Aksjomatyzacja centralności wektora własnego i Katza oraz ich zastosowanie w systemie finansowym. Tomasz Wąs

Wielkość: px
Rozpocząć pokaz od strony:

Download "Aksjomatyzacja centralności wektora własnego i Katza oraz ich zastosowanie w systemie finansowym. Tomasz Wąs"

Transkrypt

1 Aksjomatyzacja centralności wektora własnego i Katza oraz ich zastosowanie w systemie finansowym Tomasz Wąs

2 Jak zmierzyć ryzyko instytucji finansowej? A Inc.

3 Jak zmierzyć ryzyko instytucji finansowej? A Inc. $ B Co.

4 Jak zmierzyć ryzyko instytucji finansowej? A Inc. $$ B Co.

5 Jak zmierzyć ryzyko instytucji finansowej? A Inc. B Co. $$ $ C Holdings

6 $$ A Inc. $$ D Ltd. B Co. $ C Holdings

7 $$ A Inc. $$ D Ltd. $$$ B Co. $ C Holdings

8 $ $$ A Inc. $$ D Ltd. $ $$$ B Co. $ $$ $$$ C Holdings

9 $$$ $ E & Sons $$ $$ $ $$ A Inc. $$ $$ L Brothers $ $ $$$ $$$ K LLP International D Ltd. $ $$$ B Co. $ $$ $$$ G Bank $ $$ $ $$$ C Holdings $$$ $ J Group $ H Solutions $$ I Company $$

10

11 Jak zmierzyć prestiż czasopisma naukowego? Journal of A

12 Jak zmierzyć prestiż czasopisma naukowego? Journal of A B Journal

13 Jak zmierzyć prestiż czasopisma naukowego? Journal of A B Journal

14 Jak zmierzyć prestiż czasopisma naukowego? Journal of A B Journal C Review

15 Journal of A D Digest B Journal C Review

16 Journal of A D Digest B Journal C Review

17 Journal of A D Digest B Journal C Review

18 Bulletin of Advances in E G Reports L Research Journal of A D Digest B Journal C Review Archives of H Ica Annals of K J Letters

19

20 n ε δ γ o p m f e d a b l k β α q c r g h i j z t s u w v x y

21 n ε δ γ o p m f e d a b l k β α q c r g h i j z t s u w v x y

22 Miary centralności G = V, E, ω graf skierowany ważony v (G) centralność (ważność) wierzchołka v d 2 a c b 2 5

23 Centralność stopnia (Degree Centrality) D v G = ω u, v (u,v) E d 2 a c b 2 5

24 Centralność stopnia (Degree Centrality) D v G = ω u, v (u,v) E 4 d 2 a 2 c 5 b 2 5

25 Centralność wektora własnego (Eigenvector Centrality) EV v G = λ ω u, v EV u (G) u,v E d 2 a c b 2 5

26 Centralność wektora własnego (Eigenvector Centrality) EV v G = λ ω u, v EV u (G) u,v E λ= d 2 a c b 2 5

27 Centralność wektora własnego (Eigenvector Centrality) EV v G = λ ω u, v EV u (G) u,v E λ= 2 d 2 a 7 c 5 b 2 5

28 Centralność Katza (Katz Centrality) K v G = a ω u, v K u (G) u,v E + b d 2 a c b 2 5

29 Centralność Katza (Katz Centrality) K v G = a ω u, v K u (G) u,v E + b a=0.5 b= d 2 a c b 2 5

30 Centralność Katza (Katz Centrality) K v G = a ω u, v K u (G) u,v E + b a=0.5 b= 9 d 2 a c 6 b 2 5

31 Więcej miar centralności Degree Centrality Eigenvector Centrality Katz Centrality

32 Więcej miar centralności Degree Centrality Eigenvector Centrality Katz Centrality PageRank

33 Więcej miar centralności Degree Centrality Eigenvector Centrality HITS 2DRank Katz Centrality CheiRank PageRank

34 Więcej miar centralności Degree Centrality Eigenvector Centrality HITS Betweenness Centrality CheiRank PageRank 2DRank Katz Centrality

35 Więcej miar centralności Harmonic Centrality Degree Centrality Decay Centrality k-degree Centrality Eigenvector Centrality Closeness Centrality HITS Reach Centrality Betweenness Centrality 2DRank Katz Centrality CheiRank PageRank

36 Więcej miar centralności Harmonic Centrality Degree Centrality Decay Centrality k-degree Centrality Eigenvector Centrality Closeness Centrality Betweenness Centrality HITS Reach Centrality 2DRank Katz Centrality Random Walk Betweennsess Centrality CheiRank Random Walk Closeness Centrality PageRank

37 Więcej miar centralności Harmonic Centrality Degree Centrality Attachment Centrality Decay Centrality k-degree Centrality Eigenvector Centrality Closeness Centrality Betweenness Centrality HITS Reach Centrality 2DRank Katz Centrality Random Walk Betweennsess Centrality CheiRank Random Walk Closeness Centrality PageRank

38 Więcej miar centralności Harmonic Centrality Degree Centrality Attachment Centrality Decay Centrality k-degree Centrality Eigenvector Centrality Closeness Centrality Betweenness Centrality low Betweenness Centrality HITS Reach Centrality 2DRank Katz Centrality Random Walk Betweennsess Centrality CheiRank Random Walk Closeness Centrality PageRank

39 Więcej miar centralności Epidemic Centrality β-measure Attachment Centrality Harmonic Centrality Degree Centrality ATC lux Centrality Weighted Degree Centrality Decay Centrality Clustering Coefficient Knotty Centrality k-degree Centrality low Betweenness Centrality Eigenvector Centrality LAC SoECC SALSA 2DRank Closeness Centrality HITS Burt's constraint Bridgeness DC CNMCC Reach Centrality Katz Centrality Betweenness Centrality Random Walk Betweennsess Centrality Eccentricity CheiRank Perturbation Centrality Markov Centrality Random Walk Closeness Centrality PageRank

40 Którą centralność wybrać?

41 Którą centralność wybrać?? =

42 β-measure Attachment Centrality Weighted Degree Centrality Degree Centrality lux Centrality Harmonic Centrality ATC Decay Centrality Clustering Coefficient k-degree Centrality low Betweenness Centrality LAC Eigenvector Centrality 2DRank Closeness Centrality HITS Burt's constraint Betweenness Centrality Reach Centrality Katz Centrality Bridgeness Eccentricity DC CheiRank Random Walk Closeness Centrality Random Walk Betweennsess Centrality SALSA Markov Centrality PageRank

43 β-measure Attachment Centrality Weighted Degree Centrality Degree Centrality lux Centrality Harmonic Centrality ATC Decay Centrality Clustering Coefficient k-degree Centrality low Betweenness Centrality LAC Eigenvector Centrality

44 Aksjomat 2 Harmonic Centrality ATC Clustering Coefficient k-degree Centrality LAC Eigenvector Centrality

45 Eigenvector Centrality Aksjomat 2

46 Set Locality a b = c d a Convex Combination b c d a b Compound Dependency u v p v p u x v x u x u = a(p v p u ) c d t c a = d b + ( t) Endpoint Removal u v = s t u u c a s d u b t a c Weak Set Locality b d = a c Source Dependency u v p v p u b d x v x u = p v p u v G = K v (G) v G = EV v G

47 Endpoint Removal v u u = u u s t s t

48 Set Locality a b = c d a Convex Combination b c d a b Compound Dependency u v p v p u x v x u x u = a(p v p u ) c d t c a = d b + ( t) Endpoint Removal u v = s t u u c a s d u b t a c Weak Set Locality b d = a c Source Dependency u v p v p u b d x v x u = p v p u v G = K v (G) v G = EV v G

49 Podsumowanie

50 Podsumowanie n ε δ γ q t o p r s m f g e u d a h w b Miary centralności pozwalają na lokalizację kluczowych elementów sieci. l c i v k j x β z α y

51 Podsumowanie Miary centralności pozwalają na lokalizację kluczowych elementów sieci. Aksjomatyzacja pozwala dokonać wyboru między różnymi miarami. ε n δ γ β α y z i j c k l b d e m o p q r t s u h w v x g f a Eigenvector Centrality Aksjomat 2

52 Podsumowanie n ε δ γ q t o p r s m f g e u d a h w b Miary centralności pozwalają na lokalizację kluczowych elementów sieci. l c i v k j x β z α y Aksjomat 2 Eigenvector Centrality Aksjomatyzacja pozwala dokonać wyboru między różnymi miarami. Set Locality Weak Set Locality W swojej pracy stworzyłem aksjomatyzację centralności wektora własnego i Katza. = Compound Dependency x v x u x u = a(p v p u ) t Convex Combination = + ( t) Endpoint Removal = u u = Source Dependency x v = p v x u p u v G = K v (G) v G = EV v G

53 Dziękuję za uwagę! Więcej o centralnościach i aksjomatyzacji: Praca powstała przy wsparciu undacji na rzecz Nauki Polskiej w ramach projektu HOMING.

Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009

Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009 Centralność w sieciach społecznych Radosław Michalski Social Network Group - kwiecień 2009 Agenda spotkania Pojęcie centralności Potrzeba pomiaru centralności Miary centralności degree centrality betweenness

Bardziej szczegółowo

NAUKI O FINANSACH FINANCIAL SCIENCES 1(22) 2015

NAUKI O FINANSACH FINANCIAL SCIENCES 1(22) 2015 NAUKI O FINANSACH FINANCIAL SCIENCES 1(22) 2015 Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu Wrocław 2015 Redakcja wydawnicza: Joanna Świrska-Korłub Redakcja techniczna: Barbara Łopusiewicz Korekta:

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

/ / * ** ***

/ / * ** *** 91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA

Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Arkadiusz Kawa, Uniwersytet Ekonomiczny w Poznaniu Słowa kluczowe: sieć przedsiębiorstw, analiza sieci społecznych, SNA, system złożony Streszczenie.

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe

Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji

Bardziej szczegółowo

Wojciech Bijak. Dynamiczna analiza finansowa minimalnego wymogu kapitałowego (MCR) kalibracja modelu rozszerzonego marginesu wypłacalności

Wojciech Bijak. Dynamiczna analiza finansowa minimalnego wymogu kapitałowego (MCR) kalibracja modelu rozszerzonego marginesu wypłacalności Dynamiczna analiza finansowa minimalnego wymogu kapitałowego () kalibracja modelu rozszerzonego marginesu wypłacalności Wojciech Bijak Instytut Ekonometrii SGH 8.6.28 1 Plan prezentacji Wymogi kapitałowe

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 246 2015 Współczesne Finanse 3 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.

Bardziej szczegółowo

1. Struktura montażowa

1. Struktura montażowa . Struktura montażowa.. Podział na jednostki montażowe - Zespół wałka-zębnika (wałka wejściowego). Zespół wałka-zębnika Nr na rysunku Nazwa części Liczba sztuk 3 Wał - zębnik 37 Łożysko stożkowe 30305

Bardziej szczegółowo

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1. Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta

Bardziej szczegółowo

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego

Bardziej szczegółowo

Rola instytucji bankowych w destabilizacji systemu finansowego

Rola instytucji bankowych w destabilizacji systemu finansowego Rola instytucji bankowych w destabilizacji systemu finansowego Aleksandra Szunke Uniwersytet Ekonomiczny w Katowicach Katedra Bankowości i Rynków Finansowych aleksandra.szunke@ue.katowice.pl Plan wystąpienia

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności

Bardziej szczegółowo

Możliwości zastosowania dozymetrii promieniowania mieszanego n+γ. mgr inż. Iwona Pacyniak

Możliwości zastosowania dozymetrii promieniowania mieszanego n+γ. mgr inż. Iwona Pacyniak Możliwości zastosowania dozymetrii promieniowania mieszanego n+γ mgr inż. Iwona Pacyniak Dr Maria Kowalska, Dr inż. Krzysztof W. Fornalski i.pacyniak@clor.waw.pl Centralne Laboratorium Ochrony Radiologicznej

Bardziej szczegółowo

Polskie ośrodki naukowe w międzynarodowej sieci kooperacji

Polskie ośrodki naukowe w międzynarodowej sieci kooperacji Polskie ośrodki naukowe w międzynarodowej sieci kooperacji Agnieszka Olechnicka, Adam Płoszaj Seminarium EUROREG 23 kwietnia 2015 Wprowadzenie BIBLIOMETRIA(NAUKOMETRIA) PRZESTRZENNA PROGRAM BADAŃ Rozwój

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1 1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.

Bardziej szczegółowo

Skrypt 20. Planimetria: Opracowanie L6

Skrypt 20. Planimetria: Opracowanie L6 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Planimetria: 1. Kąty w

Bardziej szczegółowo

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Wyk lad 10 Przestrzeń przekszta lceń liniowych Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych

Bardziej szczegółowo

SOCIAL NETWORK ANALYSIS JAKO GAŁĄŹ WIELOWYMIAROWEJ ANALIZY STATYSTYCZNEJ SOCIAL NETWORK ANALYSIS AS A BRANCH OF MULTIDIMENSIONAL STATISTICAL ANALYSIS

SOCIAL NETWORK ANALYSIS JAKO GAŁĄŹ WIELOWYMIAROWEJ ANALIZY STATYSTYCZNEJ SOCIAL NETWORK ANALYSIS AS A BRANCH OF MULTIDIMENSIONAL STATISTICAL ANALYSIS PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU nr 207 RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 426 2016 Taksonomia 26 ISSN 1899-3192 Klasyfikacja i analiza danych teoria i zastosowania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 157994 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) W ciagu arytmetycznym

Bardziej szczegółowo

Bładzenie przypadkowe i lokalizacja

Bładzenie przypadkowe i lokalizacja Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +

Bardziej szczegółowo

Dynamiczne stochastyczne modele równowagi ogólnej

Dynamiczne stochastyczne modele równowagi ogólnej Dynamiczne stochastyczne modele równowagi ogólnej mgr Anna Sulima Instytut Matematyki UJ 8 maja 2012 mgr Anna Sulima (Instytut Matematyki UJ) Dynamiczne stochastyczne modele równowagi ogólnej 8 maja 2012

Bardziej szczegółowo

WYKORZYSTANIE ANALIZY SIECI SPOŁECZNYCH DO BADANIA KAPITAŁU INTELEKTUALNEGO NA PRZYKŁADZIE PLATFORMY E-LEARNINGOWEJ

WYKORZYSTANIE ANALIZY SIECI SPOŁECZNYCH DO BADANIA KAPITAŁU INTELEKTUALNEGO NA PRZYKŁADZIE PLATFORMY E-LEARNINGOWEJ WYKORZYSTANIE ANALIZY SIECI SPOŁECZNYCH DO BADANIA KAPITAŁU INTELEKTUALNEGO NA PRZYKŁADZIE PLATFORMY E-LEARNINGOWEJ Edyta ABRAMEK, Mariia RIZUN Streszczenie: Sukces firmy nie zależy już tylko i wyłącznie

Bardziej szczegółowo

Tranzytywność struktur modularnych

Tranzytywność struktur modularnych Tranzytywność struktur modularnych Rola, cele i problemy aplikacji w ramach inżynierii wiedzy i kognitywistyki Adam Fedyniuk Abstrakt: Zastosowanie struktury modularnej w ramach róznych rozwiązań tak inżynieryjnych

Bardziej szczegółowo

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych

Bardziej szczegółowo

O kątach w wielokątach i nie tylko

O kątach w wielokątach i nie tylko Zespół Szkół nr 5 w Krakowie Samorządowe Przedszkole nr 30 Szkoła Podstawowa nr 109 im. Kornela Makuszyńskiego Gimnazjum nr 13 im. Adama Chmielowskiego- św. Brata Alberta Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

Zapytanie: SZEWCZAK ZBIGNIEW S Liczba odnalezionych rekordów: 29

Zapytanie: SZEWCZAK ZBIGNIEW S Liczba odnalezionych rekordów: 29 Zapytanie: SZEWCZAK ZBIGNIEW S Liczba odnalezionych rekordów: 29 1. Aut.: Glura Wiesław F. T., Szewczak Zbigniew S. Tytuł: Realizacja zdalnego dostępu dla komputerów JS : doświadczenia Tytuł wydawn. zbior.:

Bardziej szczegółowo

II.1 Serie widmowe wodoru

II.1 Serie widmowe wodoru II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

β-karoten jako lek Henryk Dyczek 2006

β-karoten jako lek Henryk Dyczek 2006 β-karoten jako lek Henryk Dyczek 2006 henryk.dyczek@man.torun.pl Definicja - 1 Karoten organiczny związek chemiczny, rozbudowany przestrzennie węglowodór nienasycony zawierający 40 atomów węgla o wzorze

Bardziej szczegółowo

Spójność informacji o historii leczenia pacjenta w heterogenicznej infrastrukturze elektronicznych rekordów medycznych

Spójność informacji o historii leczenia pacjenta w heterogenicznej infrastrukturze elektronicznych rekordów medycznych Roczniki Kolegium Analiz Ekonomicznych nr 29/203 Grzegorz Bliźniuk, Mariusz Chmielewski, Tomasz Gzik, Rafał Kasprzyk, Jarosław Koszela, Andrzej Najgebauer Wydział Cybernetyki Wojskowa Akademia Techniczna

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Metoda diagramowa Ręczne wyprowadzanie równan wiaż acych współczynniki

Bardziej szczegółowo

Wprowadzenie do analizy sieci społecznych

Wprowadzenie do analizy sieci społecznych Wprowadzenie do analizy sieci społecznych Mikołaj Morzy Agnieszka Ławrynowicz Instytut Informatyki Poznań, rok akademicki 2010/2011 (c) Mikołaj Morzy, Agnieszka Ławrynowicz, Instytut Informatyki Politechniki

Bardziej szczegółowo

Polska w G20? Kryteria wyboru krajów ważnych systemowo

Polska w G20? Kryteria wyboru krajów ważnych systemowo Polska w G20? Kryteria wyboru krajów ważnych systemowo XXIV Forum Ekonomiczne, Krynica-Zdrój 3 września 2014 r. Silnie zintegrowana globalna gospodarka wymaga globalnej koordynacji Globalna gospodarka

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 3 1 Łańcuchy Markowa Oznaczenia

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja

Bardziej szczegółowo

Analiza Algorytmów 2018/2019 (zadania na laboratorium)

Analiza Algorytmów 2018/2019 (zadania na laboratorium) Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT

Bardziej szczegółowo

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy, Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -

Bardziej szczegółowo

Budowa modelu i testowanie hipotez

Budowa modelu i testowanie hipotez Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1 Konrad Miziński, nr albumu 233703 1 maja 2015 Zadanie 1 Parametr λ wyestymowano jako średnia z próby: λ = X n = 3.73 Otrzymany w

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Załącznik 1. Wpływ funkcjonowania Specjalnych Stref Ekonomicznych na wyniki gospodarcze powiatów i podregionów Polski

Załącznik 1. Wpływ funkcjonowania Specjalnych Stref Ekonomicznych na wyniki gospodarcze powiatów i podregionów Polski Załącznik 1. Wpływ funkcjonowania Specjalnych Stref Ekonomicznych na wyniki gospodarcze powiatów Z1.1. Kontekst analizy W rozdziale IV niniejszego raportu zostały przedstawione mechanizmy, za pomocą których

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

3.4. Przekształcenia gramatyk bezkontekstowych

3.4. Przekształcenia gramatyk bezkontekstowych 3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce

Bardziej szczegółowo

Kwantowa implementacja paradoksu Parrondo

Kwantowa implementacja paradoksu Parrondo Kwantowa implementacja paradoksu Parrondo Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN, Gliwice oraz Zakład Fizyki Teoretycznej, Uniwersytet Śląski, Katowice 7 Czerwca 2005 Plan

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim

Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i

Bardziej szczegółowo

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZŁOŻONOŚĆ OBLICZENIOWA ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ dr hab. Krzysztof SZKATUŁA, prof. PAN Instytut Badań Systemowych PAN Uniwersytet

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.

Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzenie nosności słupa w schematach A i A - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzeniu podlega podwiązarowa część słupa - pręt nr. Siły wewnętrzne w słupie Kombinacje

Bardziej szczegółowo

Ryzyko banków Europy Centralnej determinanty, współzależności, miary

Ryzyko banków Europy Centralnej determinanty, współzależności, miary Ryzyko banków Europy Centralnej determinanty, współzależności, miary Dr Dorota Skała Katedra Finansów WNEiZ Uniwersytet Szczeciński Posiedzenie Komitetu Nauk o Finansach Polska Akademia Nauk Warszawa,

Bardziej szczegółowo

Zastosowanie wartości własnych macierzy

Zastosowanie wartości własnych macierzy Uniwersytet Warszawski 15 maja 2008 Agenda Postawienie problemu 1 Postawienie problemu Motywacja Jak zbudować wyszukiwarkę? Dlaczego to nie jest takie trywialne? Możliwe rozwiazania Model 2 3 4 Motywacja

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

2 5 C). Bok rombu ma długość: 8 6

2 5 C). Bok rombu ma długość: 8 6 Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok

Bardziej szczegółowo

Sekantooptyki owali i ich własności

Sekantooptyki owali i ich własności Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy

Bardziej szczegółowo

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!!

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!! DB WMA(ns) semestr zimowy 2017 rozgrzewka przed kolokwium SPIS TREŚCI Teoria w niniejszym zbiorku została opracowana na podstawie książki: R. Murawski, K. Świrydowicz, Wstęp do teorii mnogości, Wyd. Naukowe

Bardziej szczegółowo

Test-driven development na przykładzie funkcji matematycznej

Test-driven development na przykładzie funkcji matematycznej PW, WEiTI, ZBiUM, 2018.10.29 Test-driven development na przykładzie funkcji matematycznej dr inż. Bartosz Papis Spis treści 1. Po pisze się testy? 2. Czemu nie pisze się testów? 3. Czym jest Test-Driven

Bardziej szczegółowo

Random walks centrality measures and community detection

Random walks centrality measures and community detection Random walks centrality measures and community detection Jeremi K. Ochab, Z. Burda Marian Smoluchowski Institute of Physics, Jagiellonian University CompPhys12 29 Nov. 2012, Leipzig Centrality measures

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Kolejnośd obliczeo 1. uwzględnienie imperfekcji geometrycznych;

Kolejnośd obliczeo 1. uwzględnienie imperfekcji geometrycznych; Kolejnośd obliczeo Niezbędne dane: - koncepcja układu konstrukcyjnego z wymiarami przekrojów i układem usztywnieo całej bryły budynki; - dane materiałowe klasa betonu klasa stali; - wykonane obliczenia

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

EMIL PANEK, HENRYK J. RUNKA DWA TWIERDZENIA O MAGISTRALI W MODELU VON NEUMANNA 1. WSTĘP

EMIL PANEK, HENRYK J. RUNKA DWA TWIERDZENIA O MAGISTRALI W MODELU VON NEUMANNA 1. WSTĘP PRZEGLĄD STATYSTYCZY R. LIX ZESZYT 2 2012 EMIL PAEK, HERYK J. RUKA DWA TWIERDZEIA O MAGISTRALI W MODELU VO EUMAA 1. WSTĘP W pracy [5] przedstawiono prosty dowód słabego twierdzenia o magistrali w modelu

Bardziej szczegółowo

Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym

Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Estymatory regresji rangowej oparte na metodzie LASSO

Estymatory regresji rangowej oparte na metodzie LASSO Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R Z = (X, Y ),

Bardziej szczegółowo

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera: Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo