ściśle określone, dyskretne wartości a n,m, b n,m ; sygnał - opisywany poprzez szereg falkowy konieczność powiazania dyskretnych parametrów (musimy utrzymać relację między skala a przesunięciem; waskie funkcje bazowe - mały krok przesunięcia)
9 Dyskretna transformata falkowa najczęściej stosowany wybór: a = a m 0, b = nb 0 a m 0 co daje zbiór falek ψ m,n (t) = a m/2 0 ψ(a 0 t nb 0 ) gdy położymy a 0 = 2 oraz b 0 = 1, co dostajemy diadyczny układ falek: ψ m,n (t) = 2 m/2 ψ(2 m t n) rola parametrów - m określa skalę rozwinięcia a 2 m ), n - przesunięcie funkcji ψ m,n względem ψ m,0 (= n a) wzrost m o 1 funkcje bazowe staja się dwa razy krótsze, ich częstotliwości - dwa razy większe kostka lokalizacji zmienia kształt
10 Falki i funkcje skalujace funkcje stosowane w rozwinęciu falkowym: chcemy opisywać zarówno funkcje o wartości średniej zero (zawierajace harmoniczna f = 0) oraz bardziej zmienne, o wartości średniej różnej od zera (czyli nie zawierajacej małych harmonicznych); to wymusza, by w rozwinięciu falkowym były: funkcje skalujace ϕ m,n (t), uzyskiwane przez skalowanie i przesuwanie podstawowej funkcji skalujacej ϕ(t); falki ψ m,n (t) - uzyskiwane przez skalowanie i przesuwanie falki macierzystej ψ(t) przykład - reprezentacja Haara
11 Analiza wielorozdzielcza typowe podejście do reprezentacji sygnału przy użyciu falek - analiza wielorozdzielcza na każdym poziomie sygnał to suma reprezentacji zgrubnej (aproksymacja) i szczegółowej (detal) każdy następny poziom rozkład aproksymacji poprzedniego poziomu podlega na część zgrubna i szczególowa; zerowe przyblizenie (m = 0, skala zmienności a 0 = 1), przestrzeń Ω 0 - zbiór sygnałów, które da się uzyskać jako kombinacja liniowa poprzesuwanych funkcji skalujacych (zbiór funkcji stałych kawałkami na odcinkach o długości 1) lepsze przyblizenie (m = 1, skala zmienności 2 1 = 1/2, przestrzeń Ω 1 : funkcje bazowe - poprzesuwane funkcje skalujace na skali 1/2, (funkcje stałe kawałkami na odcinkach o długości 1/2)
12 Analiza wielorozdzielcza - c.d. jezeli f Ω 0 to f Ω 1 dopełnienie zbioru Ω 0 do Ω 1 - zbiór Π 0 w którym bazę stanowia falki na skali 1, mamy więc relację: Ω 1 = Ω 0 Π 0, iterujac powyzsza relacje dostajemy:... Ω 0 Ω 1 Ω 2 Ω 3..., Ω j+1 = Ω 0 Π 0 Π 1 Π 2 Π j dla diadycznej transformacji falkowej nie musimy znać funkcji macierzystej falki ani funkcji skalujacej zamiast tego wystarczy znajomość zwiazków wiaż acych te funkcje na różnych poziomach rozdzielczości dla dwóch kolejnych poziomów n.p. (0 i 1) mamy: funkcja skalujaca poziomu 0 Ω 1, czyli da się wyrazić jako kombinacja pewnej ilości funkcji bazowych z Ω 1 ϕ(t) = k h 0 (k)ϕ 1,k (t) = k h 0 (k) 2ϕ(2t k) (MRA)
13 Implementacja poprzez filtry podobnie jest dla falki z poziomu 0: ψ(t) = k h 1 (k)ϕ 1,k (t) = k h 1 (k) 2ϕ(2t k) (WMRA) h 0, h 1 można potraktować jak filtry; h 0 dolnorzepustowy, h 1 górnoprzepustowy
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Czasowo-częstotliwościowa analiza sygnałów Metody analizy sygnału Do tej pory - analiza sygnału jako funkcji
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Czasowo-częstotliwościowa analiza sygnałów Metody analizy sygnału Do tej pory - analiza sygnału jako funkcji
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Zastosowanie falek w przetwarzaniu obrazów
Informatyka, S2 sem. Letni, 2013/2014, wykład#1 Zastosowanie falek w przetwarzaniu obrazów dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Alfréd Haar Alfréd
Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej
Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa
Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa
Analiza i modelowanie przepływów w sieci Internet. Andrzej Andrijew
Analiza i modelowanie przepływów w sieci Internet Andrzej Andrijew Plan referatu Samopodobieostwo w sieci Internet Samopodobne procesy stochastyczne Metody sprawdzania samopodobieostwa Modelowanie przepływów
TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Falki, transformacje falkowe i ich wykorzystanie
Falki, transformacje falkowe i ich wykorzystanie Wstęp Praca próbuje opisać czym jest falka oraz podać zastosowania falek w praktyce. Na wstępie w Postaci matematycznej falki zaprezentujemy czym jest problem
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ
Krystian Pyka POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Streszczenie. W pracy przedstawiono wyniki badań nad wykorzystaniem falek do analizy
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2
Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sgnałów biomedcznch Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wkład XIII Dstrbucje czasowo częstotliwościowe
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
TRANSFORMATA FALKOWA. Joanna Świebocka-Więk
TRANSFORMATA FALKOWA Joanna Świebocka-Więk Plan prezentacji 1. Fala a falka czyli porównanie transformaty Fouriera i falkowej 2. Funkcja falkowa a funkcja skalująca 3. Ciągła transformata falkowa 1. Skala
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
MODELOWANIE OBRAZÓW METODAMI ANALIZY FUNKCJONALNEJ (WIELU SKAL)
MODELOWANIE OBRAZÓW METODAMI ANALIZY FUNKCJONALNEJ (WIELU SKAL) Materiały KWOD, A.Przelaskowski Analiza funkcjonalna i harmoniczna Falki Dekompozycja falkowa Falki W Podsumowanie Wprowadzenie: technika,
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE
1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
Właściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej
Teoria Synałów Inżynieria Obliczeniowa II rok 208/9 Wykład 0 Wykorzystanie transformacji Fouriera w analizie korelacyjnej Na początek krótkie przypomnienie podstawowych definicji: Funkcja autokorelacji
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych
Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Istniejące systemy - Google Istniejące systemy - Google
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 3 Politechnika Gdaoska, 20 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach
Adaptive wavelet synthesis for improving digital image processing
for improving digital image processing Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej 4 listopada 2010 Plan prezentacji 1 Wstęp 2 Dyskretne przekształcenie falkowe
ELEKTRONIKA. dla Mechaników
ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
KARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 232305 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 425576 (22) Data zgłoszenia: 17.05.2018 (51) Int.Cl. G01R 21/00 (2006.01)
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Temat ćwiczenia. Analiza częstotliwościowa
POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e
Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg
dr inż. Krzysztof Stawicki
Wybrane zagadnienia teorii obwodów 1 dr inż. Krzysztof Stawicki e-mail: ks@zut.edu.pl w temacie wiadomości proszę wpisać tylko słowo STUDENT strona www: ks.zut.edu.pl/wzto 2 Wybrane zagadnienia teorii
Generowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Wykład 2. Transformata Fouriera
Wykład 2. Transformata Fouriera Transformata Fouriera jest podstawowym narzędziem analizy harmonicznej i teorii analizy i przetwarzania sygnału. Z punktu widzenia teorii matematycznej transformata Fouriera
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Podstawy układów mikroelektronicznych
Podstay układó mikroelektronicznych ykład dla kierunku Technologie Kosmiczne i Satelitarne Część 4. Wstępne przetarzanie obrazu. dr inż. Waldemar Jendernalik Katedra Systemó Mikroelektronicznych, WETI,
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Wykład 2: Szeregi Fouriera
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine
Transformata falkowa
Transformata falkowa dr inż. Przemysław Berowski p.berowski@iel.waw.pl Instytut Elektrotechniki Warszawa Joseph Fourier Fourier na podstawie badań rozpływu ciepła w niejednorodnie ogrzewanych ciałach zasugerował,
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
1 s(t) 2 t s(t) 2 dt 1. s(t) 2
Rozdział 3 Pomiędzy czasem a częstością 3.1 Zasada nieoznaczoności Zasada nieoznaczoności (Heisenberga) w mechanice kwantowej nie opisuje granic dokładności pomiarów, lecz fakt, że cząstka nie może jednocześnie
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Przekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera