[ równanie liniowe II rzędu, bez pierwszej pochodnej]
|
|
- Grzegorz Niemiec
- 6 lat temu
- Przeglądów:
Transkrypt
1 najprostszy iloraz drugiej pochodnej produkuje przepis z błądem lokalnym rzędu 4 całkiem nieźle, ale: można lepiej = metoda Numerowa błąd lokalny rzędu 6 metoda Numerowa: [przepis na kolejne wartości rozwiązania liczone z błędem O(Δx 6 ) zamiast O(Δx 4 )]: Stosowana do równania typu: [ równanie liniowe II rzędu, bez pierwszej pochodnej]
2 równanie traktowalne metodą ą Numerowa: oryginalne równanie Poissona występuje pochodna nie podejdziemy Numerowem sprowadzone do wersji odpowiedniej dla Numerowa przez podstawienie
3 Metoda Numerowa wyprowadzenie: druga pochodna prawej strony równania różniczkowego po wstawieniu wyżej błąd pozostanie rzędu 4
4 Obustronnie mnożymy przez Δx 2, grupujemy wyrazy Podstawowa formuła metody Numerowa wykorzystać można na podobnie wiele sposobów tak jak iloraz centralny drugiej pochodnej: np. problem brzegowy z relaksacją lub jak problem początkowy
5 W naszym przykładzie: g=0, S= 4πrn Metoda Numerowa wstecz: Dyskretyzacja bezpośrednia: f(numery yczne) f(an nalityczne e) Δr = 0.1 r cała różnica w sposobie uwzględniania niejednorodności (źródeł) Przy tym samym skoku siatki błąd Numerowa jest zaniedbywalny w porównaniu z błędem dyskretyzacji bezpośredniej. S (n) wzywane trzykrotnie, lecz można stablicować, złożoność obliczeniowa nie rośnie
6 metoda Numerowa w całkowaniu do przodu z analitycznym f 1 f(nu umeryczne e) f(analit tyczne) r Przypominam wynik przy podejściu poprzednim: lityczne) f(n numerycz zne) f(ana r Błąd ą jest podobnego pochodzenia (numeryczne<>analityczne) y i podobnego charakteru (liniowy z r) ale znacznie mniejszy (błąd popełniony przez Numerowa w obszarze gdzie n nie znika znacznie mniejszy)
7 Nie każde równanie różniczkowe zwyczajne można rozwiązać metodą Numerowa, ale każde można w sposób ścisły sprowadzić do układu równań pierwszego rzędu np: Rozwiązywać takie układy równań już potrafimy rozwiązujemy ą wstecz: f(duże x)= 1, df/dx(duże x)=0
8 Równanie drugiego rzędu a układ równań pierwszego rzędu : dokładność centralny iloraz różnicowy drugiej pochodnej Euler: dyskretyzacja pierwszej pochodnej po sprowadzeniu równania drugiego rzędu do układu dwóch równań rzędu pierwszego całkowany wstecz Euler O(Δx 2 ) metoda z centralnym iloraz różnicowy drugiej pochodnej O(Δx 4 ) Numerow O(Δx 6 ) Redukcja rzędu równania przez sprowadzenie do układu równań pierwszego rzędu ma swoją cenę.
9 Jak spisuje się RK2? Euler O(Δx 2 ) RK2 O(Δx 3 ) Dyskretyzacja drugiej pochodnej O(Δx 4 ) Numerow O(Δx 6 ) Znacznie lepiej niż Euler, ale wciąż gorzej niż dyskretyzacja drugiej pochodnej.
10 RK4: O(Δx 5 ) Numerow O(Δx 6 ) Dokładność bliska Numerowa a nawet lepsza Δr=0.1 Δr=0.1 Nieco słabsza od Numerowa, gdy wziąć poprawkę na wzywanie prawej strony w punktach pośrednich:
11 Przykład był ł nietypowy: it dla prawego brzegu: mogliśmy zadać w sposób dokładny (analitycznie i numerycznie) wartość rozwiązania w kroku ostatnim i przedostatnim. W praktyce: rzadko tak jest: rozwiązując problem brzegowy metodami dla problemu początkowego musimy wyznaczyć wartość w punkcie sąsiednim do brzegowego) metoda strzałów
12 metoda strzałów dla dwupunktowych problemów brzegowych (zastosowanie metod do problemu początkowego)... rozwiązanie problemu brzegowego przy pomocy metod dedykowanych do zagadnienia początkowego istota metody: parametryzacja rozwiązań przy pomocy dodatkowego wb na jednym z końców + wybór parametru, który daje spełnienie prawego wb.
13 rozważmy 2 punktowy nieliniowy problem brzegowy drugiego rzędu stowarzyszony problem początkowy: w metodzie strzałów kluczowa zależność od swobodnego parametru α rozwiązywać będziemy problem początkowy szukając takiej wartości parametru swobodnego aby y 1 (b;α)=b problem sprowadza się do rozwiązania nieliniowego równania na α
14 metoda strzałów y=b y α1 α2 y=a y 1 (b;α)=b )B x=a x=b na rysunku: musimy trafić z pochodną w x=a tak aby na końcu nasz pocisk trafił w y=b (stąd nazwa metody) y 1 (b;α) zależy w sposób ciągły od α. tutaj: α1 za duża α2 zbyt mała
15 metoda strzałów y(b,α) B α=α2 α=(α1+α2)/2 α=α1 y 1 (b;α)=b można ż rozwiązać ć bisekcją: wyliczyć ć y 1 (b;(α1+α2)/2)( i zawęzić przedział poszukiwania zera kończymygdy przedział wystarczająco zawężony
16 metoda strzałów y 1 (b;α)=b B y(b,α) od bisekcja lepsza metoda siecznych zakładamy, że y(b,α) jest liniowa w okolicy α1,α2 prowadzimy interpolacje : α=α2 α=α3 α=α1 B powinno znajdować się w kończymy np., gdy y(b,α 3 ) B <ε możliwe użycie zamiast prostej: wielomianu interpolacyjnego stopnia 2
17 metoda strzałów z iteracją Newtona y 1 (b;α) B=0 y 1 (b,α) B α=α2 α=α1 można metodą Newtona potrzebna pochodna po α jak wyznaczyć:
18 zbieżność Newtona / siecznych zbieżność ż Newtona (zazwyczaj): kwadratowa, ale wykonanie każdego kroku k wymaga rozwiązania dodatkowego problemu początkowego zbieżność siecznych: wolniejsza ale tańsza iteracja bisekcja: wolniejsza, j ale nie tańsza od siecznych sensowne użycie, gdy nieróżniczkowalna zależność od parametru swobodnego
19 metoda strzałów z iteracją Newtona wyznaczyć różniczkujemy po α nazywamy: y
20 metoda strzałów z iteracją Newtona wyznaczyć różniczkujemy po α stowarzyszony problem początkowy do rozwiązania w funkcji x z 1 (x=b,α) da nam mianownik do metody Newtona
21 przykład: pręt w imadle (clamped elastica) pręt jednostkowej długości jest zamocowany sztywno pod zadanym kątem w imadle które zaciskają się z obciążeniem P. P θ P θ(s)=? s współrzędna położenia wzdłuż pręta dla pręta jednostkowej długości ś 0<s<1 znamy kąt θ(0)=β, θ(1)= β, Z warunków symetrii: θ(1/2)=0 z teorii elastyczności: (problem nieliniowy) poszukujemy: 1) kształtu pręta i co za tym idzie 2) rozstawienia szczęk imadła przygotujmy problem do metody strzałów z metodą Newtona: równania równanie nieliniowe do rozwiązania: z wp zadane β parametr do wyznaczenia
22 przygotujmy problem do metody strzałów z metodą Newtona: β pochodna problemu początkowego po α kolejność działań: 1) rozwiązujemy problem na y: licznik 2) do wyliczenia mianownika rozwiązujemy problem na z: [z 2 wykorzystuje policzone w 1) y 1 ] 3) znajdujemy poprawione α
23 zaciśnięty pręt β=π/4, na starcie pochodna kąta θ po s: α=1, P=10, obydwa problemy początkowe rozwiązane jawnym schematem Eulera z ds=0.5/ α=1 nie spełnia warunku brzegowego g w połowie prętaę złamany pręt θ kształt pręta 0.4 y (s) s x (s)
24 zaciśnięty pręt β=π/4, na starcie pochodna kąta θ po s: α=1, P=10, problemy własne rozwiązane jawnym schematem Eulera z ds=0.5/ α=1 nie spełnia warunku brzegowego g w połowie prętaę złamany pręt θ kształt pręta 0.4 y (s) 0.2 )s( y x (s) x(s) s
25 iteracja Newtona α θ(1/2,α) E E E 04 θ E E E s E znaleźliśmy wartość parametru α która daje właściwy kształt pręta możemy teraz sobie odległość między szczękami wyliczyć y(s) x(s)
26 b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy metod dla problemu początkowego, możemy sobie pozwolić olić na adaptację kroku itd. w MRS raczej nie. y(x) B a=x 0 x b=x N
27 b) metoda różnic skończonych zastępujemy pochodne ilorazami różnicowymi problem różniczkowy sprowadzony do algebraicznego wykorzystujemy rozwinięcie Taylora: pamiętamy, że całą obciętą sumę można zastąpić wyrażeniem z k tą pochodną policzoną gdzieś w przedziale (x,x+δx) dwupunktowy przedni i wsteczny iloraz różnicowy pochodnej (widzimy, że będą dokładne dla wielomianów stopnia 1) odjąć stronami r.t. (iloraz centralny, trójpunktowy)
28 b) metoda różnic skończonych iloraz centralny drugiej pochodnej: ilorazy, które poznaliśmy wystarczą aby rozwiązać problem modelowy:... lecz pozostańmy jeszcze chwilę przy ilorazach
29 Wyższy iloraz różnicowy pierwszej pochodnej wykorzystać więcej punktów (1) (2) (1) minus (2) zachowujemy wyrażenie z trzecią pochodną (3) (4) (5) (4) minus (5) (6)
30 (3) (6) Wyrzucamy trzecią pochodną (6) minus 8 razy (3) wyższa dokładność informacje z kolejnych sąsiadów u(x)
31 Analiza błędu ilorazu du/dx dla jednomianów u(x)=x k czyli co oznacza O(Δx N )? oznacza: wyprowadzone C=1/2 C=1/6 u(x) u (x) (błąd na czerwono) x x 2 2x 2x+Δx 2x 2x x 3 3x 2 3x 2 +3xΔx+Δx 2 3x 2 +Δx 2 3x 2 x 4 4x 3 4x 3 +6x 2 Δx+4xΔx 2 +Δx 3 4x 3 +4xΔx 2 4x 3 x 5 5x 4 5x 4 +10x 3 Δx+10x 2 Δx 2 +5xΔx 3 +Δx 4 5x 4 +10x 2 Δx 2 +Δx 4 5x 4 4Δx 4 domyślamy się, że C= 1/30 Ο(Δx N ) nie tylko podaje rząd zbieżności ilorazu do wartości dokładnej z Δx, lecz również oznacza, że iloraz jest dokładny dla różniczkowania wielomianów rzędu N. Mtd l tó k ń h i i l k l d Metoda elementów skończonych = rozwiązanie lokalne dane przez wielomianowe funkcje kształtu. Liczenie analityczne pochodnych kłopotliwe, ale zbędne jeśli dobrać odpowiedni iloraz.
32 Przykład: u(x)=exp( x 2 )sin(2πx) Pochodna dokładna i ilorazy dla dx=0.15 O(dx) O(dx 2 ) O(dx 4 ) dokładna
33 Zbieżność wartości pochodnej wyliczonej z ilorazu różnicowego do wartości dokładnej z dx 0. 8 log g(e N ) x+c 2x+d O (dx) O(dx 2 ) O(dx 4 ) dokładna -8 4x+b log (Δx)
34 mamy dokładny wzór na pochodną! może wykorzystać ć wielopunktowy iloraz różnicowy do rozwiązania problemu Cauchy? ρ(1)=0 ρ (1) σ(1)=0 spójny zera : z 4 8z 3 +8z 1 =0: z=+1 (główne), 0.12 (OK.), 1 (słabo stabilny),7.87 niestabilny
35 Ilorazy drugiej pochodnej (1) (2) (1) plus (2) trójpunktowy iloraz drugiej pochodnej [pojawił się już wcześniej]
36 Iloraz drugiej pochodnej O(Δx 4 ) Rozpisujemy do Δx 6 bo będziemy musieli wydzielić przez Δx 2 Zadanie: zlikwidować piątą, czwartą i trzecią pochodną. Piątą i trzecią wyrzucimy dodając wzory parami Drugą sumę przemnożyć przez 16, odjąć od tego pierwszą, wyliczyć drugą pochodną, wynik:
37 Wyższe ilorazy drugiej pochodnej cd.
38 ilorazy na nierównomiernej siatce Iloraz różnicowy pochodnej dla nierównej siatki: Δl Δp Tutaj dużo się dzieje (gęstsza siatka przydałaby się) Ο(Δl 4 ) każdy z tych wzorów wygeneruje nam iloraz pochodnej rzędu O(Δx) a tu niewiele na siatce it równomiernej potrafiliśmy wygenerować ć (rzadsza iloraz O(Δx 2 ) korzystając z obydwu sąsiadów siatka wystarczy) = wycinaliśmy wyrażenie z u (x) odejmując stronami przydatne również: teraz się ę nie uda! 2 i więcej D brzegi nieregularne
39 Iloraz różnicowy drugiej pochodnej dla nierównej siatki: Ο(Δl 4 ) dodać: Wzór trójpunktowy tracimy jeden rząd dokładności w porównaniu z siatką równomierną Metoda różnic skończonych działa najkorzystniej na równomiernej siatce. Zazwyczaj nie stać nas (i nie tylko nas) na równomierną siatkę w 3D. Często wyklucza to MRS w realnych zastosowaniach.
40 wracamy do metody RS problem algebraiczny: dla i=1,...,n 1, u 0 =A, u N =B problem jest zbyt ogólny dla rozważań wstępnych, zawęźmy uwagę do problemu liniowego:
41 wersja zdyskretyzowana: równanie różniczkowe jego przybliżenie algebraiczne błąd dyskretyzacji metody różnic skończonych w punkcie x i (przypomnienie definicji dla RRZ) błąd dyskretyzacji w przypadku równania liniowego: i
42 szacujemy błąd dyskretyzacji wiedząc, że: + użyliśmy ilorazów dokładności Δx 2 błąd dyskretyzacji tego samego rzędu
43 problem algebraiczny: dla i=1,...,n 1 [dla i=0,n nie stosujemy równania tylko wb. punkty na brzegu nie spełniają rr] równanie różniczkowe liniowe algebraiczny układ równań liniowych Au=f A macierz trójprzekątniowa bo centralne ilorazy równań: N+1 pierwsze i ostatnie wymuszają WB. można pozbyć się pierwszego i ostatniego równania B
44 można pozbyć się pierwszego i ostatniego równania i=1 in1 i=n 1 najlepiej zamiast np. eliminacji Gaussa rozwiązać problem algorytmem trójprzekątniowym zmodyfikowane wg wzoru
45 dla n=n 1 Uu=z Lz=f rozwiązać Au=f dekompozycja A=LU LUu=f itd.. 5n mnożeń ż ń /dzieleń ń 3n dodawań / odejmowań podczas gdy eliminacja Gaussa p g y j n 3 /3 operacji
46 Błąd globalny dla dwupunktowego problemu brzegowego definiowany (jak dla problemów początkowych) jako odchylenie od wartości dokładnej w problemie początkowym = widzieliśmy akumulację błędów lokalnych, w której wyniku rząd błędu globalnego był mniejszy o jeden niż błędu lokalnego lokalny:=o(dt n ) (w jednym kroku) globalny w chwili t := zakumulowany w N krokach, gdzie N=t/dt O(dt n ) t/dt daje błąd globalny rzędu O(dt n 1 ) problem początkowyą kierunek generacji wyników jak kjest w problemie brzegowym? Czy następuje akumulacja błędu od brzegów?? problem brzegowy: wartości z wewnątrz obszaru całkowania wyliczane przy zafiksowanych wartościach na obydwu końcach przedziału warunki brzegowe przenoszone do wewnątrz obszaru całkowania. czy punkt ze środka jest policzony z gorszą (o jeden rząd dokładnością) niż punkt z brzegu???
47 Problem akumulacji błędu. Rząd błędu globalnego w zagadnieniu brzegowym [ten sam czy niższy niż błąd lokalny?] eksperyment numeryczny n u (x)=u, u(0)=0, u(1) u(x)=sinh(x)/sinh(1), sinh(x)=(exp(x) exp( x))/2 rachunek na N=2 j +1 punktach z Δx=1/N, / j=1,9 stosujemy iloraz centralny z błędem lokalnym O(Δx 2 ) widzimy, że błąd globalny jest również rzędu 2 odchylenie = tam gdzie błędy arytmetyki wniosek: dla problemu brzegowego (dla zmiennej przestrzennej) błąd globalny jest tego samego rzędu co błąd lokalny nie ma akumulacji błędu dla przestrzennych stopni swobody (błędy akumulują się tylko z t) ż dl tk h ( t) bł d t i k l j i ważne dla r.r. cząstkowych z (x oraz t): błędy w t się akumulują, w x nie: większa dokładność będzie wymagana dla t niż dla x
48 mieszany WB (Robina) dla równania liniowego pochodna z w prawym brzegu: mamy dostępne tylko punkty na lewo od niego: 1) możemy zastosować wsteczną pochodną, ale wprowadzimy w ten sposób błąd O(Δx) do całego rachunku 2) możemy zastosować wzór wsteczny z 3 ma punktami, ale zakłócimy trójprzekątniową strukturę problemu 3) wyjście fikcyjny punkt u N+1 w b+δx A y i u y(x) B a=x 0 x b=x N
49 fikcyjny y WB: równanie na punkt ostatni z punktem fikcyjnym fikcyjny punkt eliminowany z WB do równania: 2 p. trójp.
50 p. trójp. uwaga: dla Dirichleta modyfikujemy prawą stronę (tzw. naturalny wb) : dla Neumanna i Robina modyfikujemy macierz A (tzw. istotny wb)
51 problem algebraiczny z dyskretyzacji równania nieliniowego układ równań nieliniowych: metoda Newtona dla układu równań: funkcja i pochodne funkcja i pochodne liczone w
52 w każdej iteracji Newtona układ równań z macierzą trójprzekątniową do rozwiązania
53 Przykład: problem pręta w imadle: zmieniamy oznaczenia s x, θ u u na siatce od 0 do ½ wzory ogólne: 1 1
54 Przykład: problem pręta w imadle Wyniki druga iteracja trzecia iteracja u=θθ 0.4 start x=s
55 Przykład: problem pręta w imadle Wyniki bardzo zły start u=θ 8.0 u=θ druga iteracja trzecia iteracja czwarta = bez zmian druga iteracja trzecia iteracja x=s x=s
y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta
b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
region bezwzględnej stabilności dla ogólnej niejawnej metody RK R(z) 1 może być nieograniczony niejawna 1 stopniowa
region bezwzględnej stabilności dla ogólnej niejawnej metody RK u =λu u=λu, z=λδt dla metod niejawnych: ij nie można ż obciąć bićrozwinięcia i i Taylora, bo A pełnał współczynnik wzmocnienia nie jest wielomianem,
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
OBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
Interpolacja i modelowanie krzywych 2D i 3D
Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]
jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Zajęcia nr 1: Zagadnienia do opanowania:
Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.
Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
5. Twierdzenie Weierstrassa
Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Optymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy
u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )
pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
numeryczne rozwiązywanie równań całkowych r i
numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223
Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Projekt 9: Dyfuzja ciepła - metoda Cranck-Nicloson.
Projekt 9: Dyfuzja ciepła - metoda Cranck-Nicoson. Tomasz Chwiej stycznia 9 Wstęp n y ρ j= i= n x Rysunek : Siatka węzłów użyta w obiczeniach z zaznaczonymi warunkami brzegowymi: Diricheta (czerwony) i
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
Metoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Optymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \