Zaawansowane algorytmy i struktury danych
|
|
- Dominika Kozieł
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12
2 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne) 1. Wady i zalety programowania dynamicznego. 2. Podaj dwa przykłady algorytmów wyszukiwania wzorca w tekście i podaj ich złożoność. 3. Przykład algorytmu działającego w czasie. 4. Gdzie znajduje się granica między problemami łatwo rozwiązywalnymi i trudno rozwiązywalnymi (chodzi o złożoności). 5. Podaj rząd wielkości złożoności obliczeniowej algorytmu mnożącego wielkie liczby w oparciu o metodę dziel i zwyciężaj. Pytania teoretyczne z egzaminu pisemnego z 15 oraz 27 lutego 2015 (studia zaoczne) 1. Wymień dwa algorytmy wyszukiwania wzorca w tekście i podaj ich złożoności czasowe. 2. Podaj wzór na średnią złożoność obliczeniową algorytmu. 3. Podaj, gdzie znajduje się (w zakresie klas złożoności) granica pomiędzy problemami łatwo rozwiązalnymi, a problemami trudno rozwiązywalnymi. 4. Podaj po jednym przykładzie algorytmu działającego w czasie oraz. 5. Podaj rząd wielkości złożoności obliczeniowej algorytmu mnożącego wielkie liczby w oparciu o strategię "dziel i zwyciężaj". Pytania teoretyczne z egzaminu ustnego z 27 stycznia 2015 (jest to "dopytka" osób, które powtarzają ten przedmiot) 1. Podać dwie metody rozwiązywania równań rekurencyjnych. 2. Której notacji używa się do opisywania złożoności pesymistycznych. 3. Zdefiniować notacje, powiedzieć dlaczego jest kilka, podać różnice pomiędzy nimi / kiedy się je stosuje (pytanie to jest rozwinięciem pytania nr 2). Pytania teoretyczne z egzaminu ustnego z 30 stycznia 2015 (jest to "dopytka" osób, które powtarzają ten przedmiot) 1. Podać twierdzenie o rekurencji uniwersalnej. 2. Do jakiego typu równań stosuje się twierdzenie o rekurencji uniwersalnej. 3. Rodzaje równań rekurencyjnych. 4. Jaka jest złożoność najlepszych algorytmów sortujących. 5. Co sprawia, że QuickSort jest taki szybki. 6. Inne pytania odnośnie algorytmów sortujących (niestety nie pamiętam ich już ). Strona 2 z 12
3 Jak widać, niektóre pytania się powtarzają, także w opracowaniu będę podawał treść pytania i odpowiedź na nie. Niektóre pytania połączyłem, a niektóre rozdzieliłem aby nie zaciemniać, a także dostosowałem kolejność do tematyki. Gdzieniegdzie dodałem też więcej przykładów, niż było to wymagane. Pytania z 30 stycznia, poza jednym, nie są opracowane. Strona 3 z 12
4 1. Wady i zalety programowania dynamicznego Wady Istnieje potrzeba rekurencyjnego sformułowania problemu. Należy dowieść własności optymalnej podstruktury. Wymagana jest pamięć o wymiarach zależnych od danych wejściowych (np. rozmiaru problemu). Istnieją ograniczenia zastosowań algorytmów programowania dynamicznego związane z wielkością liczb występujących w przetwarzanych problemach. Zalety Problemy o strukturze rekurencyjnej pod problemów są tą metodą przetwarzane w czasie wielomianowym eliminacja wielokrotnego rozwiązywania tych samych pod problemów. Rozwiązywane są wszystkie różne pod problemy danego problemu, a wyniki przechowywane w tablicy o rozmiarze wielomianowym (najczęściej lub Po rozwiązaniu wszystkich pod problemów i zbudowaniu tablicy z ich rozwiązaniami czas rozwiązywania problemu jest zwykle liniowy, np.. Istnieje możliwość wyznaczenia dokładnego rozwiązania problemu optymalizacyjnego, który czasami nie posiada algorytmu wielomianowego (np. problem plecakowy). Strona 4 z 12
5 2. Podaj dwa przykłady algorytmów wyszukiwania wzorca w tekście i podaj ich złożoność. m - długość wzorca n - długość tekstu 1. Algorytm Knutha-Morrisa-Pratta Przetwarzanie wstępne: Wyszukiwanie: 2. Algorytm Karpa-Rabina: Wyszukiwanie: 3. Algorytm naiwny (brute force) Wyszukiwanie: 3. Przykład algorytmu działającego w czasie: a) Wybór elementu z tablicy. Wstawianie elementu do listy. Odkładanie elementu na stos / pobieranie elementu ze stosu. Dodawania/usuwanie elementu do/z kolejki. Przejście do następnego elementu listy. b) Przeszukiwanie liniowe. Przeszukiwanie listy nieuporządkowanej. Porównanie dwóch łańcuchów. Sprawdzanie palindromu. Przejście przez tablicę. Przejście przez listę. Strona 5 z 12
6 c) Przeszukiwanie binarne. Znajdowanie największej/najmniejszej liczby w drzewie przeszukiwań binarnych. Obliczanie liczb Fibonacciego. d) Sortowanie przez kopcowanie. Sortowanie przez scalanie. Sortowanie biblioteczne. Quick Sort. e) Sortowanie bąbelkowe. Sortowanie przez wstawianie. Sortowanie przez wybór. Przejście przez tablicę dwuwymiarową. f) Rekurencyjny algorytm dla wież Hanoi. Generowanie wszystkich podzbiorów zbioru n-elementowego. Klasyczne rekurencyjne obliczanie liczb Fibonacciego. Znalezienie klucza symetrycznego algorytmu szyfrującego metodą brute force. 4. Podaj rząd wielkości złożoności obliczeniowej algorytmu mnożącego wielkie liczby w oparciu o metodę dziel i zwyciężaj. UWAGA: Theta, a nie O! Algorytm Karacuby (Karatsuby): Strona 6 z 12
7 5. Podaj, gdzie znajduje się (w zakresie klas złożoności) granica pomiędzy problemami łatwo rozwiązalnymi, a problemami trudno rozwiązywalnymi. Granica znajduje się pomiędzy złożonościami: wielomianową, a wykładniczą Złożoność wielomianowa jest największą złożonością dla problemów łatwo rozwiązywanych. Złożoność wykładnicza jest najmniejszą złożonością dla problemów trudno rozwiązywalnych. 6. Podać dwie metody rozwiązywania równań rekurencyjnych. 1. Metoda podstawiania Polega na odgadnięciu postaci rozwiązania, a następnie wykazaniu przez indukcję, że jest ono poprawne. Trzeba też znaleźć odpowiednie stałe. Bardzo skuteczna, jednak stosowana tylko w przypadkach, kiedy łatwo jest przewidzieć rozwiązania. 2. Metoda iteracyjna Polega na rozwijaniu (iterowaniu) rekurencji i wyrażeniu jej jako sumy składników zależnych tylko od n warunków brzegowych. Następnie mogą być użyte techniki sumowania do oszacowania rozwiązania. Metoda ta jest zazwyczaj związana dużą ilością przekształceń algebraicznych, przez co zachowanie prostoty nie jest łatwe. 3. Metoda uniwersalna Strona 7 z 12
8 7. Której notacji używa się do opisywania złożoności pesymistycznych. Zdefiniować notacje, powiedzieć dlaczego jest kilka, podać różnice pomiędzy nimi / kiedy się je stosuje. Rząd wielkości służy do opisu czasu działania algorytmu. Istnieją trzy notacje służące do tego celu. Niech a) Notacja O (omikron) Jest to ograniczenie funkcji od góry (asymptotyczna granica górna). Służy do szacowania czasu działania algorytmu w przypadku pesymistycznym. Gdy mówimy, że pewna funkcja jest rzędu ( ), to oznacza, że: Istnieje taki argument od którego począwszy: dla każdego argumentu wartości funkcji są nie większe od wartości funkcji z dokładnością do stałej Formalnie: ( ) Obrazowo: Na prawo od argumentu funkcja znajduje się pod funkcją, czyli jest ograniczona przez nią z góry, Notacja ( ) pozwala nam oszacować zachowanie się złożoności obliczeniowej gdy Strona 8 z 12
9 b) Notacja (omega) Jest to ograniczenie funkcji od dołu (asymptotyczna granica dolna). Służy do szacowania czasu działania algorytmu w najlepszym przypadku. Gdy mówimy, że pewna funkcja jest rzędu ( ), to oznacza, że: Istnieje taki argument od którego począwszy: dla każdego argumentu wartości funkcji są nie mniejsze od wartości funkcji z dokładnością do stałej Formalnie: ( ) Obrazowo: Na prawo od argumentu funkcja znajduje się nad funkcją, czyli jest ograniczona przez nią z dołu. Strona 9 z 12
10 c) Notacja (theta) Jest to ograniczenie funkcji zarówno od góry, jak i od dołu (asymptotyczne oszacowanie dokładne). Służy do szacowania czasu działania algorytmu w przypadku uśrednionym. Gdy mówimy, że pewna funkcja jest rzędu, to oznacza, że: Istnieje taki argument od którego począwszy: dla każdego argumentu wartości funkcji są nie większe od wartości funkcji z dokładnością do stałej wartości funkcji są nie mniejsze od wartości funkcji z dokładnością do stałej Formalnie: ( ) Obrazowo: Na prawo od argumentu funkcja znajduje się: pod funkcją - czyli jest ograniczona przez nią z góry nad funkcją - czyli jest ograniczona przez nią z dołu Można powiedzieć, że, gdy jest równocześnie rzędu ( ) i ( ) Strona 10 z 12
11 Przykład Wyznaczyliśmy oczekiwaną złożoność obliczeniową pewnego algorytmu i otrzymaliśmy następujący wzór: Gdy czynnik staje się coraz mniej znaczący w stosunku do czynnika. Stąd wnioskujemy, że jest to algorytm o złożoności Udowodnienie tego polega na znalezieniu: argumentu stałej dla których zachodzi: gdzie W tym przypadku wystarczy przyjąć: Mamy: dla Podany algorytm ma rząd złożoności obliczeniowej równy f=n^2+3n g=4*n^ Strona 11 z 12
12 8. Podaj wzór na średnią złożoność obliczeniową algorytmu. Niech: - algorytm rozwiązujący problem. - zbiór danych rozmiaru dla problemu. - pewne dane. - prawdopodobieństwo wystąpienia danych. - funkcja określająca koszt (liczbę operacji dominujących) algorytmu dla danych. - funkcja (supremum) określająca najmniejsze z ograniczeń górnych funkcji f Wzór na średnią (oczekiwaną) złożoność obliczeniową: Wzór na pesymistyczną złożoność obliczeniową: ( ) 9. Jaka jest złożoność najlepszych algorytmów sortujących. 10. Co sprawia, że QuickSort jest taki szybki. Nie pamiętam już, czy była mowa właśnie o QuickSort, w każdym razie chodziło o to, że algorytm porównuje klucze, przez co jest taki szybki. W przypadku braku kluczy byłby wolniejszy. Strona 12 z 12
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2
Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, 2012 Spis treści Przedmowa XIII Część I Podstawy Wprowadzenie 2 1. Rola algorytmów w obliczeniach 4 1.1. Algorytmy 4 1.2. Algorytmy
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Podstawowe informacje Prowadzący: Jan Tuziemski Email: jan.tuziemski@pg.edu.pl Konsultacje: pokój 412 GB (do ustalenia 412 GB) Podstawowe informacje literatura K. Goczyła Struktury
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
INFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
1. Analiza algorytmów przypomnienie
1. Analiza algorytmów przypomnienie T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, rozdziały 1-4 Wydawnictwa naukowo-techniczne (2004) Jak mierzyć efektywność algorytmu?
Struktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew
Informatyka 1. Złożoność obliczeniowa
Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Część I. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zadanie 1.1. (0 3)
Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Część I Zadanie 1.1. (0 3) 3 p. za prawidłową odpowiedź w trzech wierszach. 2 p. za prawidłową odpowiedź
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny
Klasa 2 INFORMATYKA dla szkół ponadgimnazjalnych zakres rozszerzony Założone osiągnięcia ucznia wymagania edukacyjne na poszczególne oceny Algorytmy 2 3 4 5 6 Wie, co to jest algorytm. Wymienia przykłady
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA POZIOM ROZSZERZONY FORMUŁA OD 2015 ( NOWA MATURA ) ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1,R2 MAJ 2018 Uwaga: Akceptowane są wszystkie odpowiedzi
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Algorytmika i pseudoprogramowanie
Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry
Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Łukasz Przywarty 171018 Data utworzenia: 24.03.2010r. Mariusz Kacała 171058 Prowadzący: prof. dr hab. inż. Adam Janiak oraz dr inż. Tomiasz Krysiak Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147
Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE
Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE
Liczby pierwsze - wstęp
Artykuł pobrano ze strony eioba.pl Liczby pierwsze - wstęp W latach 60 ubiegłego wieku w Afryce znaleziono kości z wyrytymi na nich karbami liczące ponad 5000 lat. Na jednej z nich (kość z Ishango) karby
Podstawy Programowania. Złożoność obliczeniowa
Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada
Jeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony
Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony I. Cele kształcenia wymagania ogólne 1. Bezpieczne posługiwanie się komputerem i jego
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Algorytmika w bioinformatyce
Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2016/2017 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji
3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.
1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę
Algorytmika w bioinformatyce
Algorytmika w bioinformatyce Kurs dla kierunku BIOINFORMATYKA 2017/2018 Prowadzący: Prof. Danuta Makowiec danuta.makowiec@gmail.com IFTiA, pok. 353, tel.: 58 523 2466 Motywacja 2 Cztery etapy rekonstrukcji
O rekurencji i nie tylko
O rekurencji i nie tylko dr Krzysztof Bryś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 10 grudnia 2011 Intuicyjnie: rekurencja sprowadzenie rozwiązania danego problemu do rozwiązania
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Podstawy Programowania
Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności
Podstawy Programowania. Złożoność obliczeniowa
Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010
1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA
Rekurencja. Matematyka dyskretna
Rekurencja Matematyka dyskretna Rekurencja Definicja rekurencyjna (indukcyjna) nieformalnie: taka definicja, która odwołuje się do samej siebie, ale trzeba tu uważać, by odwołanie było do instancji o mniejszej
Okręgowa Komisja Egzaminacyjna w Krakowie 1
Okręgowa Komisja Egzaminacyjna w Krakowie 1 Egzamin maturalny Egzamin maturalny, zastąpi dotychczasowy egzamin dojrzałości, czyli tzw. starą maturę i przeprowadzany będzie: od roku 2005 dla absolwentów
Szczegółowy program kursów szkoły programowania Halpress
Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury
5. Podstawowe algorytmy i ich cechy.
23 5. Podstawowe algorytmy i ich cechy. 5.1. Wyszukiwanie liniowe i binarne 5.1.1. Wyszukiwanie liniowe Wyszukiwanie jest jedną z najczęściej wykonywanych operacji na strukturach danych i dotyczy wszystkich,
WSTĘP DO INFORMATYKI. Złożoność obliczeniowa, efektywność i algorytmy sortowania
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Złożoność obliczeniowa, efektywność i algorytmy sortowania www.agh.edu.pl
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu
wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Wykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI
WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI 1. Cele ogólne Podstawowym celem kształcenia informatycznego jest przekazanie wiadomości i ukształtowanie umiejętności w zakresie analizowania i
Porównanie Heap Sort, Counting Sort, Shell Sort, Bubble Sort. Porównanie sortowao: HS, CS, Shs, BS
Czas sortowania w milisekundach Czas sortowania w milisekundach Sortowanie Porównanie, Counting Sort, Shell Sort, Bubble Sort 4 Porównanie sortowao: HS, CS, Shs, BS 35 3 25 2 15 5 Counting Sort Shell Sort
Algorytmy i struktury danych.
Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 5 część I 2 Iteracja Rekurencja Indukcja Iteracja Rekurencja Indukcja Algorytmy sortujące Rozwiazywanie
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Podyplomowe Studium Informatyki
Podyplomowe Studium Informatyki Wstęp do informatyki 30 godz. wykładu dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura D. Harel, Rzecz o istocie informatyki. Algorytmika, WNT
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 6/15 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Kurs MATURA Z INFORMATYKI
Kurs MATURA Z INFORMATYKI Cena szkolenia Cena szkolenia wynosi 90 zł za 60 min. Ilość godzin szkolenia jest zależna od postępów w nauce uczestnika kursu oraz ilości czasu, którą będzie potrzebował do realizacji
[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne).
[12] Metody projektowania algorytmów (dziel i rządź, programowanie dynamiczne i algorytmy zachłanne). Tworzenie projektów informatycznych opiera się w dużej mierze na formułowaniu i implementacji algorytmów,
PROBLEMY NIEROZSTRZYGALNE
PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną