x) / m, gdzie x nie jest wcale znane, a jedynie

Wielkość: px
Rozpocząć pokaz od strony:

Download "x) / m, gdzie x nie jest wcale znane, a jedynie"

Transkrypt

1 Wkł 8 Równni ruchu Bjąc ruch mienn ilnsowliśm min pęu. Bilns okłn w csie skońconm rko jes możliw. Np. erjące się ciło nje uernm cąskom powojoną wrość włsnej prękości le sm prękość włśnie wskuek ego mleje. Procenow min w rkcie krókiego ocink csu kiej prękości jes niewielk grnic sosunku / pr -> uskn kiego prliżonego ilnsu jes n scęście upełnie ścisł. W roprwnm prpku / S ρ / M. Tk pojwiją się równni wierjące pochone. osrok W prpku rkie wncliśm prękość jko unkcję ms m mienijącej się wskuek splni pliw. W m wpku nleźliśm /m -w/m. Z ch wóch prkłów rugi prpek wje się pross. Prwo iki powieiło nm ile wnosi pochon konkrenej wielkości leżnej o innej wielkości wrżon pre mienną nieleżną. Ale prpek pierws sprow się w isocie o ego rugiego g pisem owron sosunek prrosów / M / Sρ osrok. Tk npisne równnie wrż pochoną unkcji pre mienną nieleżną. Jeśli nucliśm się różnickowć pewną licę różnch unkcji o lko prm c wśró wników różnickowni jes k jk ns. G njiem ką unkcję o mm pewność że ns leżność różni się o niej lko o słą. W ochcsowch prkłch wsrcł nm njomość pochonej unkcji poęgowej n n n logrmu pr poswie e: ln / e e. i unkcji wkłnicej: Ale żcie nie jes kie prose. Nwe g prolem sprowi nm się o wnceni ej w. unkcji pierwonej jej nleienie może nie ć możliwe w żnej nnej nm lic pochonch różnch unkcji. Nie porim soie nwe prosmi równnimi g pochon leż i o miennej leżnej i nieleżnej. G chcieć rowiąć n prkł równnie α / kórm poęg oporu mieni się w rkcie ruchu jkichś powoów o wrości n pocąku o wrości smpocnie wór ni ni jko miennej nieleżnej nic nm nie pomoże. N osnim wkłie sporo uwgi poświęciliśm niu prkłu w kórm pojwi się sił leżn o położeni. W kim wpku mm F / m gie nie jes wcle nne jenie wiomo że. Mm więc wie sukne wielkości. Możn u wprwie poć się jenej T w

2 posukiwnch wielkości prękości le cenę wproweni rugiej pochonej położeni rkownego jko wielkość sukną: F / m. G rug pochon ł wrżon pre mienną nieleżną prolem sprowł się o wukronego sukni unkcji pierwonej le u k nie jes!. Owroność rugiej pochonej nie jes niese rugą pochoną unkcji owronej! No i wrescie opis ruchu nwe pojencego punku merilnego wmg wproweni więcej współręnch niż lko. N płscźnie porene jes jesce. Prw Newon ęą więc ukłem wielu równń n wiele niewiomch unkcji. Isnieją romie sposo i romie kls równń kóre możn rowiąć nlicnie o nc poć konkrene wor n osecne leżności wsskich współręnch o csu:... ec. Bęiecie je ponwć w scególności n mechnice eorecnej le re ucciwie powieieć że lic prpków rowiąwlnch w sensie wrch worów jes kroplą w moru wsskich prolemów!!! Legen krążą o w. prolemie rech cił oiłującch grwicjnie. Funowno królewskie ngro jego rowiąnie jenk poosje ono nierowiąne o seregu suleci. C ro nleż cierpieć ego powou? Sąę że nie. Posrm się pokć isij jk proso i nurlnie możn rowiąwć równni pochonmi równni różnickowe pojwijące się w wiąku prolemem ruchu meoą numercną. Zjmiem się mię innmi ruchem hrmonicnm kór nleż o ch łwch prpków le jenm prosm opisniem rech lierek mienim go w ruch whł icnego wchlonego o ± c nwe 79± prpek nie mjąc nic wspólnego ruchem hrmonicnm. I wcle nie ki łw. Inn le ropocęci rowżń numercnch prpkiem łwo rowiąwlnm poleg n łwości konroli smego mechnimu numercnego. Prjmijm powsechną konwencję że pochoną nej wielkości po csie pisujem swijąc kropkę n wielkością. I k jeśli położenie jes o prękość prspiesenie Wsskie omwine ochcs równni ją się pisć w posci To sokując proso!!!!

3 Gieś ocwiście leż pies pogren. Niewinnie wgląjące o nie jes jen mienn licow iór kilu miennch: } L. Ile ich jes? To leż. Dl równni oporem kwrowm wsrc lko. Dl równni oporem leżnm o csu pore wie mienne: T T / gie } } / } } } α α Wrescie równnie Newon ogólną siłą leżną i o csu i o położeni i o prękości: m F F / gie } } } } } Dl punku n płscźnie ęie: m F m F F F / / gie } } } } } O iore wielkości i możn mśleć jk o współręnch pewnego punku w srkcjnej presreni wnej presrenią ową. Równnie mówi nm że g roprwne wielkości opisujące ruch i cs i położeni i prękości mją określone wrości cli g sn ukłu opowi określonemu punkowi w presreni owej równnie kcnie ukł równń wnc chwilow skość premiescni się ego punku. W młm preile csu punk preniesie się o. Ale ego nowego punku nów wiem oką się preniesiem po kolejnm. I k możn ewoluowć e końc!

4 Roienie kiej ewolucji pre wpiswnie kolejnch worów nie m jenk prsłości. Ale proceur jes niesłchnie łw o reliowni n owolnm urąeniu licącm. Wsrc powsechnie nn rkus klkulcjn. G się chce osiąść kompuer prolem musi ć lece skonkreown. Jk oiecwłem n pocąek jmiem się ruchem po wpłwem sił proporcjonlnej o wchleni. m k Konkrecj prolemu musi ć le nie jes ż k źle śm musieli ecowć się jką konkrenie msę i jką słą sprężsości wierm. Dl poci się ch słch wprowim mis wkłego csu wielkość o niego proporcjonlną ω. Słą ω wierem chwilę. Dieląc równnie einiujące prękość pre ωmm ω ω Wswijąc prękości o równni prspieseniem mm ω m mω k cli: k mω Ter wić jk opłci się wrć ω. Ocwiście k k mω ω cli : k m Równni różnickowe: sją się ro smpcne!!!! Różne icne osclor sprowiliśm o jenego równni. Njpross lgorm ewolucji: użwn jes w owoch wiereń o isnieniu i jenoncności rowiąni ukłu równń różnickowch. Nie srjąc się o wielką precję uwżm że po poieleniu porenego kresu n n kwłków wielkość prrosu sje się owronie proporcjonln o n. Prros eż jes proporcjonln o /n łą wglęn prrosu jes eż /n łą ewglęn prrosu proksmownego ilocnem pochonej jes /n. Sum łęów po oniu n skłników jes /n więc możn ją ucnić owolnie młą pre więcie osecnie użego n.

5 Jeśli chcem licć np. okłnością cr o koniecność rowżni kroków może nie wgląć chęcjąco. Isnieje nlnie pros sposó ulepseni lgormu. Precież użo liżsm prw jes unnie że prękość w śroku preiłu j. w punkcie: / / / lepiej nje się o określeni prrosu ek n cłm preile niż prękość n pocąku preiłu!!!! Zem ecujem się n lgorm ewolucji: /. Słowmi: N pocąku nm lko wrość pocąkową wsskich skłowch. Znm więc prękość włącnie pocąkową jko poc. Z jej pomocą prliżm gie ęie po połowie ocink csu nsępnie w m punkcie licm jesce r cli skość min i opiero ę wrość mnożm pre unjąc o lepse prliżenie kcnego prrosu. Pre prsąpieniem o oliceń uslm jesce jeen k kór ęie niełm sprwinem okłności. Oóż różnickujm sumę kwrów: Jes on sł w csie ewolucji. N pocąek jm en emśln lgorm. Krok wiąłem rin. Wić że sum kwrów rośnie. Ale wglą ruchu jes cłkiem cłkiem... Zmin nku nsępuje pomię. G koś słsł o licie π powinien ć owolon. Poonie wkres leżności wglą jk osclcj.

6 ^^ UWAGA Wrości ujemne wpiswne są e nku minus le o n cerwono! Możn się wić łwo smemu mniejsjąc krok o. Arkus się włuż re ukrwć cęść wiers lo gnić po rkusu w e i we we co n wkłie jes nieogone. Niewąpliwą onką polepseni okłności jes ncne mniejsenie różnic mie sum kwrów jenką. Preję o nowego rkus lepsm lgormem. Oo on: 6

7 ^^ Ter sum kwrów różni się o opiero n -m miejscu po precinku. Że wncć miejsce erowe unkcji opisującej ruch mienim osni krok w rurce A k w rurce E mieć ero. Wrość csu ω wnosi 6. Trochę mło jk n pi. Brkuje 6 cli prwie %. Zmniejsm krok o. Więksość wiers n poniżsm igrmie jes schown: Ujwnione są pocąkowe i końcowe wierse 7

8 ^^ Osni krok 9 jes orn k wrość położeni w komórce E7 oprowić o er. Wrością klucowego - jes 9.. kuć i orć w ień więcie9 o plonów niem e ruu... Mimo swej proso meo jes ro skuecn. Zuwżm że pr kroku sum kwrów w okolicch 8± różnił się o o niecłe /. Ter sum różni się lewie o /. Zuwżm eż że po csie ω 9... ciło wróciło o położeni pocąkowego prękość jenie mienił nk. Cł proces okłnie się powór i po kolejnm ω 9 wrunki pocąkowe oworą się łącnie e nkiem prękości. Bn ruch jes preo ruchem okresowm. Ciło rg okresem T * 9 / ω A er oiecne whło icne. Jk pmięcie e skoł kże jk możn o nchmis oworć prspiesenie liniowe whł w kierunku scnm wnosi g sinϕ. Prspiesenie liniowe o kże l ϕ. Zem: ϕ g l sin ϕ ω Wprowjąc cs ϕ sinϕ sin ϕ ω mm osecnie: Dl młch mpliu sinus ką możn sąpić smm kąem i mm o smo równnie co poprenio. A co użmi mpliumi??? W isniejącm pliku klkulcjnm wsrc ron poprwk. Tre w ormułch n prros wpisć SIN. I o wssko! Wpisujem A*F-A*SINE/ w pocji C i -A*SINEA*F/. Dl osclor hrmonicnego nie ło ego SIN. Nie ło o prspiesenie ło określone pre nie pre jego sinus. Prwo chowni energii wiąże er kw- 8

9 r prękości wsokością ną cosinusem ką. Wrunki pocąkowe wgonie jes er wiąć kie prękość poc. ką pocąkow ł uż np. Pi*/8. ^*-COS

10 Powżs rkus jes olicon l wchleni ± j. l π. Tk ormuł jes wpisn 8 w pocji E choć n powżsm wruku wiim jej wrość 9. Po pół okresu prękość wrc o pocąkowej wrości. M o miejsce l 7Pi. Onc o iż okres whń jes łużs o 7% o okresu młch rgń. Wpisnie owolnego ką wchleni pocąkowego powl n nchmisowe uielenie opowiei n wsskie pni. Wróćm jenk o osclor hrmonicnego. Wncliśm jego ruch. Pojwił się ciekwe unkcje csu reukownego ω okresowe mienijące się w preile o o o okresie *9... Nie m ch nikogo n ej sli ko nie nł ch unkcji lo ko nie omślł się że kie sme unkcje wsępują e w innch sucjch w scególności w rgonomerii. Z minukę en wiąek usnowim. Prpomnijm iż e wglęu n równni: prros sum kwrów jes wklucon: C sm wrość ej sum wncon jes pre wrunek pocąkow. N płscźnie owej poosjem w csie ruchu n okręgu o promieniu C. Tre er określić jk się en punk premiesc wr upłwem csu. To łwe. C Zem : φ ϕ φ C φ C Z rsunku ocujem : C sin φ C cos φ ω φ

11 Prechoąc o wkłch miennch mm C sin ω φ ω ωc cos ω φ Korsjąc e nnch worów n unkcje rgonomercne sum kąów mm: C sin ω φ C sin φ cos ω C cos φ sin ω ω ωc cos ω φ ωc cos φ cos ω ωc sin φ sin ω Dwie owolne słe: mpliuę i ę możem jeśli wgoniej sąpić pocąkowmi wrościmi położeni i prękości: C sin φ ωc cos φ cos ω C cos φ cos ω ωc sin φ sin ω sin ω cos ω sin ω ω cos ω ω sin ω Jes o komplene rowiąnie prolemu ruchu osclor. Powsje pnie c woec isnieni i o k sosunkowo prosego rowiąni nlicnego wro ło jmowć się rowiąniem numercnm? No cóż. To kwesi gusu. W powżsm poejściu ię głosem Fenmn. Jes sereg le uświomieni soie jk prcują równni ruchu. Jeną korści ło nieml nchmisowe e żnego wsiłku prejście o osclor hrmonicnego o nhrmonicnego. Inn sprw o sme unkcje sinus i cosinus. Wje nm się że wiem cemu one są równe. Ale k nprwę rgonomerii o m lko wiim n rsunku jki jes ich sens licow policć o soie możem l c 6 sopni. Włśnie osnio mój wnuk mnie opuje o cuje się nieswojo no co o jes en sinus l le jkiego ką? Ocwiście w presłości mąr luie roili lice isij w le klkulorku ocm wrość sinus jm n o rin. A m soie smi policliśm! Zgląm o eli n sronie 7 krokiem i w rurce E mm wliconą pomocą opercji cso rmecnch wrość 8. Tle smo co wsęie! W wniku n ruch osclor wre są eż wżne wniki n pochone ch unkcji. Po prosu wiim że pochoną sinus jes cosinus cosinus minus sinus. Dwukrone różnickownie kżej ch unkcji kże ich owolnej komincji liniowej je powroem ę sm unkcję le minusem. Ziór włsności

12 ϕ ϕ ; ϕ ϕ ϕ einiuje jenoncnie unkcję. T unkcj wsępuje w nsej kolumnie E. T unkcj nw się sinus. T sm unkcj powl wiąć współręną punku n okręgu ługością opowieniego łuku. Funkcje rgonomercne grją k win rolę w ice że wro już er pokć jesce jeną ich włsność. Nie jes runo uskć sereg poęgow l sinus i cosinus. Punkem wjści niech ęie sereg l unkcji wkłnicej: e!!!! L Możn go uskć wpros einicji lic e i woru n wumin Newon. Z rowinięci ego wnik poswow włsność unkcji wkłnicej minowicie o iż jej pochon równ się smej unkcji. To wić. Kż cłon różnickown m mniejsą poęgę wkłnik n jeżżjąc o licnik skrc się osnim cnnikiem n! W minowniku. Tm smm kż wr rowinięci smej unkcji pojwi się w seregu pochonej le że cłon poęgą pochoi cłonu poęgą i. G seregu poęgowego unkcji wkłnicej oswim soie sme poęgi prse lo sme nieprse opiero wukrone różnickownie je nów unkcję wjściową. Nwją się one sinus hiperolicn i cosinus hiperolicn: sinh L!!! cosh L!! Mm sereg ocwisch relcji: cosh sinh sinh cosh sinhcoshe ; cosh- sinhe - ; sinh e - e - /; cosh e e - /; Jeseśm lisko! Pore nm lko nku minus pr preprowniu jeen unkcji w rugą. Osiąg się o mienijąc seregi l unkcji hiperolicnch n seregi npremienne.

13 7 sin L!!! 7! 6 cos L!! 6! Pr wukronm różnickowniu kż cłon reproukuje en wceśniejs le że kż wceśniejs sąsieni m preciwn nk! Elegncki wór osje się korsjąc lic espolonch. Poniewż i ; i i; i więc wić co się ieje po wswieniu i o seregu poęgowego l poswowej unkcji wkłnicej. Wr o poęgch poielnch pre nie mieniją się e poosłe prse mieniją nk. Grupują się w sereg l cosinus. Wr o nk osją mnożnik i e posci K osją mnonik i. Po włąceniu i osjem sereg l sinus: Słnn wór Euler: e i cos i sin pisn l π rmi i wier njwżniejsch lic: iπ e e π i! Jes eż ocwiście Uupełnienie preen l enujsów e sin e cos i i e i e Dl osó ineresownch olicenimi numercnmi jącmi włę n różnmi nierowiąwlnmi nimi mechniki poję e owou meoę ncnego ulepseni oliceń. Zsnwijąc się n lgormem ewolucji: / i i

14 możn ojść o prekonni że skoro już porim lepiej licć prros niż niwnie o cemu nie sosowć ego lepsego prliżeni o oliceni prękości w śroku preiłu? / / No cóż. W powżsm wore śroek preiłu jes wncon okłniej le rugiej sron wrość prękości w smm śroecku choć njokłniej nnm wcle nie pokrw się wrością prękości śreniej jącej ścisłą wrość prrosu. Dlego reci meo liceni prrosu m ką smą wrość priori jk meo rug. Jes jenk nieco inn i c możn ego wciągnąć jkąś korść? Mąr luie uwżli i uowonili że jeśli uupełnić e meo liceni prrosów o jesce jeen pooru ro ł o prjmując prękość min wrość prękości n końcu preiłu wnconego recią meoą: / / o ch cerech różnch sposoów uśrenijąc opowienio możn uskć reul super okłn Zpism o w sposó prejrs. Rowżm różne prros p p p p : p ; p p/ ; p p / ; p p Wrescie weźm śrenią wżoną ch cerech prrosów: p p p p p / 6 O ile prros p je ścisł wnik w jenm kroku lko we g rowiąnie jes unkcją liniową csu prros p we g rowiąnie jes owolną unkcj kwrową jk w ruchu jenosjnie prspiesonm o prros p określon powżej jes ścisł l kżego rowiąni kóre ło wielominem -ego sopni w csie. Dl innch równń i innch rowiąń łą pojencego kroku jes sopni -ego w preile csu łą sum sopni -ego. Dlego wr e wrosem lic preiłów okłność ej meo rośnie jk /n. A oo rkus klkulcjn l osclor uown w oprciu o en lgorm krokiem /

15 -^^ E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-7 Mimo -kronie więksego kroku okłność jes o rą wielkości leps niż w popreniej meoie. A porównując poprenią meoą m smm krokiem wiim rewelcjn wros okłności. Lic pi mis 6 wchoi nm 9 woec prwiwej 9... Kolumn ngłówkmi i ją okłne poną licą cr wrości sinus i cosinus w cłm preile o o 8± wlicone co rin. W rie pore kż wrość pośreni może e ruu ć eż wlicon. Wsrc wpisć opowieni prros w opowienie miejsce w kolumnie -sej.

16 6 Cłk oncon może ocwiście ć uwżn rowiąnie njprossego możliwch równń różnickowch w punkcie pr wrunku pocąkowm. Pon powżej ość wrinown meo njowni okłnego pojencego kroku wn meoą Runge Ku -ego ręu je się w m wpku wrić sprwź ro prosm worem: 6 Zocm co ją omwine r meo l cłki n n n l kolejnch poęg n. Ścisł wnik o kolejno. Meo niwn je: Jej użwnie m cech msochimu Meo nieco ulepson je:...7 Dl cęści liniowej wnik jes ścisł le cłon kwrow po scłkowniu ęąc sopni owrn jes lko w 7% Meo R-K 6 je:. Wrźnie wić porżjącą skuecność meo. Dopiero pią poęg w wniku jes ocenin nieściśle jes prescown le i k lko o %!

Wykład 8. . Tak napisane równanie wyraa pochodn funkcji t(v),

Wykład 8. . Tak napisane równanie wyraa pochodn funkcji t(v), Wkł 8 Równni ruchu Bjc ruch mienn ilnsowlim min pu. Bilns okłn w csie skoconm rko jes moliw. Np. erjce si ciło nje uernm cskom powojon wro włsnej prkoci le sm prko włnie wskuek ego mleje. Procenow min

Bardziej szczegółowo

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f

Bardziej szczegółowo

MECHANIKA BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEMPERATURY, OSIADANIA PODPÓR I BŁĘDÓW MONTAŻOWYCH W RÓWNANIU PRACY WIRTUALNEJ.

MECHANIKA BUDOWLI 5 UWZGLĘDNIENIE WPŁYWU TEMPERATURY, OSIADANIA PODPÓR I BŁĘDÓW MONTAŻOWYCH W RÓWNANIU PRACY WIRTUALNEJ. WYKŁ DY Z ECHNIKI BUDOWLI WPŁYW TEPERTURY I BŁĄDÓW, SPOSÓB WERESZCZEGIN- OHR OBLICZNI CŁEK O Kopcz, m Łoowski, Wojciec Pwłowski, icł Płokowik, Krzszof Tmper Konsucje nukowe: prof. r. JERZY RKOWSKI Poznń

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc

Bardziej szczegółowo

Dynamika punktu materialnego. Ciało o znanych właściwościach Otoczenie Warunki początkowe (prędkość) Jaki będzie ruch ciała? masa ciężar ilość materii

Dynamika punktu materialnego. Ciało o znanych właściwościach Otoczenie Warunki początkowe (prędkość) Jaki będzie ruch ciała? masa ciężar ilość materii Dnik punku eilnego iło o nnch łściościch Oocenie Wunki pocąkoe pękość Jki ęie uch cił? s cięż ilość eii sił Sił nie jes poen o uni cił uchu le o jego in. 564-64 64-77 IZYKA - 6 W-5 hp://.if.p.lo.pl/ogn.oloski/

Bardziej szczegółowo

- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO

- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO MECHANIKA Mechnk klsycn Knemyk Dynmk Kneyk Syk - Dł fyk jmujący sę ruchem, równowgą oływnem cł. - Oper sę n rech sch ynmk Newon b ruchy cł mkroskopowych (mechnk newonowsk). - Nuk o ruchu be uwglęnen wywołujących

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Oscylator harmoniczny tłumiony drgania wymuszone

Oscylator harmoniczny tłumiony drgania wymuszone Oscylor hroniczny łuiony rgni wyuszone x / Γ x e x Oscylor swoony łuiony Γ x Jeśli Γ

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

Warunki zaliczenia przedmiotu: Uzyskanie zaliczenia z ćwiczeń rachunkowych oraz zdany egzamin (część pisemna i ustna).

Warunki zaliczenia przedmiotu: Uzyskanie zaliczenia z ćwiczeń rachunkowych oraz zdany egzamin (część pisemna i ustna). Wkłowc: r Brr Oleś Wkł 1 Brr Oleś, PK, WIEiK Informk 2011/12 Telefon: 637 06 66 wew.41 e-mil: pk.uor@gmil.com Insu Fiki PK, p.117 Pln wkłu: 1. Posw mechniki klscnej. 2. Drgni i jwisk flowe. Akusk. 3. Wrne

Bardziej szczegółowo

Oscylator harmoniczny tłumiony drgania wymuszone

Oscylator harmoniczny tłumiony drgania wymuszone Osclor hroniczn łuion rgni wuszone Osclor swoon łuion Jeśli / Γ e cos Γ

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fik dl Informki Sosownej Jcek Golk Semesr imow 08/09 Wkłd nr N sronie www predmiou hp://users.uj.edu.pl/~golk/eswf.hml możn nleźć: progrm wkłdu wrunki liceni ermin egminu spis polecnej lierur uupełnijącej

Bardziej szczegółowo

GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ.

GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ. Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk GŁÓWN ROMINI KRZYWIZNY, DŁUGOŚĆ ŁUKU OŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLŻNIKA, OL OWIRZCHNI I OBJĘTOŚĆ LISOIDY OBROTOWJ rkrój

Bardziej szczegółowo

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu 9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

2.2. ZGINANIE UKOŚNE

2.2. ZGINANIE UKOŚNE .. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch

Bardziej szczegółowo

Zastosowania całki oznaczonej

Zastosowania całki oznaczonej Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdenie: Do cego służą wekor? Mp połąceń smoloowch Isige pokuje, skąd smolo wlują i dokąd dolują; pokne jes o pomocą srłek srłki e pokują premiescenie: skąd dokąd jes dn lo, rs.. Mimo, że rjekori lou

Bardziej szczegółowo

sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0)

sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0) Kolokwium z mmki 7.. Tm A godz.. Imię i nzwisko Nr indksu Zdni Wznczć cłkę d cos sin Wznczć ką unkcję pirwoną do unkcji cos sin kór przchodzi przz punk Odp. c cos cos F Zdni Nrsowć wrswic unkcji ln odpowidjąc

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015 WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

2. Kinematyka. Wektor położenia

2. Kinematyka. Wektor położenia Kinemk Wekor położeni Wekorem położeni lub wekorem woącm r punku P nwm wekor kórego pocąek njuje się w pocąku ukłu współręnch nomis koniec wnc położenie punku P (Rs 1) P( ) r () r () r( ) k O i j Rs 1

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.

3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty. 3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

F u l l H D, I P S D, I P F u l l H D, I P 5 M P,

F u l l H D, I P S D, I P F u l l H D, I P 5 M P, Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y

Bardziej szczegółowo

RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM

RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 2 12.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 2 12.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyk 1- Mechnik Wykłd 1.X.17 Zygmun Szefliński Środowiskowe Lbororium Ciężkich Jonów szef@fuw.edu.pl hp://www.fuw.edu.pl/~szef/ Pojęci podswowe Punk merilny Ciło, kórego rozmiry możn w dnym zgdnieniu

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomrczn mod niiniow Wkłd Włsności smorów i s . dodk do wkłdu Słb zbiżność convrgnc in disribuion { X } Ciąg zminnch osowch x - dsrbun X FX Isnij dsrbun F X x, k ż im FX x FX x w kżdm punkci x, F X w

Bardziej szczegółowo

MECHANIKA. Podstawy kinematyki Zasady dynamiki. Zasada zachowania pędu Zasada zachowania energii Ruch harmoniczny i falowy

MECHANIKA. Podstawy kinematyki Zasady dynamiki. Zasada zachowania pędu Zasada zachowania energii Ruch harmoniczny i falowy MECHANIKA Podswy kineyki Zsdy dyniki Siły Równnie ruchu Ukłdy inercjlne i nieinercjlne Zsd zchowni pędu Zsd zchowni energii Ruch hroniczny i flowy ruch rejesrowne w czsie w sposób ciągły ziny położeni

Bardziej szczegółowo

dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )

dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T ) Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje

Bardziej szczegółowo

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą Ą ł Ą Ł ÓŁ Ą ę ę ł ł ń ęść ł ł ę ęść źć ć ł ń ś ń ć ń ń ń Ż ł ć ść ń ń Ę ę ĘŚĆ Ó Ł Ł ę ł ś ł Ę ę ń ń ś ś ź ę ś Ę ś ć ś ę Ę ę ć ń ś ś ę ę ć ś Ę ń ź ć ś ś Ł ś Ł ź ł ę Ż ń Ę ń Ę ń ś ę ń ś ś ń ł ś ć ź ń ś

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia

Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e

Bardziej szczegółowo

Shimmy szuja. Jerzy Wasowski arr voc. Andrzej Borzym. O! Szu-ja! # œ œnœnœ. Da ba da, da ba da, da ba da ba da ba da, da ba da, da ba dam

Shimmy szuja. Jerzy Wasowski arr voc. Andrzej Borzym. O! Szu-ja! # œ œnœnœ. Da ba da, da ba da, da ba da ba da ba da, da ba da, da ba dam Shimmy szuj Jeremi Przybor Jerzy Wsoski rr voc Andrzej Borzym Soprno Soprno Alto Tenor h = 75 O! Szu-j! N-o-m- mił, n-truł C # b # nn C D b, b, b b b, b, b m C # b b n b # D b, b, b, b m # Bss C m m m

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w

Bardziej szczegółowo

I 06 B. Arbeitsanweisung. Berechnung von Linsenradien. Instrukcja. Wyliczanie promienia soczewek

I 06 B. Arbeitsanweisung. Berechnung von Linsenradien. Instrukcja. Wyliczanie promienia soczewek I 6 B Abeitsnweisung Beecnung von Linsenien Instukcj Wlicnie pomieni socewek Äneungsbestätigung von Abeitsnweisung / Potwieenie min instukcji Äneung / Zmin 1 3 5 6 Seitenumme / Nume ston tum / t Untescift

Bardziej szczegółowo

Momenty bezwładności figur płaskich - definicje i wzory

Momenty bezwładności figur płaskich - definicje i wzory Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem

Bardziej szczegółowo

Ćwiczenie M-6 Pomiar modułu sprężystości metalu metodą ugięcia pręta. I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. Fi Rys 1.

Ćwiczenie M-6 Pomiar modułu sprężystości metalu metodą ugięcia pręta. I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. Fi Rys 1. Pomir moułu sprężstości metu metoą ugięci pręt.. Ce ćwiceni: wncenie moułu sprężstości połużnej E (moułu Young ) że, uminium i mosiąu. Porównnie ugięć prętów wkonnch tego smego mteriłu o różnch kstłtch

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur OPERONEM Fiyk i stronoi Poio roserony Listopd 0 W niniejsy schecie ocenini dń otwrtych są preentowne prykłdowe poprwne odpowiedi. W tego typu ch nleży również unć

Bardziej szczegółowo

ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź

ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń ż ż ń ń ń ń Ę ż ż ż ż ż Ę ń Ę ż ż ż ńą ź ż ż ż Ę ń ż Ę ń ż ż ż ń ń ż ż ń Ę ź ż ż ż ż ń Ą ń Ę Ż ż ż ń Ł Ę ń ńń ż Ę ż ż ż ń Ę ż ż ńż ń ż ż Ś ż ń ż ż

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

HTML/OA.jsp?page=/dm/oracle/apps/xxext/rep/xxre

HTML/OA.jsp?page=/dm/oracle/apps/xxext/rep/xxre Page 1 of 7 N a z w a i a d re s sp ra w o z d a w c z e j: D o ln o ś lą s k i U rz ą d W o je w ó d z k i w e W ro c ła w iu PI. P o w s ta ń c o w W a rs z a w y 1 50-153 W ro cław IN F O R M A C J

Bardziej szczegółowo

Wykład z fizyki Budownictwo I BB-ZI. Dr Andrzej Bąk

Wykład z fizyki Budownictwo I BB-ZI. Dr Andrzej Bąk Wkłd fiki udownictwo I -ZI Dr ndrej ąk Dlcego wrto się ucć fiki? Powsechność jwisk ficnch W świecie, któr ns otc chodi mnóstwo jwisk ficnch, np.: jwisk meteorologicne: opd descu, śniegu, mgł, tęc, włdowni

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych

Rozwiązywanie równań różniczkowych Rozwiązwanie równań różniczkowch. Równanie różniczkowe zwczajne. rzęu A. Metoa rkfie - zaimplementowana w Mathcazie metoa Rungego-Kutt. rzęu ze stałm krokiem całkowania: rkfie(,,ma, N, P) gzie: ma N P

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

Nasza Szesnastka. '' Święta, święta i po świętach '' WWW.JUNIORMEDIA.PL

Nasza Szesnastka. '' Święta, święta i po świętach '' WWW.JUNIORMEDIA.PL Ns Sesnstk Skoł Podstwow nr 16 Krkowskie Predmieście 11 97-300, Piotrków Trybunlski Numer 5 01/15 WWWJUNIORMEDIAPL ORGANIZATOR PROJEKTU PARTNER '' Święt, święt i po świętch '' Zim be śniegu: (prysłowie:

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y G C S D Z P I 2 7 1 0 1 12 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a ( u d o s t p n i e n i e ) a g r e g a t u p r» d o t w

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

5. Zadania tekstowe.

5. Zadania tekstowe. 5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość

Bardziej szczegółowo

OBSERWACJE SKŁADOWYCH TENSORA GRAWITACYJNEGO Z MISJI GOCE W DZIEDZINIE CZASU

OBSERWACJE SKŁADOWYCH TENSORA GRAWITACYJNEGO Z MISJI GOCE W DZIEDZINIE CZASU OBSERWCJE SKŁDOWYCH ENSOR GRWICYJNEGO Z MISJI GOCE W DZIEDZINIE CZSU nrej Bobojć nrej Drożner Kter stronomii i Geonmiki Uniwerstet Wrmińsko-Murski e-mil: nrej.bobojc@gmil.com roner@uwm.eu.pl Stelitrne

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e

Bardziej szczegółowo

Projektowanie układów sterowana. dr inż. Anna Czemplik (C-3/317a) Katedra Automatyki, Mechatroniki i Systemów Sterowania

Projektowanie układów sterowana. dr inż. Anna Czemplik (C-3/317a) Katedra Automatyki, Mechatroniki i Systemów Sterowania Projekownie kłdów serown dr inż. Ann zeplik -/7 edr Aoyki, Mechroniki i Syseów Serowni hp://www.k.pwr.ed.pl/ Wyszkiwrk zjęci, konslcje hp://nn.czeplik.sff.iir.pwr.wroc.pl -> rsy -> Projekownie kłdów serowni

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y

Bardziej szczegółowo

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE .. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm

Bardziej szczegółowo