Założenia: C vw, C vg, C vs T gśr = T gp f mg = ρ w f g

Wielkość: px
Rozpocząć pokaz od strony:

Download "Założenia: C vw, C vg, C vs T gśr = T gp f mg = ρ w f g"

Transkrypt

1 1. Elementy systemu ciepłowniczego odbiorniki i źródła ciepła (Lab.1,2) 1.1. Pomieszczenie z grzejnikiem c.o. (wersja dokładniejsza) C vg C vw q t K cg K cw1 Model CvwT = K cg CvgT gp = c pw f CvsT s = K cw1 C vs, T s K cw2 Założenia: C vw, C vg, C vs T gśr = f mg = ρ w ( Tgp T) K cw1( T Ts) ( T T ) K ( T T ) mg ( T T ) K ( T T ) gz s gp cw2 cg s gp zew q t (doskonałe mieszanie) (przepływ masowy [kg/s]) Identyfikacja wartości parametrów Dane: N = -20 C, N = 20 C, N = 90 C, N = 70 C, T sn = 5 C, q gn = 5 kw (zapotrzebowanie pomieszczenia na ciepło) q tn = 0 (bez dodatkowych źródeł i strat ciepła) Do wyznaczenia: K cw1, K cw2, K cg, f mgn 2) Blok (subsystem) wy:,, T s we:,, f mg, q t C vw, C vg, C vs K cw1, K cw2, K cg q t 0, 0, T s Kocioł c.o. 1) Model CvkT kz = qk c pw f mk( Tkz Tkp) wy:, we:,, f mkt 2) Blok (subsystem) 1

2 2. Budynek z kotłem (Lab.3, 4-5) Cel: Konstrukcja złożonych modeli. Podstawowe badania obiektu. Identyfikacja i weryfikacja modelu. T m1 C vk C vg2 C vg1 2 C vw2 q t2 1 C vw1 q t1 Założenia: C vw < C vg < C vs T gśr = T kśr = Przewodzenie ciepła w każdym pomieszczeniu przez: - zewnętrzne ściany (K cw1, K cw2 ) - ściany grzejnika (K cg ) - pomiędzy piętrami nie ma Nie ma straty ciepła w pionach. Uwzględniamy opóźnienie transportowe w pionach 1) Model dokładny - nieliniowy z opóźnieniami CvwT = K cg( Tgp T) K cw1( T Ts) q CvgT gp = c pw f mg( Tgz Tgp) K cg( Tgp T) CvsT s = K cw1( T Ts) K cw2( Ts Tzew) C T = q c f T T vk kz k pw mk ( ) kz kp t dla pomieszczenia 1 i 2 oraz f mk = f mg1 f mg2, 1 (t) = (t-t o ), 2 (t) = (t-2t o ), T m1 (t) = ( 1 (t) f mg1 (t) 2 (t-t o ) f mg2 (t) ) / f mk (t), (t) = T m1 (t-t o ), wy: 1, 1, T s1 2, 2, T s2 we:,, f mg1, f mg2, q t1, q t2 Identyfikacja wartości parametrów Dane: N = -20 C, N = 90 C, N = 70 C N = 10 kw (=q g1n q g2n ), q t1n = q t2n = 0 (bez dodatkowych źródeł i strat ciepła) 2) Równania stanu ( x = Ax Bu ), - bez opóźnień (T o =0), czyli = 1 = 2, = ( 1 f mg1 2 f mg2 ) / f mk, - stałe przepływy f mg1, f mg2, T 1 T 1 T gp1 gp1 T s1 s1 qk 2= A T2 B Tzew gp T 2 gp2 s 2 s2 Tkz T kz Równania wyjściowe ( y = Ax Bu ), - np.: (t) = ( 1 (t) f mg1 (t) 2 (t) f mg2 (t) ) / f mk (t), 1 Równania statyczne ( x = 0 0 = Ax Bu ) Ax= Bu x= A Bu 1 Punkt równowagi: x= A Bu 3) Transmitancje obiektu Na przykład: T1 = G11qk G12Tzew, Tgp1 = G21qk G22Tzew, T2 = G31qk G32Tzew, Tgp2 = G41qk G42Tzew, Tkz = G51 qk G52Tzew 2

3 4) Schemat blokowy obiektu/modelu a) Schemat obiektu (model oparty blokach subsystem ) C vw, C vg, C vs K cw1, K cw2, K cg q t 0, 0, T s0 C vk 0 b) Schemat modelu (oparty na wybranych transmitancjach) G 11 (s) G 12 (s) G 21 (s) G 22 (s) 1 5) Podstawowe badanie obiektu (Lab.4) [Spr.1] 1 Charakterystyki statyczne 1, 2, od,, f mk (zmiana na pompie) oraz f mg1 (zmiana na zaworze do porównania po rozbudowie modelu). Uwaga: Zachować zakres zmienności zmiennych wejściowych. - Realizacja za pomocą bloku RampSaturation. - Zaznaczyć punkty kontrolne na podstawie równań statycznych, w tym punktu nominalnego - Wyznaczyć czułość 2 Reakcje układu na wymuszenia skokowe w różnych punktach pracy - Wykresy 1, 2,. Zakłócenia,, [ f mg1, q t1,] Punkty pracy 0 = 0 = f mg10 = f mg20 = 1 n N f mg1n f mg2n 2 k q % n N T f mg1n f mg2n 3 n N k f % f mg1n k f % f mg2n oraz q t10 = q t20 =0 - Porównać wykresy - czy w różnych punktach pracy na takie samo zakłócenie układ reaguje tak samo? Uwaga: Wykonać wykresy, gdzie przebiegi są sprowadzone do jednego poziomu - Zbadać wpływ opóźnienia transportowego na reakcje obiektu. Przedstawić wykres, ilustrujący najmocniejszy wpływ opóźnienia. 6) Identyfikacja i weryfikacja modelu (Lab.5) [Spr.1] 1 Identyfikacja modelu obiektu model Küpfmülera - Wyznaczyć transmitancje dla zmiennych 1,, od,. - Narysować model obiektu oparty na zidentyfikowanych transmitancjach. - Weryfikacja modelu na wykresach porównać odpowiedzi obiektu i modelu. - Ocena dokładności modelu, np.: maksymalny błąd, całka z błędu. - Jak zmieni się dokładność modelu, gdy zmieni się punkt pracy (w szczególności f mg1, f mg2 )? - Zastosować aproksymację Pade 1. rzędu i dodać do porównania wykresów odpowiedzi obiektu i modelu 2 Identyfikacja modelu obiektu innymi metodami Wybraną transmitancję zidentyfikować metodą Strejca i/lub momentów Porównać reakcje obiektu, modelu Küpfmülera, Strejca, momentów 3

4 3. Budynek z kotłem regulacja centralna (Lab.6-7) Cel: Konstrukcja własnego regulatora PI. Układ regulacji centralnej - bezpośrednia 1 regulacja według reprezentatywnego pomieszczenia Najprostszy dobór nastaw. Ocena jakości q t2 Założenia: zmienna procesowa 1 lub 2 sterowanie regulator PI T m q t1 PI 1) Model C T vk kz = q qk = K P T k c pwρ w ( Tkz Tkp) ( T ) K ( T T ) 1 I 1 dt wy: 1, 1, T s1 2, 2, T s2,, we:,, f mg1, f mg2, q t1, q t2 Równania statyczne: = qk c pwρ w ( Tkz Tkp) T1 = T oraz f mk =f mg1 f mg2, = 1 = 2, = ( 1 f mg1 2 f mg2 ) / f mk, Punkt równowagi: 1 T T =, =..,... 2) Równania stanu ( x = Ax Bu )??? Równania statyczne dla stanu równowagi ( T = ) T1 gp1 s1 T2 T 0= A B gp2 T s 2 Tkz qk Punkt równowagi: x= A zew 1 Bu 1 Uwaga nie mylić z regulatorami bezpośredniego działania (gdy do uruchomienia elementu wykonawczego jest wykorzystywana energia pobierana bezpośrednio z regulowanego procesu) 4

5 3) Schemat blokowy układu a) Schemat obiektu z regulatorem (model oparty blokach subsystem ) b) Schemat modelu z regulatorem (oparty na transmitancjach) G R (s) G 11 (s) G 12 (s) G 21 (s) 1 G R (s) G 11 (s) G 12 (s) 1 G 22 (s). 4) Badanie układu regulacji [Spr.2] 1 Regulacja: PV=1, CV= (bez ograniczeń) - przygotować blok regulatora PI o strukturze IND - dobór nastaw Zieglera-Nicholsa na podstawie modelu (Z-N) - wykorzystać transmitancje zidentyfikowane wcześniej - przeliczyć nastawy na IND Uwaga: Podać transmitancje, nastawy ISA, nastawy IND - implementacja regulacji na modelu (URM) i na obiekcie (URO) - zastosować wskaźniki jakości (np. na uchybie) 2 Porównać działanie URM i URO w warunkach nominalnych - reakcja na skok SP, - wykresy PV i CV, - porównać wybrane wskaźniki jakości (tabela) 3 Porównać reakcje na różne zakłócenia w warunkach nominalnych (URO) - reakcja na skok (SP),, q t1, q t2, f mg1, f mg2, - wykresy PV i CV oraz 2, [,] - porównać wybrane wskaźniki jakości (tabela) 4 Porównać reakcje w różnych punktach pracy (URO) - Zrealizować obliczanie punkt pracy dla różnych wartości wejściowych (T 0, ) - Wykresy 1, 2, [ ]. Zakłócenia T,, [ f mg1, q t1 ] Punkty pracy T 0 = 0 = f mg10 = f mg20 = 1 N N f mg1n f mg2n 2 T N T2 N T1 f mg1n f mg2n 3 N N k f % f mg1n k f % f mg2n Wykonać wykresy, gdzie przebiegi są sprowadzone do jednego poziomu. 5

6 4. Budynek z kotłem regulacja centralna wybrane metody doboru nastaw (Lab.8-9) Cel: Zastosowanie i porównanie różnych metod doboru nastaw. Układ regulacji centralnej - bezpośrednia 1 regulacja według reprezentatywnego pomieszczenia 1) Metody doboru nastaw realizowane na modelu 1 Z-N na podstawie modelu 2 wybrane metody inżynierskie 3 PID Tuner (blok PID Controller) Uwaga zastosować taką samą strukturę regulatora PID. 2) Porównanie działanie układu regulacji przy różnych nastawach [Spr.3] - reakcja na skok SP - na modelu (URM) i na obiekcie (URO) - reakcja na wybrane zakłócenie na obiekcie - wykresy PV i CV, - wskaźniki jakości dt URM dt URO dtzew URO Wykresy PV PV PV Wykresy CV CV CV Wskaźniki Nastawy 3) Badanie PID Tunner [Spr.3] - nastawy bazowe (wyznaczone po uruchomieniu PID Tunner), - nastawy dla zmniejszonego (zwiększonego) czasu regulacji (kilka przypadków). Wykresy: - nastawy w zależności od czasu regulacji, - zapas stabilności w zależności od czasu regulacji, - porównanie reakcji (PV, CV) dla badanych przypadków. 4) Zastosowanie Response Optimization (SDO Simulink Optimization Design) [Spr.3] - Wykres z przebiegu optymalizacji (okno z ograniczeniami i przebiegiem symulacji) - Założone wskaźniki (okno z konfiguracją SDO) 5) Metody doboru nastaw realizowane na obiecie - zastosowane drugiej metody Z-N metody cyklu granicznego - zastosowanie Z-N z modyfikacją Äströma-Hägglunda Porównanie na wykresach PV, CV 1 Uwaga nie mylić z regulatorami bezpośredniego działania (gdy do uruchomienia elementu wykonawczego jest wykorzystywana energia pobierana bezpośrednio z regulowanego procesu) 6

7 5. Budynek z kotłem regulacja centralna elementy nieliniowe regulatora (Lab.10) Cel: Nasycenie i ograniczenie całkowania 1) Trzy schematy regulatora (badania na obiekcie): 1 bez ograniczeń 2 z nasyceniem (wartość nominalna CV) 3 z ograniczeniem całkowania (antiwindup) Badania są przeprowadzane w punkcie pracy różnym od nominalnego (jeśli badania nie są przygotowane na taką możliwość, to obniżyć wartość nasycenia CV 2) Dwa scenariusze zdarzeń: 1 W reakcji układu regulacji występują oscylacje (jeśli nie ma, to trochę popsuć nastawy) Punkt pracy różny od nominalnego Skok na jednym z wejść (np. SP) wartość końcowa CV ma być w obszarze pracy 2 Reakcja układu z lub bez oscylacji Punkt pracy różny od nominalnego Zakłócenie chwilowe wyjście poza obszar pracy 3) Porównać reakcje trzech układów dla dwóch scenariuszy zdarzeń [Spr.4] - schemat regulatora z antiwindup - wykresy PV i CV do porównania reakcji układów dla każdego ze scenariuszy - Zbadać wpływ parametry k a w układzie antiwindup 7

8 6. Budynek z kotłem regulacja centralna SISO Design Tool (Lab.11) Cel: Projektowanie za pomocą SISO Design Tool [Spr.5] 8

9 7. Budynek z kotłem regulacja centralna regulacja lokalna (Lab.12-15) Cel: Wieloobwodowe układy regulacji 1. Sterowanie pogodowe (centralne) Idea sterownia pogodowego - krzywe pogodowe obliczone na podstawie: c p f mk( Tkz Tkp) Kcg( Tkp T) Kcw T T = = c f T T K T T K T T p mkn ( ) kzn kpn cg ( ) kpn N - sterowanie według temperatury zasilania =a z b z, - sterowanie według temperatury powrotu =a p b p, cw ( zew) ( ) a) Sterowanie w układzie otwartym Stabilizacja temperatury nątrz, za pomocą sterowania wydajnością kotła. KP C vk C vg K cg C vw q t K cw b) Regulacja pogodowa (centralna, jakościowa, pośrednia 1 ) Regulacja pogodowa jako przykład regulacji pośredniej i zdalnej KP PI C vk 2) Regulacja lokalna (ilościowa) PI C vg Model hydrauliczny i K cg R gi R zi i R k C vw q t R p P k K cw C vg K cg C vw q t K cw N zewn Sterowanie mocą na podstawie krzywej pogodowej (KP): =c p f mk ( - ) Regulator kotła PI Wartość zadana obliczana na podstawie krzywej pogodowej (KP) Kocioł może wytwarzać o 10% mocy więcej niż wartość nominalna. Regulator PI Zmienna procesowa Sterowanie poprzez położenie (opór) zaworu Przepływ w wody w instalacji jest wymuszany przez pompę, która wytwarza różnicę ciśnień P k. Rozpływ wody przepływy w poszczególnych gałęziach zależą od oporów hydraulicznych stałych (grzejnik, kocioł) i zmiennych (zawory). W prostej wersji modelu hydrauliki nie są uwzględniane straty ciśnienia na przewodach (opory hydrauliczne sieci mniejsze niż opory urządzeń) oraz ciśnienie konieczne do wpompowania wody na określoną wysokość budynku. Zakłada się liniową zależność ciśnienia i przepływu ( p=r f), zamiast zależności kwadratowej ( p=r f 2 ). W warunkach nominalnych R zi =0, a podczas pracy R zi >=0 Wariant podstawowy ze stratami ciśnienia na przewodach (R p >0) Wariant uproszczony - bez strat ciśnienia na przewodach (R p =0): ocena -0.5 Wariant rozszerzony - R p >0 oraz p=r f 2 : ocena 0.5 Wariant b.uproszczony bez modelu hydraulicznego (zmienną sterującej jest przepływ): ocena Uwaga nie mylić z regulatorami pośrednimi, które do uruchomienia elementu wykonawczego wykorzystują energię pomocniczą (np. z sieci elektrycznej, z kompresora, pompy) 9

10 Badania [Spr.5] 1) Porównanie różnych rozwiązań sterowania kotłem a) centralna regulacja (wg reprezentatywnego pomieszczenia) r.3 6, b) centralna regulacja pogodowa układ lub (opcja oba układy 0.5) c) sterownie w układzie otwartym (opcja 0.5) Badamy reakcje na skok T,, q t1, q t2, Obserwujemy 1, 2. 2) Scenariusz 1: Do istniejącej centralnej regulacji pogodowej (RC), dodawane są kolejne regulatory lokalne (RL). Nastawy RC i RL zostały wyznaczone niezależnie Porównanie: a) tylko RC b) RC 1 RL c) RC 2 RL Badamy reakcje na skok T,, q t1, q t2, Obserwujemy 1, 2. 3) Scenariusz 2: Najpierw projektowane i włączone są regulatory lokalne (RL). Projektowanie regulacji centralnej (RC) następuje przy działającej regulacji lokalnej. Porównanie: a) RC 2 RL wg scenariusza 1, b) RC 2 RL wg scenariusza 2. Badamy reakcje na skok T,, q t1, q t2, Obserwujemy 1, 2. 10

T zew. K cw. Rys. II.2.Pomieszczenie (3), PI T gz Wzory poniżej - dla Rys. II.1 na podstawie (I-1). Dla Rys. II.2 analogicznie na podstawie (I-2).

T zew. K cw. Rys. II.2.Pomieszczenie (3), PI T gz Wzory poniżej - dla Rys. II.1 na podstawie (I-1). Dla Rys. II.2 analogicznie na podstawie (I-2). II. Jednoobwodowy układ regulacji (SISO Design) II.1. Pomieszczenie z grzejnikiem c.o. regulacja II.1.1 Regulacja jakościowa (gz) Założenia: PV, CV, regulator Rys. II.1.Pomieszczenie (), Rys. II..Pomieszczenie

Bardziej szczegółowo

Projektowanie i badanie układów regulacji z zastosowaniem pakietu Matlab Modele

Projektowanie i badanie układów regulacji z zastosowaniem pakietu Matlab Modele Projektowanie i badanie układów regulacji z zastosowaniem pakietu Matlab Modele Anna Czemplik Copyright by Politechnika Wrocławska Spis treści I. Obiekty...4 I.. Elementy systemu ciepłowniczego odbiorniki

Bardziej szczegółowo

b) C vw C vg, C vw >> C vs - wersja podstawowa 1 (pojemność cieplną ścian uwzględnić w formie poprawki do pojemności powietrza w pomieszczeniu C vw )

b) C vw C vg, C vw >> C vs - wersja podstawowa 1 (pojemność cieplną ścian uwzględnić w formie poprawki do pojemności powietrza w pomieszczeniu C vw ) 7. Pomieszczenie z grzejnikiem c.o. (obiekt nieliniowy) Problemy: Model nieliniowego obiektu. Identyfikacja modelu MIMO. Pojedyncza pętla regulacji PI (podstawowy dobór nastaw). Punkty pracy. Wskaźniki

Bardziej szczegółowo

( t) model liniowy, pierwszego rzędu zmienna stanu (zmienna wyjściowa): T wew zmienne wejściowe: q g, T zew 0 =q g. (t) T zew. (t) g vw.

( t) model liniowy, pierwszego rzędu zmienna stanu (zmienna wyjściowa): T wew zmienne wejściowe: q g, T zew 0 =q g. (t) T zew. (t) g vw. 1. Badania symulacyjne obiektów liniowych przykład 1.1. Konstrukcja i badanie własności modelu w postaci równań stanu Cel: Budowa i weryfikacja prostego modelu obiektu termokinetycznego. Uruchamianie symulacji

Bardziej szczegółowo

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Komputerowo wspomagane projektowanie systemów sterowania

Komputerowo wspomagane projektowanie systemów sterowania Komputerowo wspomagane projektowanie systemów sterowania OCENA KOŃCOWA: F1 ocena z laboratorium (sprawozdania z ćwiczeń laboratoryjnych) F2 kolokwium pisemne z wykładu (dopuszczeniowe) F3 egzamin pisemny

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

Praktyka inżynierska korzystamy z tego co mamy. regulator. zespół wykonawczy. obiekt (model) Konfiguracja regulatora

Praktyka inżynierska korzystamy z tego co mamy. regulator. zespół wykonawczy. obiekt (model) Konfiguracja regulatora raktyka inżynierska korzystamy z tego co mamy Urządzenia realizujące: - blok funkcyjny D w sterowniku LC - moduł D w sterowniku LC - regulator wielofunkcyjny - prosty regulator cyfrowy zadajnik S e CV

Bardziej szczegółowo

1. Regulatory ciągłe liniowe.

1. Regulatory ciągłe liniowe. Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e Plan wykładu I n t e l i g e n t n e s y s t e m y z e s p r zężeniem wizyjnym wykład 6 Sterownik PID o Wprowadzenie o Wiadomości podstawowe o Implementacja w S7-1200 SIMATIC S7-1200 Regulator PID w sterowaniu

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Spis treści. Dzień 1. I Elementy układu automatycznej regulacji (wersja 1109) II Rodzaje regulatorów i struktur regulacji (wersja 1109)

Spis treści. Dzień 1. I Elementy układu automatycznej regulacji (wersja 1109) II Rodzaje regulatorów i struktur regulacji (wersja 1109) Spis treści Dzień 1 I Elementy układu automatycznej regulacji (wersja 1109) I-3 Podstawowy problem sterowania I-4 Przykładowy obiekt regulacji I-5 Schemat blokowy układu automatycznej regulacji I-6 Klasyfikacja

Bardziej szczegółowo

11. Dobór rodzaju, algorytmu i nastaw regulatora

11. Dobór rodzaju, algorytmu i nastaw regulatora 205 11. Dobór rodzaju, algorytmu i nastaw regulatora 11.1 Wybór rodzaju i algorytmu regulatora Poprawny wybór rodzaju regulatora i jego algorytmu uzależniony jest od znajomości (choćby przybliżonej) właściwości

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Dlaczego pompa powinna być "inteligentna"?

Dlaczego pompa powinna być inteligentna? Dlaczego pompa powinna być "inteligentna"? W ciepłowniczych i ziębniczych układach pompowych przetłaczanie cieczy ma na celu transport ciepła, a nie, jak w pozostałych układach, transport masy. Dobrym

Bardziej szczegółowo

4. SPRZĘGŁA HYDRAULICZNE

4. SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁA HYDRAULICZNE WYTYCZNE PROJEKTOWE www.immergas.com.pl 26 SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁO HYDRAULICZNE - ZASADA DZIAŁANIA, METODA DOBORU NOWOCZESNE SYSTEMY GRZEWCZE Przekazywana moc Czynnik

Bardziej szczegółowo

Ciepłownictwo. Projekt zbiorczego węzła szeregowo-równoległego, dwufunkcyjnego, dwustopniowego

Ciepłownictwo. Projekt zbiorczego węzła szeregowo-równoległego, dwufunkcyjnego, dwustopniowego Ciepłownictwo Projekt zbiorczego węzła szeregowo-równoległego, dwufunkcyjnego, dwustopniowego I OPIS TECHNICZNY... 3 1. TEMAT... 3 2. PRZEDMIOT ORAZ ZAKRES OPRACOWANIA... 3 3. ZAŁOŻENIA PROJEKTOWE... 3

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie

Bardziej szczegółowo

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne

Bardziej szczegółowo

Wydział Fizyki i Informatyki Stosowanej

Wydział Fizyki i Informatyki Stosowanej Wydział Fizyki i Informatyki Stosowanej Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Laboratorium 3: Regulacja ciągła dr inż. Dominika Gołuńska dr inż. Szymon Łukasik 1. Regulatory ciągłe liniowe.

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 1. Dobór rodzaju i nastaw regulatorów PID Rodzaje regulatorów 2 Regulatory dwustawne (2P)

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. 1. Wprowadzenie Regulator PID (regulator proporcjonalno-całkująco-różniczkujący,

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania

Bardziej szczegółowo

Ćwiczenie laboratoryjne z Ogrzewnictwa i Wentylacji. Ćwiczenie Nr 12. Temat: RÓWNOWAśENIE HYDRAULICZNE INSTALACJI

Ćwiczenie laboratoryjne z Ogrzewnictwa i Wentylacji. Ćwiczenie Nr 12. Temat: RÓWNOWAśENIE HYDRAULICZNE INSTALACJI Ćwiczenie Nr 12 Temat: RÓWNOWAśENIE HYDRAULICZNE INSTALACJI Celem ćwiczenia jest zapoznanie studentów z zaworami równowaŝącymi i porównanie róŝnych rodzajów równowaŝenia hydraulicznego instalacji. 1 A.

Bardziej szczegółowo

Regulacja dwupołożeniowa.

Regulacja dwupołożeniowa. Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis

Bardziej szczegółowo

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs () 4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1

Bardziej szczegółowo

Automatyka w inżynierii środowiska. Wykład 1

Automatyka w inżynierii środowiska. Wykład 1 Automatyka w inżynierii środowiska Wykład 1 Wstępne informacje Podstawa zaliczenia wykładu: kolokwium 21.01.2012 Obecność na wykładach: zalecana. Zakres tematyczny przedmiotu: (10 godzin wykładów) Standardowe

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Rok akademicki 2015/2016 Semestr letni PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Wstęp teoretyczny: W układzie regulacji określa

Bardziej szczegółowo

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Laboratorium układów automatyki Temat ćwiczenia: Optymalizacja regulatora na podstawie krytycznego nastawienia regulatora wg Zieglera i Nicholsa. Symbol

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Ćwiczenie PAR1. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PAR1. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI LABORATORIUM AUTOMATYKI i ROBOTYKI INŻYNIERIA BIOMEDYCZNA Ćwiczenie PAR1 Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna

Bardziej szczegółowo

PRZYCHODNIA W GRĘBOCICACH GRĘBOCICE ul. Zielona 3działki nr 175/7, 175/4, 705 PROJEKT BUDOWLANY BUDOWY BUDYNKU PRZYCHODNI CZĘŚĆ SANITARNA

PRZYCHODNIA W GRĘBOCICACH GRĘBOCICE ul. Zielona 3działki nr 175/7, 175/4, 705 PROJEKT BUDOWLANY BUDOWY BUDYNKU PRZYCHODNI CZĘŚĆ SANITARNA 5. OBLICZENIA 5.1. BILANS CIEPŁA 5.1.1. Sumaryczne zapotrzebowanie ciepła kotłowni Moc zainstalowanych urządzeń odbiorczych kotłowni określono na podstawie danych wynikających z projektów branżowych wchodzących

Bardziej szczegółowo

Regulator P (proporcjonalny)

Regulator P (proporcjonalny) Regulator P (proporcjonalny) Regulator P (Proportional Controller) składa się z jednego członu typu P (proporcjonalnego), którego transmitancję określa wzmocnienie: W regulatorze tym sygnał wyjściowy jest

Bardziej szczegółowo

STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 8. Układy ciągłe. Regulator PID

STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 8. Układy ciągłe. Regulator PID STEROWANIE MASZYN I URZĄDZEŃ I Laboratorium 8. Układy ciągłe. Regulator PID Opracował: dr hab. inż. Cezary Orlikowski Instytut Politechniczny 1 Blok funkcyjny regulatora PID przedstawiono na rys.1. Opis

Bardziej szczegółowo

LAB-EL LB-760A: regulacja PID i procedura samostrojenia

LAB-EL LB-760A: regulacja PID i procedura samostrojenia Page 1 of 5 Copyright 2003-2010 LAB-EL Elektronika Laboratoryjna www.label.pl LAB-EL LB-760A: regulacja PID i procedura samostrojenia Nastawy regulatora PID W regulatorze LB-760A poczynając od wersji 7.1

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7a Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr

Bardziej szczegółowo

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora)

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora) Dr inż. Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem "syntezy

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Modernizacja instalacji centralnego ogrzewania budynku poddanego kompleksowej termomodernizacji. Budynek ul. Dominikańska 10A w Łęczycy.

Modernizacja instalacji centralnego ogrzewania budynku poddanego kompleksowej termomodernizacji. Budynek ul. Dominikańska 10A w Łęczycy. Ekoprodet Zbigniew Grabarkiewicz Os. Rusa 45/1, 61-245 Poznań tel./fax 618740681/616496960, biuro@ekoprodet.pl Nazwa inwestycji Inwestor Modernizacja instalacji centralnego ogrzewania budynku poddanego

Bardziej szczegółowo

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Laboratorium nr 4: Układ sterowania silnika obcowzbudnego prądu stałego z regulatorem PID 1. Wprowadzenie Przedmiotem rozważań jest układ automatycznej

Bardziej szczegółowo

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika - Dobór siłownika i zaworu - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika OPÓR PRZEPŁYWU W ZAWORZE Objętościowy współczynnik przepływu Qn Przepływ oblicza się jako stosunek

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego

LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Uwagi (pominąć, jeśli nie ma problemów z wykonywaniem ćwiczenia) 1. Jeśli pojawiają się błędy przy próbie symulacji:

Bardziej szczegółowo

Materiał w całości został przygotowany przez ekspertów IQ Controls i obszernie omawia następujące zagadnienia:

Materiał w całości został przygotowany przez ekspertów IQ Controls i obszernie omawia następujące zagadnienia: Szanowni Państwo, poniższy fragment jest wstępem do obszernego materiału na temat automatyki współczesnych biurowców. Zapraszamy do udziału w naszym szkoleniu online, które poprowadzimy 23 marca, o godzinie

Bardziej szczegółowo

Podstawy automatyki i robotyki AREW001 Wykład 2 Układy regulacji i regulatory

Podstawy automatyki i robotyki AREW001 Wykład 2 Układy regulacji i regulatory Podstawy automatyki i robotyki AREW001 Wykład 2 Układy regulacji i regulatory Dr inż. Zbigniew Zajda Katedra Automatyki, Mechatroniki i Systemów Sterowania Wydział Elektroniki Politechniki Wrocławskiej

Bardziej szczegółowo

Modernizacja instalacji centralnego ogrzewania budynku poddanego kompleksowej termomodernizacji. Budynek ul. M. Konopnickiej 3 w Łęczycy.

Modernizacja instalacji centralnego ogrzewania budynku poddanego kompleksowej termomodernizacji. Budynek ul. M. Konopnickiej 3 w Łęczycy. Ekoprodet Zbigniew Grabarkiewicz Os. Rusa 45/1, 61-245 Poznań tel./fax 618740681/616496960, biuro@ekoprodet.pl Nazwa inwestycji Inwestor Modernizacja instalacji centralnego ogrzewania budynku poddanego

Bardziej szczegółowo

Identyfikacja cieplnych modeli elektrycznych układów napędowych

Identyfikacja cieplnych modeli elektrycznych układów napędowych Jakub Wierciak Identyfikacja cieplnych modeli elektrycznych układów napędowych Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych)

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych) Cel ćwiczenia: Zapoznanie się z budową i zasadą działania regulatorów ciągłych oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania

Bardziej szczegółowo

Modele i metody automatyki. Układy automatycznej regulacji UAR

Modele i metody automatyki. Układy automatycznej regulacji UAR Modele i metody automatyki Układy automatycznej regulacji UAR Możliwości i problemy jakie stwarzają zamknięte układy automatycznej regulacji powodują, że stały się one głównym obiektem zainteresowań automatyków.

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ 1 1. Zadania regulatorów w układach regulacji automatycznej Do podstawowych zadań regulatorów w układach regulacji automatycznej należą: porównywanie wartości

Bardziej szczegółowo

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID.

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie KATEDRA AUTOMATYKI LABORATORIUM Aparatura Automatyzacji Ćwiczenie 4. Badanie charakterystyk skokowych regulatora PID. Wydział EAIiE kierunek

Bardziej szczegółowo

Narzędzia wspomagające projektowanie UR SISO Design. step, bode, margin, rlocus lqr, lqreg kalman,...

Narzędzia wspomagające projektowanie UR SISO Design. step, bode, margin, rlocus lqr, lqreg kalman,... Narzędzia wspomagające projektowanie UR SISO Design Obiekt LTI (Linear Time-Invariant System) Linear Analysis Tools LTI Viewer step, impluse bode, nyquist pool/zero map... Matlab+Control+... Schemat pod

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

Dynamika układów podstawy analizy i symulacji. IV. Układy wielowymiarowe (MIMO)

Dynamika układów podstawy analizy i symulacji. IV. Układy wielowymiarowe (MIMO) 10. Układ równań różniczkowych 10.1. Wprowadzenie - układ równań stanu IV. Układy wielowymiarowe (MIMO 10.1.1. Obiekty SISO i MIMO Modele dynamiki układów analizowane w części III miały postać pojedynczego

Bardziej szczegółowo

Układy przygotowania cwu

Układy przygotowania cwu Układy przygotowania cwu Instalacje ciepłej wody użytkowej Centralne Lokalne (indywidualne) Bez akumulacji (bez zasobnika) Z akumulacją (z zasobnikiem) Z pełną akumulacją Z niepełną akumulacją Doba obliczeniowa

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Rys 1 Schemat modelu masa- sprężyna- tłumik

Rys 1 Schemat modelu masa- sprężyna- tłumik Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna, PRz, r.a. 2011/2012, Żabiński Tomasz

Automatyka i Regulacja Automatyczna, PRz, r.a. 2011/2012, Żabiński Tomasz Wykład 8 Transformata Laplace a - przypomnienie, transmitancja operatorowa, scematy bloko, wprowadzenie do pakietu Matlab/Scilab, regulatory PID - transmitancja, modele matematyczne wybranyc obiektów regulacji,

Bardziej szczegółowo

GRZEJNIKI WODNE - DOLNOZASILANE. "Convector PREMIUM V1"

GRZEJNIKI WODNE - DOLNOZASILANE. Convector PREMIUM V1 DANE TECHNICZNE GRZEJNIKI WODNE - DOLNOZASILANE Budowa wewnętrzna grzejników 1. Grzejnik jest grzejnikiem symetrycznym. - nie ma potrzeby określania grzejnik "prawy" lub "lewy". 2. Podłączenie grzejników

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

WYTYCZNE STOSOWANIA REGULATORÓW POGODOWYCH

WYTYCZNE STOSOWANIA REGULATORÓW POGODOWYCH WYTYCZNE STOSOWANIA REGULATORÓW POGODOWYCH NA TERENIE DZIAŁANIA PEC Sp. z o.o. Obowiązuje od dnia 1.01.2007r. WYTYCZNE STOSOWANIA REGULATORÓW POGODOWYCH 1 I. Warunki techniczne do doboru regulatorów. 1.

Bardziej szczegółowo

Narzędzia wspomagające projektowanie - Matlab. PID Tunner. step, bode, margin, rlocus lqr, lqreg kalman,...

Narzędzia wspomagające projektowanie - Matlab. PID Tunner. step, bode, margin, rlocus lqr, lqreg kalman,... Narzędzia wspomagające projektowanie - Matlab Obiekt LTI (Linear Time-Invariant System) Schemat pod Simulinkiem SCDesign linearyzacja SCOptimization linearyzacja Linear Analysis Tools LTI Viewer step,

Bardziej szczegółowo

Regulator przepływu ze zintegrowanym zaworem regulacyjnym (PN 16, 25, 40) AFQM, AFQM 6 montaż na rurociągu zasilającym i powrotnym

Regulator przepływu ze zintegrowanym zaworem regulacyjnym (PN 16, 25, 40) AFQM, AFQM 6 montaż na rurociągu zasilającym i powrotnym Arkusz informacyjny Regulator przepływu ze zintegrowanym zaworem regulacyjnym (PN 16, 5, 40) AFQM, AFQM 6 montaż na rurociągu zasilającym i powrotnym Opis AFQM 6 DN 40, 50 AFQM DN 65-15 AFQM DN 150-50

Bardziej szczegółowo

1. Opis teoretyczny regulatora i obiektu z opóźnieniem.

1. Opis teoretyczny regulatora i obiektu z opóźnieniem. Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie:. Opis teoretyczny regulatora i obiektu z opóźnieniem. W regulacji dwupołożeniowej sygnał sterujący przyjmuje dwie wartości: pełne załączenie i wyłączenie...

Bardziej szczegółowo

Zawór nadmiarowo-upustowy z bezpośrednim odczytem nastawy

Zawór nadmiarowo-upustowy z bezpośrednim odczytem nastawy Hydrolux Zawór nadmiarowo-upustowy z bezpośrednim odczytem nastawy Zawory nadmiarowo-upustowe utrzymanie ciśnienia i odgazowanie równoważenie i regulacja termostatyka ENGINEErING AdVANTAGE HYROLUX jest

Bardziej szczegółowo

Automatyczne sterowanie pracą źródła ciepła. Mirosław Loch

Automatyczne sterowanie pracą źródła ciepła. Mirosław Loch Automatyczne sterowanie pracą źródła ciepła Mirosław Loch Biuro Inżynierskie Softechnik Informacje ogólne Biuro Inżynierskie Softechnik Sp. z o.o. S.K.A. działa od roku 2012 Kadra inżynierska ma kilkunastoletnie

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr

Bardziej szczegółowo

Modelowanie sieci ciepłowniczych jako istotny element analizy techniczno-ekonomicznej

Modelowanie sieci ciepłowniczych jako istotny element analizy techniczno-ekonomicznej 1 Modelowanie sieci ciepłowniczych jako istotny element analizy techniczno-ekonomicznej Daniel Roch Szymon Pająk ENERGOPOMIAR Sp. z o.o., Zakład Techniki Cieplnej Kompleksowa analiza systemu ciepłowniczego

Bardziej szczegółowo

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7a Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr

Bardziej szczegółowo

Dynamika procesu zmienna stała. programowalne zmiany parametrów r.

Dynamika procesu zmienna stała. programowalne zmiany parametrów r. Sterowanie adaptacyjne Sterowanie adaptacyjne polega na dostosowywaniu (adaptacji) nastaw regulatora do zmian parametrów obiektu (w trakcie pracy) Techniki adaptacji Dynamika procesu zmienna stała regulator

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA UKŁADÓW STEROWANIA Kierunek: Mechatronika Rodzaj przedmiotu: Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.

Bardziej szczegółowo

Regulatory wykonywane są z zaworami zamykanymi lub otwieranymi przy wzroście temperatury. Pozycja temperatury może być ukośna, pozioma lub pionowa.

Regulatory wykonywane są z zaworami zamykanymi lub otwieranymi przy wzroście temperatury. Pozycja temperatury może być ukośna, pozioma lub pionowa. 27. Rodzaje regulatorów w instalacjach przemysłowych. I podział: Regulatory Regulatory są urządzeniami technicznymi, służącymi do wytwarzania na podstawie uchybu regulacji sygnału sterującego, to jest

Bardziej szczegółowo

Sterowanie pracą reaktora chemicznego

Sterowanie pracą reaktora chemicznego Sterowanie pracą reaktora chemicznego Celem ćwiczenia jest opracowanie na sterowniku programowalnym programu realizującego jednopętlowy układ regulacji a następnie dobór nastaw regulatora zapewniających

Bardziej szczegółowo